

Soil moisture (and vegetation?) remote sensing products in Oklahoma

Jason Patton Plant and Soil Sciences, Oklahoma State University

Wednesday, November 12, 2014 Oklahoma Workshop on Remote Sensing Technology and Applications

The coupling between weather/climate and soil moisture is apparent in models.

(Koster et al. 2004)

Current regular soil moisture measurements are made at single points.

(Campbell Scientific)

Point measurements may not represent larger scale averages of soil moisture.

Weather and climate models need soil moisture data for initialization and validation at large spatial scales (>1 km), while in-situ measurements are available at point (~10 cm) scales.

Satellite remote sensing of soil moisture can provide global measurements of soil moisture at large spatial scales.

Outline

- I. Soil Moisture and Ocean Salinity mission
- II. Soil Moisture Active Passive mission
- III. Cosmic-ray Soil Moisture Observing System

SMOS is the Soil Moisture Ocean Salinity satellite mission.

European Space Agency

Launched November 2009

Passive L-band (1.4 GHz, 21 cm)

43 km average resolution

(ESA)

Sensitive to top 3-5 cm of soil

Polar orbiting:

Measurements every 3 days at equator More often at higher latitudes

$$T_{B} = T_{soil} \left(1 - R_{soil} \right) e^{-\tau/\mu} \quad (1)$$

$$+ \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} \quad (2)$$

$$+ \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} R_{soil} e^{-\tau/\mu} \quad (3)$$

$$T_B = T_{soil} (1 - R_{soil}) e^{-\tau/\mu}$$
(1)
+ $(1 - e^{-\tau/\mu}) (1 - \omega) T_{veg}$ (2)
+ $(1 - e^{-\tau/\mu}) (1 - \omega) T_{veg} R_{soil} e^{-\tau/\mu}$ (3)

$$T_B = T_{soil} \left(1 - R_{soil} \right) e^{-\tau/\mu} \quad (1) + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} \quad (2) + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} R_{soil} e^{-\tau/\mu} \quad (3)$$

(3) R_{soil} is soil reflectivity (3) $R_{soil} = f(soil moisture, roughness)$

$$T_B = T_{soil} \left(1 - R_{soil} \right) e^{-\tau/\mu} \quad (1) \\ + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} \quad (2) \\ + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} R_{soil} e^{-\tau/\mu} \quad (3)$$

 R_{soil} is soil reflectivity $R_{soil} = f(soil moisture, roughness)$

τ is "vegetation optical thickness"
τ = f(vegetation water content)
= b × veg water content (VWC)

$$T_B = T_{soil} \left(1 - R_{soil} \right) e^{-\tau/\mu} \quad (1) \\ + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} \quad (2) \\ + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} R_{soil} e^{-\tau/\mu} \quad (3)$$

R_{soil} is soil reflectivity *R_{soil}* = *f*(soil moisture, roughness)

τ is "vegetation optical thickness"
τ = f(vegetation water content)
= b × veg water content (VWC)

 ω = Veg Scattering Albedo

$$T_{B1} = T_{soil}(1 - R_{soil})e^{-\tau/\mu_1} + \cdots$$
$$T_{B2} = T_{soil}(1 - R_{soil})e^{-\tau/\mu_2} + \cdots$$
$$\vdots$$
$$T_{Bn} = T_{soil}(1 - R_{soil})e^{-\tau/\mu_n} + \cdots$$
where $\mu = \cos(\theta)$

SMOS also assumes ω = 0.

Validation of SMOS has, so far, shown a slight dry bias in most cases, but it does capture dynamics well.

See: Al Bitar et al. 2012; Gherboudj et al. 2012; Collow et al. 2012; Magagi et al. 2013

SMOS Satellite: Soil Moisture (0-5cm)

Satelite passes around 07 November 2014 00 UTC

Vegetation optical thickness from SMOS is very noisy, but still may contain some information about vegetation.

Vegetation optical thickness from SMOS is very noisy, but still may contain some information about vegetation.

The change in τ over the growing season can be related to county crop yield estimates (in Iowa).

The change in τ over the growing season can be related to county crop yield estimates (in Iowa).

The change in τ over the growing season can be related to county crop yield estimates (in Iowa).

SMOS pixels in Oklahoma

SMOS pixels in Oklahoma

SMOS pixels in Oklahoma

SMOS data

L1 (brightness temps) and L2 (soil moisture, tau) available from ESA: <u>https://earth.esa.int/web/guest/-/how-to-obtain-data-7329</u>

Proprietary format, use BEAM or Matlab API (req. 64-bit Linux) to view or convert to more friendly formats:

BEAM: <u>http://www.brockmann-consult.de/cms/web/beam</u> Matlab Read API: <u>http://smos.array.ca/web/smos/matlab-tool</u>

L3 (3-day/monthly soil moisture) available from CATDS in NetCDF: http://www.catds.fr/

Some L2 (soil moisture & tau *only*) available from the lowa Environmental Mesonet: <u>http://mesonet.agron.iastate.edu/smos</u>

SMAP is the Soil Moisture Active Passive satellite mission.

NASA

- Launching January 2015
- Active and Passive L-band
- 3 km and 36 km resolutions 10 km combined active/passive
- Sensitive to top 3-5 cm of soil

Polar orbiting: Measurements every 3 days at equator More often at higher latitudes

(NASA)

$$T_B = T_{soil} \left(1 - R_{soil} \right) e^{-\tau/\mu} \quad (1) \\ + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} \quad (2) \\ + \left(1 - e^{-\tau/\mu} \right) \left(1 - \omega \right) T_{veg} R_{soil} e^{-\tau/\mu} \quad (3)$$

R_{soil} is soil reflectivity *R_{soil}* = *f*(soil moisture, roughness)

τ is "vegetation optical thickness"
τ = f(vegetation water content)
= b × veg water content (VWC)

 ω = Veg Scattering Albedo

The main difference between SMOS and SMAP passive soil moisture retrieval is multi-angle vs. single angle approach.

The main difference between SMOS and SMAP passive soil moisture retrieval is multi-angle vs. single angle approach.

The main difference between SMOS and SMAP passive soil moisture retrieval is multi-angle vs. single angle approach.

SMOS

L-band

Passive-only (43 km pixels)

Multi angle, retrieves τ

RFI plagued in regions

15 km ISEA grid (oversampled)

Already in orbit

SMAP

L-band

Radar dissaggregation of passive pixels (36 km to 10 km)

Single angle, requires $\boldsymbol{\tau}$

RFI mitigation built in

EASE-Grid 2.0 (grid spacing approx. matches resolution)

Yet to be launched

The baseline SMAP soil moisture retrieval algorithm will require an outside source of vegetation data, will use an NDVI climatology to estimate τ .

NDVI —> Vegetation Water Content (VWC) —> τ

$$VWC = (1.9134 \times NDVI^{2} - 0.3215 \times NDVI) + stem factor \times \frac{NDVI_{max} - NDVI_{min}}{1 - NDVI_{min}}$$

$$\tau = b \times VWC$$

(SMAP L2 Passive ATBD)

Under this baseline approach, SMAP may not be sensitive to interannual variability in vegetation.

SMAP data

All products will be available through NSIDC in HDF-5 format about a year after launch.

Data Product Short Name	Short Description	Gridding (Resolution)	Latency*
L1A_Radar	Radar raw data in time order		12 hours
L1A_Radiometer	Radiometer raw data in time order	<u>_</u>	12 hours
L1B_S0_LoRes	Low resolution radar σ_o in time order	(5x30 km)	12 hours
L1B_TB	Radiometer T _B in time order	(36x47 km)	12 hours
L1C_S0_HiRes	High resolution radar σ_o (half orbit, gridded)	1 km (1-3 km)**	12 hours
L1C_TB	Radiometer T_B (half orbit, gridded)	36 km	12 hours
L2_SM_A	Soil moisture (radar, half orbit)	3 km	24 hours
L2_SM_P	Soil moisture (radiometer, half orbit)	36 km	24 hours
L2_SM_A/P	Soil moisture (radar/radiometer, half orbit)	9 km	24 hours
L3_F/T_A	Freeze/thaw state (radar, daily composite)	3 km	50hours
L3_SM_A	Soil moisture (radar, daily composite)	3 km	50 hours
L3_SM_P	Soil moisture (radiometer, daily composite)	36 km	50 hours
L3_SM_A/P	Soil moisture (radar/radiometer, daily composite)	9 km	50 hours
L4_SM	Soil moisture (surface & root zone)	9 km	7 days
L4_C	Carbon net ecosystem exchange (NEE)	9 km	14 days

* Mean latency under normal operating conditions (defined as time from data acquisition by the observatory to availability to the public data archive). The SMAP project will make a best effort to reduce these latencies.

** Over outer 70% of the swath.

COSMOS is the Cosmic-ray Soil Moisture Observing System

NSF project based out of University of Arizona

Passive neutron counting sensor

700 m sensing area

Sensitive to top 10-30 cm of soil (dependent on soil moisture)

http://cosmos.hwr.arizona.edu/

(COSMOS)

COSMOS is being deployed across the US, already two (project-sanctioned) sensors in Oklahoma.

COSMOS requires careful calibration, which can change over time in areas with large changes in vegetation water content.

(Hornbuckle et al 2012)

COSMOS data, publications, etc.

http://cosmos.hwr.arizona.edu/

Thank you

jason.c.patton@okstate.edu