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Abstract: One of the benefits of training a process-based, land surface model is the capacity to use
it in ungauged sites as a complement to standard weather stations for predicting energy fluxes,
evapotranspiration, and surface and root-zone soil temperature and moisture. In this study, dynamic
(i.e., time-evolving) vegetation parameters were derived from remotely sensed Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery and coupled with a physics-based land surface model
(tin-based Real-time Integrated Basin Simulator (tRIBS)) at four eddy covariance (EC) sites in south-
central U.S. to test the predictability of micro-meteorological, soil-related, and energy flux-related
variables. One cropland and one grassland EC site in northern Oklahoma, USA, were used to tune the
model with respect to energy fluxes, soil temperature, and moisture. Calibrated model parameters,
mostly related to the soil, were then transferred to two other EC sites in Oklahoma with similar soil
and vegetation types. New dynamic vegetation parameter time series were updated according to
MODIS imagery at each site. Overall, the tRIBS model captured both seasonal and diurnal cycles
of the energy partitioning and soil temperatures across all four stations, as indicated by the model
assessment metrics, although large uncertainties appeared in the prediction of ground heat flux,
surface, and root-zone soil moisture at some stations. The transferability of previously calibrated
model parameters and the use of MODIS to derive dynamic vegetation parameters enabled rapid yet
reasonable predictions. The model was proven to be a convenient complement to standard weather
stations particularly for sites where eddy covariance or similar equipment is not available.

Keywords: virtual eddy covariance towers; hydrologic modeling; energy fluxes; evapotranspiration;
soil temperature; soil moisture

1. Introduction and Goals

The magnitude of the surface energy fluxes including net radiation (NR), latent
heat flux (LE), sensible heat flux (H), and ground heat flux (G) impact both atmospheric
and land surface processes in relation to water, energy, and biogeochemical cycles [1–4].
Furthermore, evapotranspiration, soil temperature, and moisture are key in triggering
and maintaining drought and flooding conditions. In all these processes, vegetation cover,
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type, and activity are key factors that control, among others, transpiration rates, ground
albedo, below-canopy soil temperature and moisture, and solar radiation sheltering [5–8].
Annual phenologic changes in vegetation activity and cover result in shifts in partitioning
of the surface energy balance (SEB), alterations in the surface and root-zone soil water
content, and changes in the land surface temperatures that are key in the land–atmosphere
interactions [9–12]. Furthermore, sudden natural or human-induced changes in land cover,
vegetation type, and canopy biomass influence the SEB fluxes, including abrupt shifts
in evapotranspiration (ET), soil moisture, and ground temperature that then influence
regional hydro-climatic patterns [13,14] and long-term water, carbon, and energy fluxes and
stocks [15–18]. Therefore, the inclusion of dynamically changing vegetation parameters like
albedo, stomatal resistance, and leaf area index, among others, can significantly improve
the accuracy of any land surface model.

The eddy covariance (or eddy correlation, EC) method was proposed from measure-
ments of mass flux and momentum to compute energy, vapor, and carbon fluxes within
the atmospheric boundary layer [19–21]. The theory supporting the EC method poses that,
under conditions of horizontal homogeneity, the net transport between the surface and the
atmosphere exists in one dimension. Due to this, the method can be applied to estimate
the flux density between turbulent fluctuations of the variable of interest and the vertical
wind [22]. Besides some limitations regarding the accuracy of some energy exchange
sensors [22], the EC method continues to be widely used for energy, vapor, and carbon flux
studies around the world [23]. Usually, energy, water, and carbon fluxes are accompanied
by measurements of the soil water content and temperature at different depths and stan-
dard weather variables. However, despite the multiple benefits for science and engineering
that these EC systems provide as micro-meteorological arrays, the cost and complexity
of purchasing, maintaining, and collecting the data constrain our understanding of the
physical processes that rule various ecosystem types across different latitudes [24]. Due
to this limitation, although not comparable to the appropriateness of an EC system, some
alternative techniques have been used to quantify SEB components, many of them focusing
exclusively on latent heat flux and thus evapotranspiration (ET).

For estimation of the SEB and ET, some statistical and empirical approaches based
on remote sensing imagery have been proposed [25] including methods applicable over
large areas [26]. Some models such as the Surface Energy Budget Algorithm for Land
(SEBAL [27,28]), the Simplified Surface Energy Balance Index (S-SEBI [29]), the Mapping ET
with Internalized Calibration (METRIC, [30]), the Surface Energy Balance System (SEBS [31]),
and the operational Simplified Surface Energy Balance (SSEBop [32]) are promising but
often constrained to the spatiotemporal resolution of the remotely sensed imagery and
lack the inclusion of micro-meteorological and terrain factors. Furthermore, besides their
complexity, the results tend to show overestimations of sensible, ground, and latent heat
flux values during dry periods or underestimations of ET during wet conditions [25,33],
suggesting the necessity to better incorporate dynamic vegetation processes [25]. Another
approach uses the MOD16 model global evapotranspiration project for which the improved
algorithm [34] estimates LE (and thus ET) by using the Pennman–Monteith equation for a
reference crop. However, besides the temporal (eight-day) and spatial resolution (250 m)
limitations, there are important biophysical parameters, such as the mean potential stom-
atal conductance, that despite changing across biomes [35], are assumed to be constant in
time [34]. This assumption becomes a model limitation, for example, with plant species
that use the crassulacean acid metabolism (CAM) and open their stomata at night to reduce
water loss (common in hot and dry areas), therefore contributing to uncertainties in the ET
response up to 25% at the catchment scale [36]. Physics-based approaches often work at
large spatial scales with low pixel resolution (e.g., WRF-Hydro at 1 km) that end up aggre-
gating important spatial variability into the final coarse-pixel results. Furthermore, land
surface models often simplify the role of vegetation to a static component, prescribing char-
acteristics based on topography or climate [37,38]. Such approaches often over-parameterize
vegetation-related processes. For example, the inclusion of dynamic vegetation requires
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additional multi-parameterization of the land surface model Noah-MP [39] embedded
within WRF-Hydro [40], making the modeling process more complex and less efficient.

1.1. Fusing Remote Sensing with a Multi-Physics Framework: The Key to Model Transferability

To date, the three grand challenges of land surface models are (1) managing process
complexity, (2) representing land surface heterogeneity, and (3) understanding paramet-
ric dynamics [41,42]. Together, they introduce significant uncertainty and challenges in
tractably representing processes. The explicit consideration of vegetation dynamics into
water and energy budgets at the critical zone tackles the third challenge as an unavoidable
condition for continuous-in-time and robust model simulations of land–atmosphere in-
teractions [41,42]. Nonetheless, informing vegetation model parameterization from field
observations is challenging and made difficult by the lack of in situ data about plant’s phe-
nology, activity, and cover. This is one of the reasons why, to date, hyper-resolution models
end up avoiding vegetation dynamics and rather opt for extensive calibration as an inverse
(and often leading to convoluted equifinality) approach to intentionally improve simulation
skill scores. Despite the boom in the use of remotely sensed information, linkages between
spectral values and the parameters that drive energy and water fluxes in vegetation are
seldom connected with remote sensing through multi-physics frameworks all at once. This
article presents and tests a framework for vegetation processes in relation to shortwave and
longwave energy fluxes, precipitation interception, vegetation shading, and transpiration
and their relations to remotely sensed information from Moderate Resolution Imaging
Spectroradiometer (MODIS) (MCD15A3H, MCD43A4, MCD15A3H, and MCD43A) for
sub-weekly and daily updates on leaf area index (LAI), Normalized Difference Vegetation
Index (NDVI), photosynthetically active radiation (PAR), and albedo. These important
parameters control key reservoirs and fluxes of water and energy such as the maximum
vegetation canopy field storage capacity (S), water throughfall coefficient (p), vegetation
optical transmission coefficient (kt), vegetation stomatal resistance (rs), vegetation cover
(v f ), and the amount of absorbed photosynthetically active radiation by plants (Q). The
ability to estimate each of those parameters accurately and to provide their time series facil-
itates not only the performance of any land-surface model but also improves the physical
meaning, understanding, and tractability of internal processes. In places where soils and
vegetation may be similar to EC sites at which the model is trained, the transferability of
such a model would be conveniently facilitated by the use of these parameter-inference
equations that rely only on remote sensing and use previously calibrated (from similar
sites) static model parameters.

1.2. Goals

This study seeks to evaluate the capability of a process-based land surface model work-
ing at the eddy covariance footprint scale to estimate net radiation and SEB fluxes along
with soil moisture and temperature and to test the model transferability to hydrologically
similar sites without parameter calibration or recalibration. The model was run over four
EC sites in Oklahoma, paired according to vegetation type (i.e., grassland and cropland)
considering dynamic vegetation changes in a computationally efficient format. Section 2
presents the materials and methods, while Section 3 summarizes the results including
model calibration, validation, and framework transferability to similar sites. A scientific
discussion is provided in Section 4, and the conclusions are synthesized in Section 5.

2. Data and Methods
2.1. Study Sites

The process-based model was calibrated, validated, and tested at four EC system sites
within the north-central plains of the state of Oklahoma (see Figure 1).
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Figure 1. Location of the four eddy covariance (EC) sites adopted in this study: U.S. Department of Energy Atmospheric
Radiation Measurement Program Southern Great Plains Central Facility site (ARM-CF) (cropland) in Marena, Oklahoma,
and In Situ Sensor Testbed site (MOISST) (grassland), ARM SGP US-A74 (cropland), and ARM SGP US-A32 (grassland)
in north central Oklahoma, USA. Land cover types according to the National Land Cover Dataset (NLCD 2016) within
Oklahoma are also shown.

Due to their geographic proximity, the climate and weather patterns are similar
among the four sites. Within the region, during the study periods, the annual average
temperature and precipitation values were 15.1 ◦C and 503.2 mm/y, respectively [43].
Oklahoma has more than 492 vegetative species [44] with the most common being tree,
shrub, and herbaceous vegetation types. Cross timbers, central mixed grass, high plains
short grass, and Osage tall grass are the most common grassland types, covering over a
third of the state area [44]. Cropland, and deciduous and evergreen forests cover most of
the state area (Figure 1). The remainder of the state land is covered by species that make
up less than 10,000 ha each [44]. The two selected vegetation types for this study (i.e.,
grassland and cropland) are representative of the dominant land cover patterns of the rural
grounds of the north-central section of the state. Within a typical year, vegetation cover
and activity respond to phenologic changes, and Phenocam photos taken at the study sites
in contrasting cool and warm-season months clearly illustrate such phenologic changes
(see Figure 2).

Table 1 describes the geographic coordinates, soil and vegetation type, and purpose of
inclusion (in light of the objectives of this study) of each study site. The sites were paired
by vegetation type to ensure similarity for model parameter transferability and testing
despite there being some differences between the selected pairs, particularly with regard to
management (e.g., prescribed fire during some years at the MOISST site but not at US-A32).

The EC systems shown in Figure 1, excluding MOISST, have their data available
under the AmeriFlux network website that provides free and quality-controlled 30 min
soil, micrometeorological, energy, water, and carbon flux data. The ARM-CF site serves
as a ground validation site of MODIS_L3 products, and the MOISST site is managed by
Oklahoma State University (OSU) and is a benchmarking location for the evaluation of in
situ soil moisture sensing technologies. At MOISST, sections of the field are burned for
woody plant control every three years.
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Figure 2. Phenocam images of the ARM-CF site (left column) and MOISST site (right column) during
typical days of the cool (February) and warm (July) seasons. Note the changes in vegetation cover
and activity.

Table 1. Geographic coordinates, soil and vegetation type, and purpose of the four selected EC sites.

ID Lat, Lon Soil and Vegetation Type Purpose Within the Study

ARM-CF 36.6058N, 97.4888W Silty clay loam. Crop field (winter wheat,
soy, corn, and alfalfa)

Model calibration and validation
in cropland

MOISST 36.0634N, 97.2169W Sandy clay loam. Rangeland with grazed
cattle pasture

Model calibration and validation
in grassland

ARM-A74 36.8084N, 97.5488W
Silt Loam. Croplands and rotational crops
(i.e., soybean and corn) followed by harvest
and a bare soil period

ARM-CF parameter transferability
evaluation in cropland

ARM-A32 36.8192N, 97.8197W Kirkland silt loam. Grasslands (Medford
hay pasture) periodically cut for hay

MOISST parameter transferability
in grassland

The areal extent of the model domain was determined by the size of the eddy flux
source areas (i.e., fetch or footprint) driven by the height of the flux sensors (2 m above
ground), topographic and vegetation roughness, and aerodynamic conditions. The nu-
merical computation of the eddy flux footprint areas (Figure 3) was conducted using a
Lagrangian model for various turbulent stratifications with backward paths [45] that re-
quired a 2D parameterization across sites. Figure 3 shows that flux footprints are roughly
elliptical, with a south–north major axis across stations. Nonetheless, the diameter of 80%
of the contributing area is no wider than 50 m from the center tower in all cases.

2.2. Data
2.2.1. Terrain and Vegetation

Topography, soil, and vegetation properties determine the surface water and energy
interactions, the soil control volume and its properties, and the model parameter and
boundary conditions. The flux footprint of each EC system (Figure 3) was used to deter-
mine the maximum extent of terrain and vegetation input files. Table 2 compiles model
input type, source, and spatial and temporal resolutions. A digital elevation model was
extracted from the USGS Shuttle Radar Topography Mission (SRTM) for the simulation
footprints (see Figure 3). Soil textural types were obtained from each site’s metadata, from
site surveys, and from the Natural Resource Conservation Service (NRCS). Vegetation
types were obtained from the USGS National Land Cover Dataset (NLCD). A number of
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initial (precalibration) static parameters for soil and vegetation were retrieved from this
information (see Section 2.4 for parameter value tuning). However, dynamic vegetation
parameters were obtained from the time series of Leaf Area Index (LAI), Normalized
Difference Vegetation Index (NDVI), and surface albedo (Al) values from MODIS since it
provided the best combination of spatial, temporal, and spectral resolutions.

Figure 3. Model simulation coverage including each site flux footprint at (a) ARM-CF, (b) MOISST,
(c) ARM-A74, and (d) ARM-A32. Flux footprints were computed using the method proposed by
Kljun et al. (2015). Each red contour line represents a 10% inward increment, starting with 10% from
the outermost contour line.

Table 2. Topography, soil, and vegetation data sources with spatiotemporal resolution.

Type of Input Source Product Spatial Resolution Temporal Resolution

Digital Elevation Model USGS SRTM 30 m N.A.
Soil type Logs, NRCS Texture Footprint N.A.
Land cover type USGS NLCD 30 m 2016 version
Leaf Area Index (LAI) MODIS MCD15A3H 500 m 4 days
NDVI MODIS MCD43A4 500 m daily
Photosynthetically Active Radiation
(PAR) MODIS MCD15A3H 500 m 4 days

Albedo MODIS MCD43A 500 m daily
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2.2.2. Weather Forcing

Hourly weather forcing data were used as input to the model. Incoming shortwave
radiation (SW), air temperature (T), air vapor pressure (VP), wind speed (WS), atmospheric
pressure (Pa), and precipitation (P) forced the model at each study site. A careful description
of the type of sensors measuring each of these variables at EC sites can be found at the
FLUXNET website and [46]. Since weather forcing must be continuous in time, a few
missing data were interpolated to guarantee completeness.

2.2.3. Surface Energy Fluxes, Surface, and Root-Zone Soil Temperature and Moisture

The hourly data that were used to calibrate and evaluate the land surface model, with
regard to the SEB fluxes, were net radiation (NR), latent heat flux (LE), sensible heat flux
(H), and ground heat flux (G). The EC system instrumentation is standard and consists of a
RAD-Net radiometer for NR, a RAD-SW Pyranometer Class2 for the incoming short wave
radiation, a GA OP-LI-COR LI-7500 to measure LE, a SA-Gill Windmaster Pro for H, and
ground heat plates for G [46]. The measured fluxes were not corrected for energy balance
closure as physics-based simulation equations do not rely on closing the balance either,
thus avoiding the introduction of biases [47,48]. Additionally, the soil-related predictors
were surface soil moisture (SSM), root-zone soil moisture (RSM), surface soil temperature
(SST), and root-zone soil temperature (RST). SSM, SST, RSM, and RST were measured using
Stevens Water Hydra Probe II sensors [49]. The measurements at the root-zone level were
taken at approximately 0.9 m below the ground surface at the MOISST and at 0.3 m at
US-A32 and US-A74. A detailed description of the sensors used to measure soil-related
variables can be found in [50].

2.3. Modeling Framework
2.3.1. Multi-Physics Model

tRIBS is a process-based, distributed hydrologic model developed at the Ralph M.
Parsons Laboratory, Massachusetts Institute of Technology [47,48,51,52]. It uses time
evolving, spatially distributed atmospheric, land cover, soil, and topographic information
at each Voronoi element to simulate both energy and water flows within a computational
domain. Elements are connected through surface and subsurface water and energy fluxes
throughout the domain. The process-based framework includes parameterizations of the
surface and subsurface processes such as net radiation, heat fluxes, rainfall interception,
evapotranspiration, infiltration with continuous soil moisture and temperature accounting,
lateral moisture transfer in the unsaturated and saturated zones, and hillslope and channel
runoff routing [47,48]. Table 3 summarizes the physics-based equations and literature
references that explain the mathematical approaches of each of the variables that are
simulated in this study using tRIBS. tRIBS has previously been used for energy, carbon, and
water budget simulations at the plot [53,54] and watershed scales [17,40,55–61] including
soil moisture and temperatures. For a detailed description of the equations and physical
framework, please refer to Ivanov et al. (2004). tRIBS is an appropriate model for the type of
science question tackled in this study due to its high spatial resolution and computational
efficiency.
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Table 3. Tin-based Real-time Integrated Basin Simulator (tRIBS) model of the physics of energy fluxes and soil status
including mathematical framework and reference sources.

Symbol Description Method Reference

NR Net Radiation

Based on the four vertical components of the radiation
budget at the surface including incoming and outgoing
short- and longwave components
NR = Rsi + Rli − Rso − Rlo. All terms are computed
from standard weather (e.g., T and VP), surface (SST),
and remote sensing measurements (albedo and LAI).

[62–64]

LE or ET Latent Heat Flux or Actual
Evapotranspiration

Using the Penmann–Monteith approach, the model
partitions reference ET among evaporation from soil,
and evaporation from vegetation interception and
transpiration. Estimated actual ET accounts for soil
moisture as a limiting factor when atmospheric demand
is high; wind speed, water vapor deficit, vegetation
height, vegetation cover (from LAI), and activity (from
NDVI) that determine optical transmission; and
atmospheric and stomatal resistances.

[65–69]

H Sensible Heat Flux

Uses an aerodynamic resistance approach between
surface and air temperatures. The atmospheric
resistance term depends on wind speed and rugosity
terms.

[70]

G Ground Heat Flux

Based on a force-restore method that solves the heat
diffusion equation between soil surface and deeper
layers. The flux G is obtained from
G = 0.5·Csd1(ξ(d(SST)/dt) + ω(SST-RST)), where Cs is
the soil heat capacity, ω is the daily frequency of
oscillation, d1 = (2k/ω) is the soil heat damping depth, k
= ks/Cs is the soil diffusivity, and ks is the soil heat
conductivity (see Table 5). ξ is computed using Hu and
Islam (1995) parameterization.

[71,72]

SSM and RSM Surface and root-zone soil
moisture

A ponding and infiltration scheme based on the
kinematic approximation for unsaturated flow for a
sloping, heterogeneous anisotropic soil. A soil moisture
state results from infiltration, runoff, and subsurface
flows and is coupled to loses from soil evaporation and
transpiration. The model considers ponded infiltration,
infiltration under unsaturated conditions, wetted wedge
dynamics for the unsaturated phase, and perched zones
and keeps track of the evolution of fronts. Surface and
root-zone moisture are integrated within the first 5 cm
of soil and at 1 m depth. Soil water content is expressed
as a fraction of the soil porosity or degree of saturation.

[73–75]

SST and RST Surface and root-zone soil
temperature

SST and RST are obtained during calculation of the
transient-state energy budget equation at the surface,
Cs·(d(SST)/dt) = Rn-LE-H-G, and the calculation of G
(see above). Soil heat wave damping depth and
damping depth temperature are intrinsically computed
when resolving with the force-restore method to
calculate G.

[12,71,72]

2.3.2. Model Training and Verification

tRIBS was calibrated and validated at the ARM-CF and MOISST sites during periods
of time involving cold and warm seasons. The selection of these time intervals was based
on data availability and a low number of information gaps. Table 4 illustrates the time
intervals for each of the model training and evaluation procedures at each of the sites. In
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all cases, a spin-up time of 200 h was allowed to obtain a close-to-steady-state condition for
the underground water storage during an initial dry (no rain) period.

Model calibration was conducted for the static soil and vegetation parameters de-
scribed in Table 5, while dynamic vegetation parameters were updated according to the
remote sensing information and physics-based equations shown in Table 6. Without ex-
ception, all parameters shown in Table 5 were calibrated using the procedure explained
next. First, a One-At-a Time (OAT) sensitivity analysis was conducted to determine the
most important static parameters for each simulation site (Table 5) [17,57]. After this,
the Shuffled Complex Evolution (SCE) algorithm was applied to achieve the automated
calibration of selected soil parameters [76]. Comparisons of observed and simulated values
of NR, LE, H, G, and SST were used to calibrate the model at ARM-CF. At MOISST, NR,
LE, H, SST, SSM, and RSM were the variables used to conduct the model calibration. These
selections were made based on observed time-series quality, or the lack thereof, at each
site. The calibration objective functions were based on the Pearson correlation coefficient
(CC), bias, root mean square error (RMSE), normalized root mean squared error (NRMSE),
and Nash–Sutcliffe model efficiency coefficient (NSE). Approximately 15,000 serial model
simulations (approximately two-week real-time) were needed to obtain the best parameter
sets at each of the two sites using a standard, dual-core workstation. Found values of the
soil parameters that did not vary spatially within the EC footprint and the ranges used
during their calibration were similar to previously conducted studies [12,47,54,77] and
compared favorably with results from soil pedo-transfer functions based on bulk density
and particle size fractions [1,78].

Table 4. Selected time periods for tRIBS model calibration, validation, and parameter transfer assessment.

Station Purpose Simulated Interval Simulated Period (h)

ARM-CF Calibration 04/30/2004–06/29/2005 10,000
ARM-CF Validation 07/01/2008–07/01/2009 8780
MOISST Calibration 12/09/2013–09/10/2014 7300
MOISST Validation 11/09/2015–29/12/2016 10,000
ARM-A74 Transferability Evaluation 01/01/2016–06/01/2017 12,384
ARM-A32 Transferability Evaluation 01/01/2016–06/01/2017 12,384

Table 5. tRIBS static calibrated soil and vegetation (underlined) parameters.

Parameter Description Parameter Description

*KS (mm/h) Saturated hydraulic conductivity θs (unitless) Soil Moisture at saturation
θr (-) Residual soil moisture m (-) Pore distribution index
Ψb (mm) Air-entry pressure f (unitless) Conductivity decay with depth
As (-) Saturated anisotropy ratio Au (-) Unsaturated anisotropy ratio
n (-) Soil porosity ks (J/msK) Soil volumetric heat conductivity

Cs (J/m3K) Soil heat capacity K (mm/h) Vegetation throughfall drainage
coefficient-Rutter

b2 (mm−1)
Vegetation throughfall drainage exponential
parameter-Rutter H (m) Vegetation height

θ∗ (-) Evaporation stress threshold for soil
evaporation (-) θs (-) Stress threshold for plant transpiration

*Ks is at the soil surface and decreases with depth according to f.
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Table 6. Physics-based equations linking remote sensing with tRIBS dynamic vegetation parameters.

Parameter Equation Remarks

Canopy Field Capacity-Rutter (S, mm) S = 0.5.LAI
Controls depth of rainfall interception as a function of
LAI [79]. The values can range among ecosystems (i.e.,
SGP OK 0.8–1.2 mm) [47].

Free throughfall coefficient-Rutter (p, -) p = e(−1.5LAI) Drives the fraction of rainfall not captured by plants as a
function of LAI [54,79].

Optical transmission coefficient (kt, -) kt = e−k.LAI Based on Beer–Lambert law. k is the light extinction
coefficient determined from [80].

Minimum stomatal resistance (rs, s/m) rs =
Q50+Q
gmax .Q
LAI

Based on the energy-limited relation by [35,81]. Q50 is
the value of the absorbed photosynthetically active
radiation (Q) when the maximum seasonal stomatal
conductance (gmax) is half of its value. LAI is used to
upscale the individual leaf estimation to the entire
canopy [82].

Absorbed photosynthetically active
radiation (Q, W/m2) Q = 0.45 SW fPAR

Q drives photosynthesis and transpiration. fPAR is the
fraction of photosynthetically active radiation absorbed
by plants; 0.45 is the fraction of shortwave (SW)
radiation used during photosynthesis [83].

Vegetation Fraction (v f , -) v f = NDVI−NDVImin
(NDVImax−NDVImin)2

Vegetation fraction computed as a function of NDVI
based on [84]. v f plays a determinant role in model
transpiration [54,85].

Albedo (α, -) α Absolute value of ground reflectivity.

During the model calibration procedure, the vegetation parameters shown in Table 6
were updated according to remotely sensed data. In most cases, the parameters utilized to
characterize vegetation conditions were estimated using the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor data [12,54,86–88]. Albedo (α) was obtained from
the bi-hemispherical reflectance (BRDF, white sky albedo) on the visible bands [89,90]
from version 6 of the MCD43A3 MODIS BRDF daily product. NDVI was obtained at a
daily time scale from the MCD43A4 MODIS 500 m surface reflectance product. The other
dynamic parameters described in Table 6, such as canopy field capacity (S), free throughfall
coefficient (p), and optical transmission coefficient (kt), were estimated based on the 500
m MCD15A3H leaf area index (LAI) four-day composite product. The light extinction
coefficient (k) used in the Lambert equation to estimate kt at the ARM-CF site was 0.62 +/−
0.17 (croplands) and 0.5 +/− 0.15 (grasslands) for the MOISST site [80]. Stomatal resistance
(rs) is based on the energy-limited relation [81,91] that depends on photosynthetic active
radiation (PAR) and LAI for scaling up from the leaf to the canopy level [81,82]. rs was
estimated on an hourly time scale to reproduce the diurnal changes of vegetation, since the
stomatal openings are influenced by weather conditions and changes during the day [92].
PAR is driven by SW radiation that is measured every 30 min at the EC systems and can
be calculated based on the fraction of SW radiation absorbed by vegetation. Therefore,
leaf-level rs calculations were conducted through the use of SW data and the maximum
seasonal stomatal conductance (gmax) that is a biome-specific value [35]. Finally, on the
assumption that vegetation cover (v f ) and LAI do not experience abrupt changes during a
regular day, daily LAI values were calculated using linear interpolation from the four-day
LAI MCD15A3H MODIS product; daily LAI values were then used to upscale the hourly
time series of leaf-level rs to the canopy level.

A model validation was performed at each of the calibration sites but for a different
time periods than the ones used during the calibration (see Table 4). During the validation
stage, atmospheric forcing and dynamic vegetation parameters (that depend upon site and
remote sensing data) are the only elements that changed. The validation metrics to assess
the model performance were, again, the CC, bias, RMSE, NRMSE, and the NSE.
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2.4. Model Transferability Approach and Evaluation

The static model parameters found through calibration (see Table 5) at ARM-CF
(cropland) and MOISST (grassland) were then directly transferred to US-A74 (cropland) and
US-A32 (grassland), respectively, to test the model prediction skill and parameterization
robustness relative to simultaneous hourly observations of the predicted variables, during
years different to the calibration or validation procedures (see Table 4). The time period
for the transferability test was determined based on data availability and continuity. Thus,
calibration or recalibration was not performed at this stage. This guaranteed another
level of independent verification of the model performance across geographically and
climatically similar sites. Although the static parameters were directly transferred, dynamic
vegetation parameters at US-A74 and US-A32 were still informed by MODIS. Appraisal
of the performance of the model transferability relied on the CC, bias, RMSE, NRMSE,
and NSE. The results from this section provided an assessment of the model’s capacity
for operating as a complementary tool for energy flux estimations (including ET), soil
temperatures, and moisture at standard weather stations that measure the forcing needed
to run the model.

3. Results
3.1. Model Training and Validation

The OAT precalibration procedures showed that, at both ARM-CF and MOISST, soil
pore-size distribution index (m), heat capacity (Cs), and saturated hydraulic conductivity
(KS) were the parameters that mostly influenced the simulation results. For MOISST,
besides those, the soil air-entry pressure (Ψb) and hydraulic conductivity decay (f) were
also significant. Previous studies outlined the importance of these parameters during
the water infiltration and shallow-soil energy exchange processes [93,94]. The parameter
values found during the calibration process using the SCE algorithm are summarized in
Table 7.

The time series of the remotely sensed derived v f , α, LAI, S, p, kt, and rs during the
calibration period are illustrated in Figure 4 for ARM-CF and MOISST.

Table 7. tRIBS static soil and vegetation (underlined) parameter values found through calibration at
both ARM-CF and MOISST.

Parameter ARM-CF MOISST Units

KS 21.84 4.85 [mm/hr]
θs 0.552 0.61 []
θr 0.017 0.11 []
m 0.57 0.52 []
Ψb −0.373 −99.2 [mm]
f 5.00 × 10−7 0.07 [mm−1]

As 1.109 388 []
Au 1.109 388 []
n 0.431 0.51 []
ks 0.989 1.6 [J/msK]
Cs 1.061 × 106 1.383 × 106 [J/m3K]
K 0.2911 0.2911 [mm/hr]
b2 3.209 3.527 [mm−1]
H 0.2953 0.4476 [m]
θ∗ 0.55 0.4939 []
θs 0.1792 0.1577 []
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Figure 4. Remotely sensed derived time series of v f , α, leaf area index (LAI), S, p, kt, and rs for
ARM-CF (left column) and MOISST (right column) during their corresponding model calibration
periods.

The vegetation fraction, v f , shows the largest values (i.e., V f ≈ 0.7) from July to
August and the lowest (i.e., v f ≈ 0.1) from February to March as a result of the seasonal
variations in NDVI (see Table 6) at both ARM-CF and MOISST sites. On the other hand,
α shows both similarities and differences between sites, with values ranging from 0.20 to
0.35 year-long but without a clear pattern of seasonality. At MOISST, LAI and S are the
highest between May and October as a consequence of vegetation growth. A different
pattern was evident at the ARM-CF site where the maximum LAI for the calibration period
occurred in April. Both p and kt show similar temporal patterns at the same station that
appear to be higher between November and May. However, ARM-CF presents higher
values year-round for both variables (0.75≤ p≤ 1 and 0.9≤ kt ≤ 1) as a result of lower LAI
values compared to MOISST (0.1 ≤ p ≤ 0.8 and 0.4 ≤ kt ≤ 0.8), which means a less dense
vegetation cover in ARM-CF year-round. Finally, rs presents high values (rs ≈ 50 s/m)
from November to April at both stations, although at ARM-CF, there is a sharp decrease
in rs from mid-November to mid-December. The lowest values of rs (rs ≈ 10 s/m) occur
during summertime at both stations. In general, rs, kt, and p are inversely related to S and
LAI. This is the reason why the first set of parameters tend to be maximum during winter.
The model results of the simulated vs. observed hourly values and statistical simulation
skill metrics for the model training stage are illustrated in Figures 5, 6, and Table 8.
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Figure 5. Density scatter plots of the calibration results at ARM-CF. From top-left to bottom-right: net
radiation (NR, W/m2), latent heat flux (LE, W/m2), sensible heat flux (H, W/m2), ground heat flux
(G, W/m2), and soil surface temperature (SST, ◦C). In all panels, the x-axis represents the observed
and the y-axis the simulated values.
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Figure 6. Density scatter plots of the calibration results at MOISST. From top-left to bottom-right:
net radiation (NR, W/m2), latent heat flux (LE, W/m2), sensible heat flux (H, W/m2), ground heat
flux (G, W/m2), soil surface temperature (SST, ◦C), surface soil moisture (SSM, -), and root-zone
soil moisture (RSM, -). In all panels, the x-axis represents the observed and the y-axis represents the
simulated values.
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Table 8. ARM-CF and MOISST calibration metrics for each of the output variables shown in Figures 5 and 6 with respect
to observed values at hourly (HH) and daily (DD) resolutions. Net radiation (NR, W/m2), latent heat flux (LE, W/m2),
sensible heat flux (H, W/m2), ground heat flux (G, W/m2), soil surface temperature (SST, ◦C), surface soil moisture (SSM, -),
and root-zone soil moisture (RSM, -). The statistical metrics are correlation coefficient (CC), bias, root mean squared error
(RMSE), normalized RMSE (NRMSE), and Nash–Sutcliffe model efficiency coefficient (NSE).

Station → ARM-CF MOISST

Variable → NR LE H G SST NR LE H SST SSM RSM

CC HH 0.91 0.78 0.83 0.77 0.92 0.9 0.81 0.87 0.86 0.64 0.87
DD 0.95 0.75 0.73 0.76 0.98 0.37 0.83 0.46 0.94 0.62 0.87

Bias HH 0.24 −0.36 −8.99 −8.76 0.08 0.68 1.54 −0.35 −0.02 −0.26 −0.05
DD 0.14 −0.36 −9.07 −8.6 −0.31 0.68 1.72 −0.34 −0.02 0.01 −0.05

RMSE HH 77.55 66.64 60.54 22.13 2.99 126.20 63.77 85.43 5.79 0.19 0.02
DD 24.57 39.47 43.15 9.97 2.7 78.13 42.47 31.56 3.44 0.17 0.02

NRMSE HH 0.96 1.56 1.94 −4.11 0.17 0.98 1.12 2.27 0.30 0.47 0.10
DD 0.31 0.92 1.38 -1.86 0.15 0.58 0.76 0.84 0.18 0.44 0.10

NSE HH 0.81 0.56 0.59 0.36 0.84 0.55 0.66 0.71 0.83 0.20 0.68
DD 0.85 0.43 0.27 0.23 0.94 0.22 0.17 0.48 0.96 0.18 0.77

From Table 8, the calibration results show that, overall, model skill is higher for
hourly (HH) compared to daily averaged (DD) values. At hourly time steps, all simulated
variables show NSE ≥ 0.5 (CC ≥ 0.78) except for G (NSE = 0.36, CC = 0.77) at ARM-CF
and SSM (NSE = 0.2, CC = 0.64) at MOISST, with NSE > 0 in both cases. NSE values
greater than 0.5 represent simulations with sufficient quality while NSE > 0, although not
outstanding, provides confidence that the estimations are better than the historical time
series means. Scatterplots of Figures 5 and 6 also show that, generally, model simulations
and observations agree well across the range of values except possibly by SSM and RSM at
MOISST. Some positive biases (meaning model overestimation) are observed for LE, H, and
SST at both (ARM-CF and MOISST) sites. Negative biases (i.e., model underestimations)
occur for high values of NR and low values of SST also at both sites. At MOISST, simulations
of SSM present large, persistent biases, most significantly at low values, although those
persistent errors are also present across the entire distribution of hourly values. RSM
presents a similar behavior to SSM at MOISST, although the biases appear less pronounced.
Although the simulation skills at the daily (DD) time step illustrate higher scores for NR and
SST at ARM-CF and for SST and RSM at MOISST, they also show lower scores, particularly
for LE, H, and G at ARM-CF and NR, LE, H, and SSM at MOISST. Nonetheless, NSE for
daily (DD) comparisons shows that the simulations are still better than the historical means
in all cases.

The daily-aggregated time series of observed precipitation and predicted variables at
ARM-CF and MOISST for the best calibration parameter sets are displayed on Figures 7
and 8, respectively, during the entire calibration period. The time series are accompanied by
envelopes illustrating the daily ranges of variability through their standard deviation. Due
to its high hourly persistence, SSM and RSM’s variational envelopes are particularly narrow.
At both calibration sites, the seasonal patterns of fractional distribution of the incoming
solar radiation into LE, H, and G (and thus NR) are well captured by the model simulations
and their daily variability closely follows. Near zero and negative NR (meaning net
energy deficits) tend to occur most frequently during the winter season but positive values
dominate the warm months. LE tends to be positive year-round except during the short
times of water vapor condensation. LE is highest during the summer and spring seasons.
H presents average positive values (meaning upward heat transfer) during the warm
months but zero to negative (i.e., downward transfer) during winter. G has fluctuating
(i.e., positive and negative) values year-round, meaning quickly changing patterns of
downward and upward soil heat transfer in short periods of time. Overall, at both stations,
LE reaches the largest peak values (∼400 W/m2) while G presents the smallest absolute
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values (∼50 W/m2) among all heat fluxes. SST closely follows the seasonal changes in
incoming solar radiation with peak average values around 40 ◦C in summer and near
(i.e., slightly above or below) 0 ◦C during winter. SSM and RSM do not appear to show a
marked seasonal pattern. Instead, P plays a significant role in increasing both SSM and
RSM and simultaneously reducing SST and H. P also seems to increase LE during the
warm season. SSM is the poorest simulated variable at MOISST, particularly when P is
high. Across sites and overall (except possibly by SSM at MOISST) predicted seasonal
variability including average, maximum, and minimum values indicate model accuracy
and appropriateness.
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Figure 7. Daily-aggregated time series of observed (a) precipitation (P; blue bars), and simulated
(orange) and observed (black) (b) net radiation (NR, W/m2), (c) latent heat flux (LE, W/m2), (d)
sensible heat flux (H, W/m2), (e) ground heat flux (G, W/m2), and (f) soil surface temperature
(SST, ◦C) at ARM-CF during the calibration period. Daily standard deviation envelopes (pink for
simulated and grey for observed) were added to both time series to illustrate sub-daily variability.
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Figure 8. Daily-aggregated time series of observed (a) precipitation (P; blue bars), and simulated
(orange) and observed (black) (b) net radiation (NR, W/m2), (c) latent heat flux (LE, W/m2), (d)
sensible heat flux (H, W/m2), (e) soil surface temperature (SST, ◦C), (f) surface soil moisture (SSM, -),
and (g) root soil moisture (RSM, -) at MOISST during the calibration period. Daily standard deviation
envelopes (pink for simulated and grey for observed) were added to both time series to illustrate
sub-daily variability.

Figures 9 and 10 provide a closer look at the sub-daily cycles of the variables of interest
for a ten-day summer period but during different years (2004 for ARM-CF and 2014 for
MOISST) including pre-and post-storm periods. Both figures indicate that simulations
capture the surface energy partitioning and soil temperature especially for ARM-CF. The
presence of significant rainfall events (particularly those occurred in ARM-CF) flattens
such diurnal cycles for a short time, but then, the cycle pattern repeats as in pre-storm
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conditions. During this particular time, simulations at MOISST lacked accuracy for NR,
LE, and of course the persistent positive biases in SSM and RSM. Analogously to Figure 8,
SSM and RSM do not seem to follow a diurnal cycle but are heavily driven by precipitation
events. tRIBS appears to represent those sub-daily changes in shallow and root-zone soil
moisture by capturing peaks and the raising and falling limbs.
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Figure 9. Hourly time series of (a) observed precipitation (P; blue bars), (b) simulated (red) and
observed (black) net radiation (NR, W/m2), (c) latent heat flux (LE, W/m2), (d) sensible heat flux
(H, W/m2), (e) ground heat flux (G, W/m2), and (f) soil surface temperature (SST, ◦C) at ARM-CF
during a ten-day period in 2004 between 12 August and 22 August.

The model validation results for ARM-CF and MOISST are summarized in Table 9.
Consistent with the calibration assessment results, model simulation skill for hourly (HH)
was higher than for daily (DD) data during the validation period. At hourly time resolution,
such results illustrate NSE ≥ 0.5 for all predicted variables at ARM-CF (including G).
However, MOISST showed lower values overall except for SSM and SST than ARM-CF yet
greater-than-zero NSE scores. An exceptionally low value (NSE = −0.1) was obtained for
RSM at MOISST that contrasts with the high value (NSE = 0.68) during calibration. Similar
to the calibration results, the seasonal and sub-daily time series of simulated variables
mimic the observed values.

Taking calibration and validation together, at ARM-CF, the variables that are better
simulated by the model are, in order, NR (NSE = {0.81, 0.83}, CC = {0.91, 0.92}), SST
(NSE = {0.84, 0.74}, CC = {0.92, 0.88}), H (NSE = {0.59, 0.53}, CC = {0.83, 0.78}), LE (NSE =
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{0.56, 0.51}, CC = {0.78, 0.74}), and G (NSE = {0.36, 0.50}, CC = {0.77, 0.74}). At MOISST, the
best-simulation rank is SST (NSE = {0.83, 0.81}, CC = {0.86, 0.85}), H (NSE = {0.71, 0.71}, CC
= {0.87, 0.80}), NR (NSE = {0.55, 0.45}, CC = {0.90, 0.90}), LE (NSE = {0.66, 0.34}, CC = {0.81,
0.80}), and SSM (NSE = {0.20, 0.55}, CC = {0.64, 0.73}).
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Figure 10. Hourly time series of (a) observed precipitation (P; blue bars), (b) simulated (red) and
observed (black) net radiation (NR, W/m2), (c) latent heat flux (LE, W/m2), (d) sensible heat flux (H,
W/m2), (e) soil surface temperature (SST), ◦C, (f) surface soil moisture (SSM, -), and (g) root-zone soil
moisture (RSM, -) at MOISST during the ten-day period between 13 August 2014 and 22 August 2014.

Table 9. ARM-CF and MOISST validation metrics with respect to observed values at hourly (HH) and daily (DD) resolutions.
Net radiation (NR, W/m2), latent heat flux (LE, W/m2), sensible heat flux (H, W/m2), ground heat flux (G, W/m2), soil
surface temperature (SST, ◦C), surface soil moisture (SSM, -), and root-zone soil moisture (RSM, -). The statistical metrics are
correlation coefficient (CC), bias, root mean squared error (RMSE), normalized RMSE (NRMSE), and Nash–Sutcliffe model
efficiency coefficient (NSE).

Station → ARM-CF MOISST

Variable → NR LE H G SST NR LE H SST SSM RSM

CC HH 0.92 0.74 0.78 0.74 0.88 0.9 0.82 0.82 0.85 0.73 0.62
DD 0.67 0.55 0.59 0.54 0.91 0.60 0.79 0.19 0.95 0.74 0.62

Bias HH 0.13 −0.32 −16.55 −26.45 0 1 0.41 0.17 −0.06 −0.15 −0.17
DD −0.10 −0.30 2.61 3.04 −0.02 1 0.52 0.17 −0.03 −0.14 0.24

RMSE HH 78.47 63.39 71.97 20.86 6.30 130.5 46.25 69.45 5.45 0.16 0.093
DD 62.35 41.75 45.32 9.98 3.02 78.35 28.17 30.01 2.85 0.15 0.079

NRMSE HH 0.94 1.45 2.15 −2.40 0.41 1.13 0.95 2.17 0.29 0.28 0.21
DD 0.61 0.87 1.09 −1.17 0.13 0.68 0.59 0.96 0.15 0.27 0.21

NSE HH 0.83 0.51 0.53 0.50 0.74 0.45 0.34 0.71 0.81 0.55 −0.10
DD 0.02 0.23 0.20 0.09 0.81 0.08 0.32 −0.17 0.93 0.55 −0.10
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3.2. Model Inter-Site Transferability

The results of the model parameter transfer experiments are shown in Figures 11, 12,
and Table 10 for ARM-A74 and ARM-A32, respectively.
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Figure 11. Daily-aggregated time series of ARM-CF to ARM-A74 parameter transferability experi-
ments vs. observations: (a) precipitation (P; blue bars), and simulated (orange) and observed (black)
(b) net radiation (NR, W/m2), (c) latent heat flux (LE, W/m2), (d) sensible heat flux (H, W/m2), (e)
ground heat flux (G, W/m2), (f) soil surface temperature (SST, ◦C), and (g) root-zone soil temperature
(RST, ◦C). Daily standard deviation envelopes (pink for simulated and grey for observed) were added
to both time series to illustrate sub-daily variability.
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Figure 12. Daily-aggregated time series of MOISST to ARM-A32 parameter transferability experi-
ments vs. observations: (a) precipitation (P; blue bars), and simulated (orange) and observed (black)
(b) net radiation (NR, W/m2), (c) latent heat flux (LE, W/m2), (d) sensible heat flux (H, W/m2), (e)
ground heat flux (G, W/m2), (f) soil surface temperature (SST, ◦C), (g) root-zone soil temperature
(RST, ◦C), and (h) surface soil moisture (SSM, -). Daily standard deviation envelopes (pink for
simulated and grey for observed) were added to both time series to illustrate sub-daily variability.
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Table 10. ARM-CF to ARM-A74 and MOISST to ARM-A32 model parameter transfer evaluation statistics with respect
to observed values at hourly (HH) and daily (DD) resolutions. Net radiation (NR, W/m2), latent heat flux (LE, W/m2),
sensible heat flux (H, W/m2), ground heat flux (G, W/m2), soil surface temperature (SST, ◦C), root-zone soil temperature
(RST, ◦C), and surface soil moisture (SSM, -). The statistical metrics are correlation coefficient (CC), bias, root mean squared
error (RMSE), normalized RMSE (NRMSE), and Nash–Sutcliffe model efficiency coefficient (NSE).

Station → ARM-A74 ARM-A32

Variable → NR LE H G SST RST NR LE H G SST RST SSM

CC HH 0.92 0.69 0.70 0.76 0.79 0.98 0.88 0.69 0.73 0.59 0.80 0.99 0.59
DD 0.70 0.51 0.06 0.83 0.96 0.98 0.58 0.49 0.16 0.77 0.96 0.99 0.58

Bias HH 0.13 0.13 −0.32 13.27 −0.05 −0.07 −0.12 −0.15 −0.68 −4.10 −0.10 −0.10 0.80
DD 0.03 0.71 0.11 13.56 −0.05 −0.06 −0.11 0.08 −0.59 −0.07 −0.14 −0.12 0.71

RMSE HH 78.47 92.60 106.90 33.20 6.70 1.99 105.61 75.99 122.02 28.80 8.852 3.81 0.16
DD 38.59 76.59 65.79 9.61 2.46 1.96 59.66 50.03 74.26 5.66 4.61 4.02 0.15

NRMSE HH 0.76 −.93 2.30 5.33 0.34 0.10 1.04 0.95 4.11 25.36 0.49 0.22 0.53
DD 0.34 0.75 1.26 1.54 0.12 0.10 0.54 0.57 2.10 3.83 0.25 0.22 0.49

NSE HH 0.83 0.31 0.56 −0.11 0.61 0.93 0.77 0.60 0.60 0.36 0.60 0.87 0.18
DD 0.37 −0.68 −1.33 0.08 0.91 0.93 0.31 0.45 −0.01 0.57 0.81 0.86 0.16

At the hourly time resolution, the set of statistical values from Table 10 ensure high
(NSE ≥ 0.5) to appropriate (NSE ≥ 0) simulation skill in most of the target variables, in
consistency with the results at ARM-CF and MOISST. For example, at ARM-A74 and
ARM-A32 (Table 10), although not calibrated, RST showed exceptionally high scores (NSE
= {0.93, 0.87}, CC = {0.98, 0.99}). Similarly, NR (NSE = {0.83, 0.77}, CC = {0.92, 0.88}), SST
(NSE = {0.61, 0.60}, CC = {0.79, 0.80}), and H (NSE = {0.56, 0.60}, CC = {0.70, 0.73}) had
all NSE ≥ 0.5, meaning great skill in capturing the temporal dynamics of those variables.
The predictions of LE, however, decreased in quality at ARM-A74 (NSE = 0.31, CC =
0.69) compared with the ones obtained during the calibration and validation procedures
(NSE ≥ 0.5) at ARM-CF. Nonetheless, at ARM-A32, LE simulations (NSE = 0.60, CC = 0.69)
maintained consistent quality with the results during the calibration process at MOISST
(NSE = 0.66, CC = 0.81). Lastly, simulations of G showed a poor performance (NSE =
−0.11, CC = 0.76) at ARM-A74 and only acceptable scores at ARM-A32 (NSE = 0.36, CC =
0.59). Consistent with the model assessment during calibration and validation, the skill at
daily time steps showed improvements for SST, RST, and G but decreased performance
in all other variables. In some cases, the transferability of the model for evaluation at the
aggregated daily time steps is not even recommended for use. This is the the case for LE
and H at ARM-A74 and for H at ARM-A32.

4. Discussion

The main objectives of this study were (1) to evaluate the capability of a physical
based land-surface model that assimilates remote sensing data on vegetation dynamics
to simulate surface energy fluxes, surface and root-zone soil temperature, and moisture
at the scale of the eddy flux footprint and (2) to test the seamless transferability of this
tool at sites with similar soil and vegetation characteristics and standard weather station
measurements. The overall goal was the development and testing of a modeling platform
that could potentially be used as real-time virtual eddy covariance tower and soil moni-
toring station in ungauged sites where this information is not measured (e.g., standard
weather stations). One of the benefits of using a process-based model is its explicit dec-
laration of internal states, robustness, and applicability to regions where accurate input
information (e.g., soils, vegetation, and atmospheric forcing) is available. However, this
is also precisely one of the limitations too, as this information is not always available.
The multi-physics framework is supported through equations of the processes occurring
at each site to obtain the right answers for the right reasons. One of the key aspects of
correctly representing the energy- and water-budget-related processes is the consideration
of vegetation dynamics (i.e., canopy cover and activity). Contrary to the great majority of
previously published remote-sensing based models [25–32], tRIBS successfully assimilates
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LAI, NDVI, and albedo from satellite sources, and ancillary soil and terrain data so that
land surface-related parameters dynamically evolve according to physics-based equations
that determine important canopy and ground hydraulic and thermal processes such as
solar energy reflection and absorption, incoming and outgoing short- and longwave radia-
tion, vegetation shading, atmospheric and soil thermal conductivity, soil heat diffusion and
temperature damping depth, precipitation water interception and its evaporation, bare soil
evaporation, plant transpiration, shallow water infiltration and motion of wetting fronts,
runoff generation, and subsurface water flow, among others.

Model training and validation proved the robustness of the found static and dynamically
changing parameters and provided confidence in the model performance at the same
sites where calibration was conducted. Nonetheless, since the model was calibrated with
hourly data, its performance was, overall, better than when it was assessed against daily-
aggregated time series. This could indicate that the inclusion of daily-aggregated targets
in the calibration procedure could ameliorate the cumulative biases introduced by only
using hourly data. One of the key learned lessons from model training and validation is
that the level of interconnectedness of processes requires high-quality training datasets.
Otherwise, errors in at least one training set will be propagated into errors (that could be
multiplicative) in other dependent variables. For instance, soil moisture is a key variable
driving the magnitude of almost all other predictors in this study. Therefore, obtaining
high-quality field measurements of soil water content is a sine qua non condition for
conducting an unbiased model training. In our case, it was difficult to find high-quality
observations of soil moisture. We could attribute much of our uncertainties to inaccurate to
poor-quality soil moisture data.

The model inter-site transferability experiments provided another degree of model
validation at not only a different time but also a different (paired) location with some
ecosystem similitude. The ability to perform a straight-forward model transfer, relying on
vegetation dynamics, becomes a paradigm shift in the simulation framework of land surface
models that overrelied on exhaustive model calibration procedures of fixed vegetation
parameters for each work-site. Overall, the simulated hourly time series demonstrated the
existence of parameter sets that can be transferred to similar ecosystem locations to rapidly
obtained ballpark estimations in ungauged (i.e., without eddy covariance measurement)
sites. The model estimates were better than the historical means while avoiding equifinality
issues that usually hinder model parameter transfer in space and/or time. Future research
should focus on improvements of this methodology, perhaps facilitating the modeling of
multiple locations at once.

Among the limitations of this study, we can mention (1) the uncertainties of the
weather forcing measurements, (2) errors in the observed time series of the modeled
variables, (3) the space and time resolution of the satellite imagery, and (4) the low number
of test sites. First, inaccurate weather forcing negatively influences the performance of any
land-surface or hydrologic model as predictions heavily depend on first-order variables
such as incident solar radiation (SW) or precipitation (P) [95]. For instance, after a careful
inspection, we found that, at ARM-CF, SW had a significant number of gaps across all years.
Therefore, we deferred to FLUXNET data that are gap-filled using a synthetic method [22].
At MOISST, despite measurements of SW being inspected, tower managers perform their
own SW gap-correction method without subsequent quality-control assessment. This
could be one of the reasons why NR does not reach high simulation skill scores at this site.
Second, there were some constraints in finding reliable, continuous, and depth-matching
soil moisture, soil temperature, and ground heat flux data. For instance, SSM time series
were not available or showed poor quality when available at ARM-CF and ARM-A74 and,
therefore, we decided not to trust them. Likewise, RSM was only available at MOISST,
given that this is a long-term soil moisture intercomparison benchmark site. RST was
only measured at ARM-A74 and ARM-A32 but not at the sites used for calibration and
validation. Other issues that possibly impacted the quality of the SSM and RSM simulations
are the significant discrepancies between soil moisture sensors of different brands [50,96]
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in addition to their poor performance during below-zero temperatures [97,98] including
the ground heat plates, which produce an error in the ratio of downward to upward
flux of shortwave radiant energy estimations [99]. Additionally, matching the depth at
which SSM, RSM, SST, and RST were measured and simulated becomes an issue as tRIBS
outputs these values at 10 cm and 100 cm depths. The majority of the eddy towers had soil
observations at 2.5, 5, 60, and 90 cm below ground. Although we tried to match the closest
depths, we believe this might have slightly contributed to the modeled and observed
discrepancies. The errors in the estimation of LE can be explained, in part, by the mixed
quality of estimation of the soil water content (i.e., SSM and RSM). Finally, the time series
of G, as the lowest energy flux, showed numerous gaps and quality flags that hindered
a fair comparison with our model simulations. The quality of the flux heat plates had
previously been questioned and discussed in [100]. Third, the limiting resolution of the
dynamic vegetation-related information (from MODIS) hindered the model capacity to
spatially and temporarily cope with sub-pixel and sub-daily phenologic changes that might
occur, for instance, after summer precipitation events. Considering 500 m aggregated,
instead of data at the resolution of the tower foot-print (i.e., smaller than 200 m) could
result in sensing errors of the vegetation dynamics or in accounting for processes that are
not necessarily occurring within the foot-print of interest. Future work might be needed to
assess the model performance when using higher-resolution products such as Landsat 30
m or Sentinel 20 m to estimate the vegetation components. Another well-known limitation
of satellite images is the presence of clouds that obscure ground status. This issue, which is
particularly critical during winter and spring in Oklahoma, was overcome through image
interpolation between two or three successive images. Finally, the lack of hourly temporal
resolution from the satellite images inhibits replicating diurnal cycles of vegetation activity.
One of the critical vegetation parameters that control the rate of transpiration is the stomatal
resistance (rs). This parameter was estimated at an hourly time step by using LAI and
FPAR four-day composites that were linearly interpolated to hourly by using time series of
SW. This estimation could have been more precise through direct use of the photosynthetic
photon flux density (PPFD) data from the sensor typically mounted in many EC towers.
This way, a direct estimation of FPAR could have provided a more accurate estimation
of the plant-use of solar energy at the foot-print scale. However, since this study aimed
to test the model at places without an eddy covariance system, obtaining this parameter
through satellite imagery would be the best (but not available yet) alternative. Fourth,
while the results provide confidence in the potential ability of the modeling framework
to successfully perform across similar ecosystems, the tests conducted in this study were
limited to grassland and cropland environments within the U.S Great Plains. Without
doubt, more testing is needed including different ecosystems and climates.

Future work might include the development of a stakeholder-oriented virtual tool
where tRIBS can be run online and at any point of interest with weather forcing data (e.g.,
Mesonet or re-analysis model outputs). Moreover, it could be utilized in conjunction with
drone or sub-orbital technologies that would refine the remote sensing images to the tower
footprint, which would help improve the spatial resolution of vegetation parameters (such
as rs) and, thus, the overall simulation accuracy of the results.

5. Summary and Conclusions

This study compiled atmospheric, soils, vegetation, and hydrologic information from
four eddy-covariance systems within the U.S. Great Plains to evaluate the capabilities of a
process-based model that uses standard weather station measurements and remote sensing
of vegetation to estimate the components of the surface energy budget, soil temperatures,
and water content at the surface and the root zones. The results of the model training,
validation and parameter transferability tests allowed us to make the following conclusions:

1. Hourly simulations adequately predicted NR, SST, RST, and H, including the represen-
tation of seasonal variability and daily cycles. Even though LE and SSM sometimes,
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obtained mixed skill assessments, the simulations always guaranteed a quality level
better than historical means and, in some cases, with sufficient quality.

2. Model validation proved the robustness of the found static and dynamically changing
parameters and provided confidence for the model performance at the same sites
where calibration was conducted.

3. Inter-site transference of the model framework showed that the model was able to
assimilate data about vegetation dynamics from the remotely sensed information
to update important in situ vegetation parameters that resulted in adequate hourly
model performance metrics. Model transferability experiments from ARM-CF to
ARM-A74 (cropland) and from MOISST to ARM-A32 (grassland) provided arguments
to explore future use of a set of precalibrated static parameters with another set of
dynamically evolving, in situ, vegetation parameters between regions of pedologic,
ecosystem, and hydrologic similarity.

4. The straightforward model transfer relying on vegetation dynamics marks a paradigm
shift in the simulation framework of land surface models that has overrelied on
exhausting model calibration procedures of fixed vegetation parameters for each
work-site. Parameter sets that can be transferred to similar ecosystem locations
become powerful tools for facilitating the modeling of multiple locations at once.
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NR Net radiation
LE Latent heat flux (aka ET)
H Sensible heat flux
G Ground heat flux
SST Soil surface temperature
RST Root-zone soil temperature
SSM Surface soil moisture
RSM Root-zone soil moisture
P Precipitation
SW Incoming solar radiation
WS Wind speed
T Air temperature
VP Air vapor pressure
Pa Atmospheric pressure
PAR Photosynthetically active radiation
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NDVI Normalized difference vegetation index
RMSE Root mean squared error
NSE Nash–Sutcliffe model efficiency coefficient
CC Pearson correlation coefficient
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TLA Three letter acronym
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