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The coupling between weather/climate and soil moisture is 
apparent in models.

(Koster et al. 2004)



Current regular soil moisture measurements are made at 
single points.
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Point measurements may not represent larger scale 
averages of soil moisture.
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Weather and climate models need soil moisture 
data for initialization and validation at large spatial 

scales (>1 km), while in-situ measurements are 
available at point (~10 cm) scales.

Satellite remote sensing of soil moisture 
can provide global measurements of soil 

moisture at large spatial scales.



Outline

I.   Soil Moisture and Ocean Salinity mission

II.  Soil Moisture Active Passive mission

III. Cosmic-ray Soil Moisture Observing System



European Space Agency

Launched November 2009

Passive L-band (1.4 GHz, 21 cm)

43 km average resolution

Sensitive to top 3-5 cm of soil

Polar orbiting: 
Measurements every 3 days at equator
More often at higher latitudes

SMOS is the Soil Moisture Ocean Salinity satellite mission.

(ESA)



The “tau-omega” model describes the natural emission of 
microwave radiation from Earth’s surface.
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Rsoil = f(soil moisture, roughness)
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The “tau-omega” model describes the natural emission of 
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Rsoil is soil reflectivity
Rsoil = f(soil moisture, roughness)

τ is “vegetation optical thickness”
τ = f(vegetation water content)
˦˩˩ = b × veg water content (VWC)

ω = Veg Scattering Albedo



SMOS uses a multi-angular approach to simultaneously 
estimate soil moisture and optical thickness.
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SMOS uses a multi-angular approach to simultaneously 
estimate soil moisture and optical thickness.



SMOS uses a multi-angular approach to simultaneously 
estimate soil moisture and optical thickness.

SMOS also assumes ω = 0.



Validation of SMOS has, so far, shown a slight dry bias in 
most cases, but it does capture dynamics well.

See: Al Bitar et al. 2012; Gherboudj et al. 2012; Collow et 
al. 2012; Magagi et al. 2013
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Vegetation optical thickness from SMOS is very noisy, but still 
may contain some information about vegetation.

(Patton, 2014)
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The change in τ over the growing season can be related to 
county crop yield estimates (in Iowa).
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county crop yield estimates (in Iowa).
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When using SMOS data, be considerate of the sensing depth, 
noise, radio frequency interference, and the grid spacing.
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When using SMOS data, be considerate of the sensing depth, 
noise, radio frequency interference, and the grid spacing.
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When using SMOS data, be considerate of the sensing depth, 
noise, radio frequency interference, and the grid spacing.
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noise, radio frequency interference, and the grid spacing.
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L1 (brightness temps) and L2 (soil moisture, tau) available from ESA: 
https://earth.esa.int/web/guest/-/how-to-obtain-data-7329

Proprietary format, use BEAM or Matlab API (req. 64-bit Linux) to view 
or convert to more friendly formats:

BEAM: http://www.brockmann-consult.de/cms/web/beam
Matlab Read API: http://smos.array.ca/web/smos/matlab-tool

L3 (3-day/monthly soil moisture) available from CATDS in NetCDF:
http://www.catds.fr/

Some L2 (soil moisture & tau only) available from the 
Iowa Environmental Mesonet: http://mesonet.agron.iastate.edu/smos

SMOS data

https://earth.esa.int/web/guest/-/how-to-obtain-data-7329
https://earth.esa.int/web/guest/-/how-to-obtain-data-7329
http://www.brockmann-consult.de/cms/web/beam
http://www.brockmann-consult.de/cms/web/beam
http://smos.array.ca/web/smos/matlab-tool
http://smos.array.ca/web/smos/matlab-tool
http://www.catds.fr/
http://www.catds.fr/
http://mesonet.agron.iastate.edu/smos
http://mesonet.agron.iastate.edu/smos


NASA

Launching January 2015

Active and Passive L-band

3 km and 36 km resolutions
10 km combined active/passive

Sensitive to top 3-5 cm of soil

Polar orbiting: 
Measurements every 3 days at equator
More often at higher latitudes

SMAP is the Soil Moisture Active Passive satellite mission.

(NASA)



The “tau-omega” model describes the natural emission of 
microwave radiation from Earth’s surface.
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τ = f(vegetation water content)
˦˩˩ = b × veg water content (VWC)

ω = Veg Scattering Albedo



The main difference between SMOS and SMAP passive soil 
moisture retrieval is multi-angle vs. single angle approach.

SMAP
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The main difference between SMOS and SMAP passive soil 
moisture retrieval is multi-angle vs. single angle approach.



SMOS SMAP

L-band

Passive-only
(43 km pixels)

Multi angle, retrieves τ

RFI plagued in regions

15 km ISEA grid
(oversampled)

Already in orbit

L-band

Radar dissaggregation
of passive pixels
(36 km to 10 km)

Single angle, requires τ

RFI mitigation built in

EASE-Grid 2.0 
(grid spacing approx.
matches resolution)

Yet to be launched



NDVI —> Vegetation Water Content (VWC) —> τ

Fig. 1. Time series of raw and smoothed SMOS ⌧ for a pixel cen-
tered near Pocahontas, Iowa. The root mean squared difference
(RMSD) between the smoothed and raw data, computed over the
growing season, is also represented.

2.2. SMOS optical thickness

SMOS ⌧ data were extracted for each pixel from the latest version
(5.5.1) of the SMOS level 2 (L2) soil moisture product only for
times when soil moisture and ⌧ were retrieved via SMOS’s bright-
ness temperature measurements and retrieval algorithm; i.e. ⌧ values
derived from ancillary data when retrievals were not possible are not
included in our data. Consistent with previous versions of SMOS
L2 data [6], ⌧ timeseries were noisy, changing rapidly day-to-day
in a manner not consistent with how VWC should change on the
same timescale. However, a meaningful signal consistent with how
VWC changes can be extracted by applying a smoothing algorithm.
We used functional data analysis with Fourier bases and a roughness
penalty to estimate the “true” ⌧ signal for each SMOS pixel for each
year. One example can be seen in Figure 1. The smoothed ⌧ rises and
falls over the growing season (June-September) as expected. There
are also interesting features outside of the growing season, such as
the decline in ⌧ going in to the growing season and the rise in ⌧ post
harvest, which may be due to changes in surface roughness [6].

2.3. MODIS NDVI climatology

We have developed an NDVI climatology for each SMAP pixel of
interest. NDVI data from 2003-2013 were extracted from the lat-
est version (5) of MODIS Aqua and Terra 16 day 1 km vegetation
indicies products and subset over Iowa. Mean NDVI and mean com-
posite day of year (i.e. which actual day in the 16 day period led
to the reported NDVI observation) were computed for each SMAP
footprint (as calculated in Section 2.1) for each 16 day period. The
mean annual NDVI signal was estimated for each SMAP pixel using
functional data analysis, with mean NDVI values below 1.75 ignored
due to the probable influence of snow. An example can be seen in
Figure 2.

Our method differs slightly from the official method being used
for SMAP’s ancillary data development, however the results appear
to be nearly identical. In initial versions of official SMAP documen-
tation [7], an NDVI climatology for the Walnut Creek Watershed in
Central Iowa is presented for example, and shows NDVI steady just

Fig. 2. Annual NDVI climatology for a SMAP pixel centered near
Pocahontas, Iowa. The raw values used to compute the climatology
are also plotted. NDVI values below 1.75 were not considered.

above 0.2 outside of the growing season, beginning to rise in early
June, peaking above 0.8 in early August, and decaying back to the
minimum value again in early October. Our NDVI climatologies
show very similar patterns and should enable a fair comparison of
NDVI climatology-derived ⌧ (SMAP ⌧ ) with SMOS ⌧ .

2.4. NDVI climatology-derived optical thickness

The current SMAP baseline algorithm is the single-channel algo-
rithm, which requires an ancillary source of ⌧ data [7]. The pro-
posed method is to go from an NDVI climatology to obtain VWC
and ⌧ [8]:

VWC =
�
1.9134 ⇥ NDVI2 � 0.3215 ⇥ NDVI

�

+ stem factor ⇥ NDVI
max

� NDVI
min

1 � NDVI
min

(1)

⌧ = b ⇥ VWC (2)

In (1), the first half of the equation estimates the water content of
leaves while the other half estimates the water content of stems. The
equation is simplified by assuming NDVI

min

= 0.1, and, for crops,
NDVI is used in place of NDVI

max

. Also for crops, the value of b

is estimated to be b = 0.110 [7]. Using our NDVI climatology with
(1) and (2), we have estimated SMAP ⌧ for 30 densely cultivated
SMAP pixels in Iowa.

3. RESULTS

The SMAP ⌧ timeseries have a reasonable phenology (Figure 3):
the timeseries increase in late May/early June, close to the time that
crops in Iowa begin to emerge; they reach a peak in early August
(August 7 or 8, on average), which coincides with crops beginning
their their reproductive stages; and, finally, they decay until early to
mid October, when crops are maturing, senescing, and being har-
vested. However, the SMOS ⌧ timeseries show that there can be a
significant variability year to year in the exact timing of each of these
stages. For example, for the SMOS and SMAP pixels near Pocahon-
tas, Iowa, SMAP ⌧ matches well in peak timing for 2010, 2011, and
2013, but in 2012, SMOS ⌧ peaked on July 21, which precedes the

where T
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is the brightness temperature (a measure of power used in microwave remote30

sensing), T
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is the soil temperature, T
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is the canopy temperature, R
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is the soil reflec-31

tivity, ⌧ is the vegetation optical thickness, µ is the cosine of the incidence angle, and32

omega is the single scattering albedo. R
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is a function of soil moisture, soil proper-33

ties (e.g. texture), and soil surface roughness (Dobson et al., 1985; Mironov et al., 2009;34

Wigneron et al., 2001). If T
B

is measured, surface air temperature (it is usually assumed35

that T
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= surface air temperature) is known, and the vegetation parameters (⌧ and36

!) are known, then R
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can be determined. Then, from R

soil

, soil moisture can be retrieved37

if soil texture and roughness are known.38

Measuring or estimating ⌧ is not trivial. ⌧ is primarily related to the mass (per area)39

of water contained in the vegetation canopy, referred to as the vegetation water content40

(VWC). ⌧ has been found to vary linearly with VWC (Jackson and Schmugge, 1991):41

⌧ = b ⇥ VWC, (2)

where b is a parameter that has been empirically found and can vary across di↵erent landcover42

types.43

Instead of measuring and converting VWC to ⌧ , SMOS is able to retrieve ⌧ directly.44

Because SMOS’s design uses an interferometric array of radiometers, T
B

is measured at the45

same location using multiple incidence angles. Using data from multiple angles allows the46

unknown parameters (typically R

soil

and ⌧ , ! is often assumed to be constant) in Equation 147

to be solved for by finding the parameters that minimize error across all T
B

–µ pairings48

(Mahmoodi , 2011).49

SMAP will measure T

B

at a fixed angle, and so will require ⌧ to be provided from an50

auxiliary source in order to retrieve soil moisture. The current plan is to estimate VWC from51

a climatology of Moderate Resolution Imaging Spectrometer (MODIS) Normalized Di↵erence52

Vegetation Index (NDVI) measurements (Chan et al., 2011). ⌧ can then be derived from53

Equation 2 by looking up b in a table based on the landcover type. NASA has set specific54

requirements for the SMAP mission (e.g. retrieved soil moisture should be accurate to55

0.04 m3 m�3, see O’Neill et al., 2012), and so validation of ⌧ data is crucial. As seen in56

Equation 1, ⌧ has a large influence on T

B

and so needs to be properly taken in to account if57

one is going to retrieve soil moisture at a high level of accuracy.58

Since SMOS retrieves ⌧ directly and behaves similarly to SMAP’s radiometer, SMOS ⌧59

provides an ideal source for validating SMAP’s method for estimating ⌧ . However, SMOS60

⌧ has not been well validated. Even if one were to attempt validating SMAP’s method61

using SMOS ⌧ data, it would be di�cult to separate errors in SMAP’s estimates of b versus62

SMAP’s estimates of VWC. If SMOS ⌧ can be validated and an appropriate b values can be63

found, then one could proceed with validating SMAP ⌧ estimates, along with other estimates64

of ⌧ , with SMOS ⌧ data. We have done or propose to:65

1. validate SMOS optical thickness in Iowa using county-level yield data (Patton and66

Hornbuckle, 2013),67

2. use SMOS optical thickness to determine appropriate b values for Iowa, and68

3. compare optical thickness data sets using SMOS ⌧ as the “truth”.69

2

The baseline SMAP soil moisture retrieval algorithm will 
require an outside source of vegetation data, will use an NDVI 
climatology to estimate τ. 

(SMAP L2 Passive ATBD)



Under this baseline approach, SMAP may not be sensitive to 
interannual variability in vegetation.
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SMAP data

All products will be available through NSIDC in HDF-5 format about a 
year after launch.

(NASA)



COSMOS is the Cosmic-ray Soil Moisture Observing System

(COSMOS)

NSF project based out of 
University of Arizona

Passive neutron counting sensor

700 m sensing area

Sensitive to top 10-30 cm of soil
(dependent on soil moisture)

http://cosmos.hwr.arizona.edu/

http://cosmos.hwr.arizona.edu/
http://cosmos.hwr.arizona.edu/


COSMOS is being deployed across the US, already two 
(project-sanctioned) sensors in Oklahoma.
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COSMOS requires careful calibration, which can change over 
time in areas with large changes in vegetation water content.
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Fig. 3. Above: precipitation recorded during the 2011 grow-
ing season at the Iowa Validation Site. Below: soil moisture
as sensed by the COSMOS probe according to three different
calibrations.

3.2. Analysis and Initial Results

A COSMOS sensor detects the rate of incident neutrons, N .
This quantity has been found to be indirectly proportional to
soil water content:

θv (N) =
a0

N

N0
− a1

− a2 (1)

where: θv is the volumetric soil moisture; a0, a1, and a2 are
constants that are insensitive to soil type; and N0 is the max-
imum counting rate over dry soil (i.e. the rate that would be
detected if the soil was perfectly dry). As the water content
of the soil increases, the number of neutrons scattered by the
soil towards the COSMOS sensor decreases.

Theoretically only one parameter, N0, must be found to
calibrate a COSMOS sensor for a particular site. We deter-
mined this calibration for the sensor at the IVS using the soil
moisture measurements described in Section 3.1. Three of
these calibrations are shown in Figure 3. The original cali-
bration when the sensor was installed in September, 2010, is
shown in black. At that time the IVS was covered with a crop
of soybean. The two other calibrations were made during the
2011 growing season when the IVS was planted with maize.
Note the difference in the three calibrations and especially the
unreasonably–high soil moisture values for the May 19, 2011
calibration. The original September calibration is too dry in
May and too wet in August.

At the same time that we took soil moisture samples we
also sampled the amount of vegetation. The variation of N0

as a function of the amount of vegetation, quantified by both
the vegetation column density (mass of fresh vegetation per
area) and the water column density (mass of water contained

Fig. 4. Variation of the calibration parameter N0 as a func-
tion of vegetation development as quantified by the vegetation
column density and water column density.

within vegetation tissue per area) is shown in Figure 4. Note
the following. First, N0 decreases as the amount of vegeta-
tion increases. From the COSMOS sensor’s point of view,
the counting rate for perfectly dry soil must be decreased in
order to account for the additional water that is held in the
vegetation. Second, the effect of vegetation on N0 is nonlin-
ear. Third, there appears to be some hysteresis: the change in
N0 as the maize crop grew and accumulated mass is differ-
ent than the change in N0 during the period when the maize
crop began to senesce and dry out. Perhaps the distribution
of water within the canopy (among leaves, stems, and fruit) is
important. Fourth, it appears that the effect of vegetation can
be modeled, at least empirically.

4. CONTRIBUTION TO SATELLITE VALIDATION

As stated in Section 1, there is a need for additional soil mois-
ture measurements to validate satellite products. COSMOS
sensors have the potential to provide this soil moisture infor-
mation. The following points should be considered.

1. Due to the sheer number of planned COSMOS sensors,
it will be possible to organize dense sub–networks in
specific regions of the U.S. where SMAP validation ac-
tivities will occur.

2. Once installed, COSMOS sensors require little mainte-
nance but may have to be regularly calibrated for grow-
ing vegetation.

3. COSMOS network data is provided free–of–charge
with little latency (< 1 day).

4. The large footprint (support) of COSMOS measure-
ments as compared to traditional in–situ soil moisture

(Hornbuckle et al 2012)



COSMOS data, publications, etc.

http://cosmos.hwr.arizona.edu/

http://cosmos.hwr.arizona.edu/
http://cosmos.hwr.arizona.edu/


Thank you

jason.c.patton@okstate.edu
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