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Predicting the risk of avian influenza A H7N9
infection in live-poultry markets across Asia
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Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most

human cases have been attributable to poultry exposure at live-poultry markets, where most

positive isolates were sampled. The potential geographic extent of potential re-emerging

epidemics is unknown, as are the factors associated with it. Using newly assembled data sets

of the locations of 8,943 live-poultry markets in China and maps of environmental correlates,

we develop a statistical model that accurately predicts the risk of H7N9 market infection

across Asia. Local density of live-poultry markets is the most important predictor of H7N9

infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9,

alongside other poultry, land cover and anthropogenic predictor variables. Identification

of areas in Asia with high suitability for H7N9 infection enhances our capacity to target

biosurveillance and control, helping to restrict the spread of this important disease.
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D
espite the summer lull in reported human cases following
its emergence in the spring of 2013, the resurgence of
avian influenza A (H7N9) virus (hereafter ‘H7N9’) during

the annual winter epidemic of seasonal influenza1,2 and recent
revision of the importance of avian genetic lineages in past
pandemics3 reaffirms concerns about its contemporary pandemic
threat to global health4. To date, the majority of positive H7N9
isolations have been obtained from human, chicken or
environmental samples that were directly or indirectly linked to
live-poultry markets5–8. The diversity of genetic sequences from
these samples suggests extensive and largely undetected spread of
H7N9 in poultry preceding its appearance in markets and its
ultimate infection in humans9. Investigations of other wild or
domestic virus reservoirs remain inconclusive, however,
confounding surveillance and control measures aimed at
preventing its resurgence and further spread within and beyond
China.

In addition to outbreak investigations and virus surveillance in
humans and animals, predictive models linking the locations of
the reported cases in humans and live-poultry markets to
environmental risk factors can improve risk-based surveillance
and control. This is demonstrated by the precedent of highly
pathogenic avian influenza H5N1 virus, in which several
epidemic waves in Asia were found to be strongly correlated
with the spatial distributions of domestic ducks, human
populations and wetlands10; these associations were then used
to map the distribution of this disease11–13. Recent maps
produced using data pooled from all historical cases closely
matched these initial predictions14,15. These studies relied on
geographically extensive case data, which were available only in
the later stages of an epidemic. The ability to provide predictions
of risk to new areas when few cases have been recorded would
significantly improve immediate contingency planning. With the
unfolding H7N9 epidemic, which many fear is limited to a
fraction of its potential range, establishing the capacity of the
model to extrapolate to other geographic regions is necessary to
assess the utility of its predictions for decision making.

Predictive modelling of H7N9 in China and Asia is hampered
by two problems. First, the distribution of H7N9 is strongly
spatially clustered in the region of China in which it first
appeared. The apparent accuracy of models derived from such
initial data can be very high, as demonstrated by Fang et al.16 The
ability of these models to make accurate predictions beyond this
geographic range cannot, however, be quantified reliably through

standard cross-validation procedures17. This is due to spatial
correlation between test and training sets drawn from the same
area and because the epidemic was limited to a small part of the
potential geographic range. To address this issue, a geographic
cross-validation would need to be implemented to quantitatively
assess the models’ extrapolation capacity. Second, the lack of
positive samples from active surveillance of poultry farms and the
association of human and poultry cases with exposure to live-
poultry markets5–7 suggest that markets, rather than birds,
humans or poultry farms, are the appropriate unit for predictive
analyses and surveillance.

Here we conduct an extensive country-wide census of live-
poultry markets to allow market-level analysis, we update and
improve high spatial resolution surfaces for poultry and human
population distribution across China and we build a live-poultry
market distribution model to allow extrapolation of our
predictions to other areas across Asia. The models developed
here with these new data can accurately predict the risk of
infection of markets with H7N9 and have a good capacity to
extrapolate their prediction geographically. Local live-poultry
market density is the most important predictor variable of H7N9
infection risk at the market level. Other predictor variables of
H7N9 infection risk include the population densities of chickens
reared in extensive and intensive systems, water bodies,
accessibility to major cities, human and domestic duck population
density and rice land cover. The areas predicted to be most
suitable for new H7N9 market infection include specific urban
areas of China where the disease has not yet occurred, an
extensive area in Bengal, the river deltas of Vietnam, and parts of
Indonesia and Philippines.

Results
Distribution of H7N9 cases. Evaluation of the environmental
space occupied by markets (Fig. 1), as determined by the values of
key predictor variables for avian influenza (live-poultry market
density, chicken, domestic duck and human population density,
proportion of water and rice, and accessibility to major cities),
showed that although infected markets were present in a limited
area of geographic space, they covered a large portion of the
available environmental space in China (Fig. 1). Furthermore,
while the locations of newly infected markets spread steadily
through geographical space, the environmental space occupied by
infected markets was already wide from the early stages of the
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Figure 1 | Distribution of potential H7N9-positive markets in mainland China in geographic and environmental space. In each panel, the distribution

of H7N9-negative markets is shown by grey points. Potential H7N9-positive markets are shown by coloured points, with colours denoting the chrono-

logical order of cases. Colours range from yellow (earliest cases 19 February 2013) through light and dark orange to red (most recent cases 27 January

2014). Here environmental space is the Cartesian coordinate system defined by the first two principal components of environmental covariates

at all market locations, which describe 56% of variation in the data set. The same pattern is apparent between other pairs of environmental axes, as

illustrated in Supplementary Fig. 1.
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epidemic, and subsequent cases fell largely within the same
environmental envelope (Fig. 1; Supplementary Fig. 1). This
suggests that to date the environmental niche of the pathogen is
fairly conserved and not expanding. As a corollary, predictive risk
modelling based on the distribution of infected markets in
environmental space could therefore be used to extrapolate to a
much more extensive geographic area.

Boosted regression tree models. An initial boosted regression tree
(BRT) model predicting H7N9 presence/absence at the market
level, fitted using the values of predictor variables at the same
location as each market, provided a high predictive accuracy
within the epidemic area (training data area under the curve
(AUC)¼ 0.964±0.001 s.e., standard cross-validation AUC¼
0.873±0.001 s.e.). Note that if instead of using live-poultry mar-
kets as units, we used the geographic pixel locations of infected
markets and a set of randomly distributed pseudo-absences, a
procedure similar to that used in previous modelling of H7N9
(ref. 16) and H5N1 (ref. 13), we obtained AUC values of 0.992 and
0.985 on the training and evaluation set, respectively. While those
goodness of fit metrics indicate a high accuracy of prediction close
to the training data, they provide little insight regarding the
predictive capacity of the model to other geographical areas.

To provide a more accurate assessment of the model’s capacity
to extrapolate to new regions, we carried out a disc-based
geographical cross-validation procedure, dividing live-poultry
markets into sets used to train the model (those within 1,000 km
of a single, randomly-selected market) and those used to evaluate
it (those more than 1,000 km from the market). Evaluated in this
way, the market-level model had a fairly low geographic
extrapolation capacity (mean AUC¼ 0.515±0.026 s.e.). A second
model was developed to account for the multiple values of
environmental predictors in the area surrounding the market
(emulating the aggregating effect of markets importing birds
from a catchment area), using a Gaussian-weighted function.

To determine the optimal value of the smoothing parameter s,
models were fitted with s¼ 0, 0.1, 0.3, 0.5, 0.7, 1.0 and 1.2
decimal degrees and their extrapolation capacity assessed using
the spatially stratified cross-validation approach described above.
The results of this procedure are shown in Supplementary
Fig. 2. The extrapolation capacity of the model increased with
larger s, but reached a maximum at s¼ 0.7. This model
produced a slightly less accurate fit to the training data
(training data AUC¼ 0.961±0.001 s.e., standard cross-validation
AUC¼ 0.913±0.001 s.e.), but a much improved capacity for
geographical extrapolation (mean disc-based cross-validation
AUC¼ 0.745±0.025 s.e., Supplementary Fig. 3). Moreover, since
the disc-based cross-validation statistics were evaluated on
subsets of around one-third of the total number of infected
markets, the true extrapolation capacity of the full model could be
expected to be higher.

Live-poultry market density was the most important predictor
variable in the model (measured by its relative contribution (RC)
to regression trees), with a strong positive association with H7N9
presence (Fig. 2). Other variables were, by decreasing order of their
RC to the BRT ensemble, the population density of intensively
raised chickens (RC 19.9%, negative association), the proportion of
land covered by water (RC 15.1%, positive association), human
population density (RC 10.6%, complex association), travel time to
a major city (RC 9.2%, negative association), extensively raised
chicken population density (RC 8.3%, complex association), the
proportion of land covered by rice agriculture (RC 7.3%, positive
association) and the population density of domestic ducks (RC
6.1%, positive association).

To predict risk outside China, it was necessary to generate a
predictive map of live-poultry market density across Asia using a
statistical model. To ensure that the infection risk predictions
were not sensitive to the live-poultry market model, we
constructed an additional model, equivalent to the model detailed
above, but using the observed live-poultry market density as a
covariate in place of modelled live-poultry market density.
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Figure 2 | Marginal effect curves of each environmental predictor in the ensemble BRT model fitted to the full data set. The shaded areas represent the

density of the predicted relationships to each environmental correlate (with the effect of the other correlates marginalized) from all 120 sub-models,

within the lower and upper 95% quantiles of the distribution. The solid lines give the mean effect curves calculated from all models. Sub-plots are ordered

by the mean of their RC to each sub-model, with these average RCs given in parentheses with each sub-plot.
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This model had a training data AUC of 0.960±0.004 s.e. and
standard cross-validation AUC of 0.912±0.025 s.e., comparable
to validation metrics for the model trained using the modelled
live-poultry market density. The observed live-poultry market
density had a mean RC of 24.8% to the ensemble model, a slightly
higher value than the modelled live-poultry density used in the
Asia-wide model (23.6%). The marginal effect curves for each of
the covariates in this model were similar to those from the model
with the modelled live-poultry market density, with a strong a
positive association between H7N9 infection risk and live-poultry
market density (Supplementary Fig. 4).

Distribution of H7N9 predicted risk in Asia. Using the pre-
dictive map of live-poultry market density for Asia, market-level
H7N9 infection risk was converted into a metric of infection risk
at the pixel level (analogous to the probability that at least one
infected market is present in the pixel), and extrapolated to
Southeast and South Asia (Fig. 3b,c). Pixel-level infection risk (on
introduction) is predicted to be limited to peri-urban and urban
areas, where live-poultry market density is the highest, and which

themselves are characterized by the environmental risk factors
highlighted above. For example, the greatest risk beyond already-
infected areas is estimated to be in the Bengal regions of Ban-
gladesh and India, the Mekong and Red river deltas in Vietnam
and isolated parts of Indonesia and Philippines.

Effect of data quality. To maximize the amount of data available
to train the models, both markets which were indirectly asso-
ciated with H7N9 infection (because these were the closest
markets to the home location of a human case) as well as those
which were directly associated with infection (either because a
patient reported as visiting the market or because a positive
sample was obtained from birds or the environment at that
market) were considered to be infected with H7N9. To test our
assumption that this was a reliable data set for training the model,
we ran an additional full model using a data set in which markets
were considered positive only if they were directly associated with
H7N9 infection.

We compared this model with the full final model (using both
indirectly and directly associated markets) by comparing the
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Figure 3 | Geographic distribution of predicted H7N9 infection risk. (a) Market-level risk of H7N9 infection at live-poultry markets in mainland

China; (b) pixel-level risk of H7N9 infection across Asia, the risk of at least one infected market being present in the given pixel; (c) a three-dimensional

surface of the same data plotted in panel b with height representing infection risk to help illustrate its heterogeneity (see http://www.livestock.

geo-wiki.org/ for a Google earth view). Note that infection risk is estimated as the probability that a market or pixel would be infected, if the average

market-level infection prevalence in China were to remain constant. Since the pathogen is increasing in incidence, this number should instead be

interpreted as a metric of infection risk; the relative probability of infection.
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predicted infection risk maps and marginal effect curves of the
two models. Note that it was not possible to compare validation
statistics between these two models as they considered different
data sets. Supplementary Figs 5 and 6 display the predicted risk of
H7N9 infection at the market level and the pixel levels,
respectively. In both cases, the spatial distribution of risk is very
similar to that of the full model (Fig. 3). Note that the predicted
risk is lower overall when using the data set containing only
directly associated markets. This is an artefact of the absolute
number of positive cases in the training set and is the reason that
we consider relative, rather than absolute probability of infection
here. Supplementary Fig. 7 shows the marginal effect curves of
this model. The results are broadly comparable to those of the full
final model (Fig. 2), with market density and water cover both
appearing as major predictors, with similarly shaped curves,
although the effect of intensively reared chickens is less than that
in the full model.

Discussion
Live-poultry market networks have previously been shown to be
important in the spatial epidemiology of avian influenza in Asia,
notably in the persistence and spread of highly pathogenic avian
influenza H5N1 (refs 18–21). The link between disease and
markets appears to be even stronger for H7N9, as the main unit
of infection observed has been the market5–7. Note, however, that
if the unit of analysis in a model was a geographical area
(administrative areas, for example, see ref. 16), an apparent effect
of market density would be observed even if it had no
epidemiological significance and equal individual probability of
infection, since a region containing more markets is inherently
more likely to contain at least one infected market. Because we
considered infection risk at the market level, these analysis are
unaffected by this bias. We found a strong positive association
between market-level H7N9 presence and market density within
an approximate radius of 70 km, which suggests a synergistic
effect of high live-poultry market density in the neighbourhood of
a given market.

Live-poultry markets bring together live birds from large
catchment areas and unsold birds are commonly traded to other
markets20–22; this results in market networks with numerous
trade connections. The nature of the market network and of the
characteristics of the markets composing the network (for
example, time spent by animals in the market, cleaning
operations, rest days’ schedules) influences the spread and
persistence of disease over extended periods of time, even in
the absence of re-introduction of viruses from poultry farms19.
Higher densities of markets may exacerbate that risk and explain
the strong spatial correlation with suitability for H7N9 infection.
The epidemiological importance of dense networks of susceptible
markets is also supported by the effectiveness of massive control
efforts involving the closure of selected live-poultry markets, and
the banning or regulation of trade in live poultry8. Characterizing
the population size, species composition, trade volume and
connectivity of live-poultry markets will be important to better
quantify the role played by different types of markets in disease
spread and persistence, hence allowing better targeting of control
efforts.

The negative association between H7N9 presence and
intensively raised chickens is likely explained by the absence of
H7N9 cases in markets located in Northeastern China, an area
where chicken production is highly intensive. Other covariates
depict high suitability for H7N9 infection in the presence of
intermediate to high proportions of land covered by water, peri-
urban areas (intermediate travel time to city centres and
intermediate human population density). These characteristics

reflect the area where H7N9 first emerged, characterized by urban
and peri-urban areas located within landscapes occupied by
mixed extensive and intensive poultry farming in an environment
rich in water and rice paddy fields.

Several sites key to the first investigations of H7N9 emergence
share the above conditions (see a detailed map in Supplementary
Fig. 8). The city of Huzhou in Zhejiang Province—where some of
the highest H7N9 infection rates were also found in chicken and
pigeon samples7—is surrounded by rice paddy fields that support
free-ranging ducks and is o5 km from Taihu Lake, the largest
freshwater lake in the Yangtze Delta plain near Shanghai. The
nearby city of Hangzhou, located along the Qiantang river, where
H7N9 was found in many markets23 together with a wide
diversity of avian influenza subtypes24 is largely surrounded by
rice paddy fields and other wetland-related agriculture. These
sites were all predicted to be at relatively high risk of H7N9
infection (Fig. 3a). Interestingly, the more distant site of Poyang
Lake was also predicted to be at relatively high risk (Fig. 3a). This
site was identified as high risk by three previous studies of
influenza A viruses: H5N1 in poultry13, H5N1 at the domestic/
wild bird interface25 and H5N1 and H3N2 in humans26. A large
diversity of avian influenza subtypes have been sampled in this
area in both wild and sentinel ducks and at fairly high
prevalences27; the area was recently the location of three
reported human cases of novel avian influenza A (H10N8)
virus infection in Nanchang, Jiangxi Province28. With genetic
investigations indicating that H7N9 emerged from multiple
reassortments of influenza viruses from domestic ducks, wild
migratory duck and chickens9, these conditions common to all
three sites indicate that the socioecological systems characterized
by urban and peri-urban areas with their dense networks of live-
poultry markets and surrounded by poultry farming in wetland-
related agricultural landscapes may be high-risk areas or
‘hotspots’ for the emergence of new influenza viruses in humans.

The slow geographical expansion of the reported H7N9 cases
in the central and southern provinces of China indicates that
despite remarkably strict control efforts, H7N9 is difficult to
contain along poultry market chains and may spread beyond the
distribution indicated by the human cases, which have thus far
been reported.

The pixel-level infection risk maps can be interpreted as a
prediction of the potential geographic extent of live-poultry
market infection in Asia, rather than which areas could be
expected to be infected next. Generating robust spatiotemporal
predictions of the geographic spread of infection would require
data on connectivity between live-poultry markets, which is
currently unavailable, as well as the development of approaches to
integrate suitability models (such as that presented here) with
models of pathogen dispersal. One should also note that these
maps are influenced by the prediction of live-poultry market
density, the output of a model that would benefit from live-
poultry market census data unavailable today outside of China.
Another important challenge for future research will be to assess
the extent of H7N9 spread in poultry farming systems. The low
pathogenicity of H7N9 in poultry makes it difficult to track
through passive surveillance. Active surveillance will be needed to
track the disease, assess the risk of human exposure and
understand the RCs of farms, markets and wild birds to the
disease reservoir during inter-epidemic periods. Given the high
cost of active surveillance and the limited resources of some
national veterinary services, risk-based prioritization of surveil-
lance efforts is vital. No spatial model can provide a perfect
geographical extrapolation, but the application of a robust spatial
model with a prudent choice of sensitivity and specificity
thresholds can facilitate evidence-based prioritization of surveil-
lance in the region. This can help in early detection of new
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incursions, early response and active containment, minimizing
impacts to agricultural livelihoods and reducing risk to human
health.

Methods
H7N9 and live-poultry markets. All laboratory-confirmed human cases of
influenza A (H7N9) virus infection in China are reported to the Chinese Center for
Disease Control and Prevention (China CDC, Beijing, China) through a national
surveillance system. Case definitions, surveillance for identification of cases of
infection, and laboratory test assays have been described previously6. A joint team
comprising staff from local or provincial CDC, or the China CDC, or both, carried
out field investigations of the laboratory-confirmed human cases of influenza A
(H7N9) virus infection. Demographic, epidemiological and basic clinical data on
each laboratory-confirmed case of influenza A (H7N9) virus infection were
obtained with standardized forms5,8,29, integrated into a database and used in this
study, including geographic location and dates of illness onset for cases which were
officially announced up until 2 February 2014. The National Health and Family
Planning Commission determined that the collection of data from human
influenza A (H7N9) cases was part of a continuing public health investigation of an
emerging outbreak, and was therefore exempt from institutional review board
assessment. In addition, a database of positive identification of influenza A (H7N9)
in live-poultry markets was assembled, combining data from surveillance carried
out by local CDC offices and the Ministry of Agriculture (MOA, http://
www.moa.gov.cn/zwllm/yjgl/yqfb/), and with the records of influenza A (H7N9)
published in scientific papers. This resulted in a data set containing the location
and onset date of 284 human cases and 56 markets with documented evidence of
influenza A (H7N9)-positive sampling (Supplementary Methods).

Four sources of data were combined to compile addresses of retail and
wholesale live-poultry markets throughout China. The first was obtained from the
official website of Ministry of Agriculture of China (http://english.agri.gov.cn/) and
Agricultural Bureaus at province and prefecture level. The second was the database
of POI (point of interest) from the official gazetteer issued by National
Administration of Surveying, Mapping and Geoinformation (http://
en.sbsm.gov.cn/). The third source resulted from data mining using search engines
and social networks, by retrieving geo-features of searches with keywords related to
live-poultry trading, such as ‘poultry’, ‘market’, ‘live poultry market’ and ‘farmers’
market’ both in Chinese and English. This source of data identified a number of
recently established markets, which is yet to be incorporated into the formal data
sets. Fourth, provincial Agricultural bureaus were also contacted to access
unpublished data, from which the locations of around 1,000 live-poultry markets
were obtained (o10% of all live-poultry markets). All together, this resulted in a
database of 8,943 retail and wholesale poultry market locations.

The addresses of human H7N9 cases and live-poultry markets were geocoded
through a complete and normalized address with five or six hierarchical
administrative district names, then matched with gazetteer records. If this step
failed, the Google geocoding service (https://developers.google.com/maps/
documentation/geocoding/) was used to locate the address.

Live-poultry markets were used as the unit of statistical analysis and were
considered as potentially infected under the following conditions: (i) a confirmed
influenza A (H7N9) human case reported a history of visit to that market (n¼ 88);
(ii) the market was nearest to a confirmed influenza A (H7N9) human case
(n¼ 123) or (iii) a positive influenza A (H7N9) sample was documented from that
market (n¼ 56). We excluded cases that were suspected to be human-to-human
transmission because those infections may not have occurred through exposure to
live-poultry markets. In total, 263 markets were assumed positive markets out of
the entire data set of 8,943 retail and wholesale markets. The discrepancy between
the total and the sum was due to some markets being identified as positive from
multiple cases. A subset containing only the strongest evidences of market infection
(conditions i and iii above) was also assembled.

Risk factors. The analysis focused on a limited set of risk factors, including the
density of live-poultry markets, in addition to a set of other factors that have been
proven in the past to show consistent geographical correlation with avian influ-
enza14. The set of risk factors included human population density (people km� 2), a
measure of accessibility (the travel time to a city of more than 50,000 habitants;
minutes), duck density (birds km� 2), chicken density (birds km� 2), the
proportion of land covered by open water (%), the proportion of land covered by
rice cropping (%) and the predicted density of live-poultry markets (live-poultry
markets km� 2). Climatic factors were not considered in this analysis, because they
have not been found to be consistently associated with avian influenza outbreaks in
domestic poultry14 in geospatial terms. All risk factors were compiled at a spatial
resolution of 0.083333 decimal degrees per pixel, corresponding to a spatial
resolution of B10 km� 10 km at the equator (Supplementary Methods). The
human population density data layer was obtained from the WorldPop30 database
in all countries where it was available to date, and from the Gridded Population of
the World (GPW) database31 elsewhere (Supplementary Methods). The travel time
to major cities was extracted from previously published accessibility maps32.
Chicken and domestic duck density layers were produced using a revision of the
method used in the Gridded Livestock of the World database33, described in Van

Boeckel et al.34 and Prosser et al.35 and applied to an extensively improved data set
with chicken and domestic duck census data compiled by China CDC
(Supplementary Methods). Chicken density data were modified by disaggregating
them into the densities of extensively and intensively raised chickens
(Supplementary Methods). This was achieved by estimating the proportion of
extensively raised chicken at the national level using national gross domestic
product (GDP) per capita, distributing the total extensively raised chickens equally
among the rural population with a fixed number of extensively raised chickens per
capita, and estimating the density of intensively raised chickens by the difference
between total chicken density and the density of extensively raised chickens at the
pixel level. The proportion of area covered by water and rice was estimated from
the Globcover land cover database36 and the Asia-wide rice maps37–39, respectively,
by quantifying the proportion of pixels classified respectively as water and rice
paddy field within each of the 0.083333 decimal degrees analysis pixel. The density
of live-poultry markets was estimated in each pixel on the basis of a statistical
model trained within China with the live-poultry market census data, and applied
to other countries with corrections accounting for differences in absolute volume of
poultry and for the proportion of poultry raised under extensive production
systems (Supplementary Methods). The study area included China and all
countries in Southern, Eastern and Southeastern Asia as defined by the United
Nations Geoscheme. All predictor variables are displayed in the Supplementary
Methods.

Analysis. We used an ensemble BRT approach similar to that described in Bhatt
et al.40 to establish a multivariate empirical relationship between the environmental
suitability for H7N9 presence at the market level and the set of covariates sampled
at each market location (Supplementary Methods). The BRT method has been
shown to fit complicated response functions efficiently, while guarding against
over-fitting, and has therefore been widely used for vector and disease distribution
mapping13,40–42. Further, to reduce over-fitting and to account for sources of
uncertainty in the data set, each model was an ensemble of 120 BRT sub-models,
each fitted to a bootstrap sample of the data using the cross-validation algorithm of
Elith et al.41 to select the optimal number of trees. We made the assumption that
the risk posed to a market was dependent on risk factors in a catchment area
surrounding the market. To account for this, each sub-model of the BRT ensemble
was fitted to environmental covariates calculated using a weighted average of the
covariate values surrounding each markets, with weights determined by a Gaussian
kernel with s.d. s representing the size of the catchment area. Key to our analyses
was the assessment of the modelling extrapolation capacity over the geographic
space. Standard cross-validation techniques generally divide the available data set
in different folds, each containing a training set used to build the model and a
validation set used to evaluate its predictive performances. However, because the
selection of points for the training and validation sets is made at random, the
resulting training and validation sets are rarely truly independent because of the
frequent spatial clustering of cases43. This leads to overestimation of the goodness
of fit compared with a comparison made with a truly independent validation set
and can lead to selection of models with poor capacity to extrapolate to new areas.
A disc-based spatial cross-validation procedure was implemented so that points
forming the training set were geographically separated from the points of the
evaluation set. For each cross-validation fold, a market was selected at random, and
all markets within a radius of 1,000 km were designated as an evaluation set,
whereas markets beyond that range were used as the model training set. Discs were
placed at random, but subject to the constraint that at least 45 positive markets
(around 28% of the total) were present in both the training and evaluation sets (see
Supplementary Methods for details). This procedure was repeated five times using
different sets of markets for model training and evaluation, and on each replicate
goodness of fit was quantified by the AUC of the receiver operating characteristic
plot. A range of values for the parameter s (the range of the Gaussian kernel) was
tested between 0.1 and 1.0 decimal degrees, and the value optimizing the goodness
of fit of the disc-fold validation was used in the final model, using all of the
available data. Two types of output maps were produced, showing the predicted
market-level risk Pi for each pixel i in Asia (that is, the risk for an individual market
if it were located in that pixel) and the combined risk at the pixel level
1� (1�Pi)Ni, where Ni is the predicted number of live-poultry markets in pixel
i (that is, the risk of at least one infected market being present in pixel i).
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