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ABSTRACT: Agriculture is a critical industry to the economy of the Great Plains (GP) region of North America and sensitive
to change in weather and climate. Thus, improved knowledge of meteorological and climatological conditions during the
growing season and associated variability across spatial and temporal scales is important. A distinct climate feature in the GP
is the asynchronicity (AS) between the timing of temperature and precipitation maxima. This study investigated a long-term
observational data set to quantify the AS and to address the impacts of climate variability and change. Global Historical
Climate Network Daily (GHCN-Daily) data were utilized for this study; 352 GHCN-Daily stations were identified based on
specific criteria and the dates of the precipitation and temperature maxima for each year were identified at daily and weekly
intervals. An asynchronous difference index (ADI) was computed by determining the difference between these dates averaged
over each decade. Analysis of daily and weekly ADI revealed two physically distinct regimes of ADI (positive and negative),
with comparable shifts in the timing of both the maximum of precipitation and temperature over all six states within the GP
examined when comparing the two different regimes. Time series analysis of decadal average ADI yielded moderate shifts
(∼5 to 10 days from linear regression analysis) in ADI in several states with increased variability occurring over much of the
study region.
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1. Introduction

The growing season (GS), which spans from March
to October in the northern hemisphere during which
plants and crops emerge after the cold season and grow
until leaf fall (Linderholm, 2006), is typically associated
with increased temperature, and precipitation as well
as increased variability in ground and surface moisture
fluxes [e.g. evapotranspiration (ET) and soil moisture
(Durre et al., 2000; Illston et al., 2004; Teuling and Troch,
2005)]. Recent climate change research has focused on the
effects of global climate change on regional precipitation
(e.g. Ruiz-Barradas and Nigam, 2010; Bukovsky and
Karoly, 2011; Groisman et al., 2012; Long et al., 2012;
Christian et al., 2015; Shi and Durran, 2016), temperature
(e.g. Kunkel et al., 2010; Long et al., 2012; Kumar et al.,
2013; Berg et al., 2015) and plant health and phenology
(e.g. Tubiello et al., 2002; Weltzin and McPherson, 2003;
Bertin, 2008; Schlenker and Roberts, 2009; Jamieson
et al., 2012; Zeppel et al., 2014). However, while impacts
of climate change on vegetation health have been studied,
most have focused on specific plant and crop impacts (Ole-
sen and Bindi, 2002; Tubiello et al., 2007; Schlenker and
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Roberts, 2009; Jongen et al., 2011) rather than regional
GS climate.

Because small changes to temperature and precipita-
tion trends incur significant impacts on vegetation during
the GS, such impacts are extremely important to exam-
ine (Lobell and Asner, 2003). The temperature magnitude,
timing of temperature increases/decreases and overall
maximum are important to crop phenology (e.g. Hughes,
2000; Menzel, 2003; Badeck et al., 2004; Menzel et al.,
2006; Cleland et al., 2007; Bertin, 2008) and can impact
plant growth and maturity (Menzel, 2003). Thus, as tem-
perature warms more quickly vegetation will mature ear-
lier in the GS and shift the timing at which water stress
will be higher due to quicker plant mass growth (Marty-
niak, 2008) as the temperature magnitude and temperature
maxima determine the timing of peak ET and thus the tim-
ing of peak water usage (Bartz and Brecht, 2002; Vivoni
et al., 2008; Blum, 2010). If water availability is not suf-
ficient for the vegetation, plant health can be adversely
affected (Turner and Begg, 1981; Blum, 2010). At the same
time, Schlenker and Roberts (2009) noted that the nega-
tive effects of extreme temperatures on corn crops during
June and July could be mitigated by increases in precipi-
tation. Thus the seasonality and variability of precipitation
also yield significant impacts to vegetation health in con-
cert with temperature.
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Beyond the basic requirement of sufficient water for
vegetation sustenance, the timing of precipitation can
also impact plant health and crop production. Fay (2009)
demonstrated that variations in precipitation impacted
food resource availability while also finding that microbial
processes are sensitive to soil moisture that can impact the
availability of nitrogen in the soil. This leads to a sensitiv-
ity of nitrogen availability to trends in soil moisture and as
the timing between rainfall events increases the availability
of nitrogen decreases. Di et al. (1994) modelled the rela-
tionship between normalized difference vegetation index
(NDVI) and precipitation and suggested that the response
to NDVI from precipitation events changes throughout the
GS and found that plants more effectively utilized water
from precipitation events during the earlier and later por-
tions of their growing cycle, but less so when the plant was
more mature. Furthermore, Di et al. (1994) noted that due
to plant root depth and size, deeper soil moisture was more
important later in the GS than earlier. Thus, precipitation
events are more important earlier in the season to main-
tain overall soil moisture storage essential to vegetation
(Vivoni et al., 2008; Méndez-Barroso et al., 2009).

Unlike most grasslands and croplands around the world,
the maxima in temperature and precipitation during the
Great Plains (GP) of North America GS do not occur at
the same time whereby the maxima in precipitation pre-
cedes the climatological maxima in temperature. Because
the agricultural industry in the GP is of critical socioe-
conomic importance (Fischer et al., 2007), the impacts of
climate change on the seasonality of precipitation and tem-
perature, especially during the GS, are critically important.
At the same time, numerous studies have noted changes
in the timing of precipitation and temperature across inte-
rior portions of North America (e.g. Stewart et al., 2004;
Regonda et al., 2005; Caesar et al., 2006; Schwartz et al.,
2006). However, the asynchronicity (AS) between the tim-
ing of precipitation and temperature maxima have not been
examined and yet are critical to GS processes in the region.
Thus, the purpose of this study was to examine the cli-
matological AS between the timing of precipitation and
temperature maxima in the GP using historical observa-
tions to determine whether long-term changes in AS have
occurred.

2. Data and methods

2.1. Global historical climatology network-daily data

To investigate the long-term trends in the AS of tempera-
ture and precipitation maxima, a climate data set of surface
observations was required. The Global Historical Clima-
tology Network’s Daily (GHCN-Daily) data set (Menne
et al., 2012) was utilized for this study. A network of sen-
sors that spans the globe and has been in operation for
over 100 years, the data set provides daily maximum tem-
perature and precipitation observations from over 80 000
weather stations. Only stations contained within the GP of
the United States (Figure 1) were retained for this study
which spanned from 1895 to 2015. Furthermore, similar
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Figure 1. Map of the Great Plains showing the location of each
GHCN-Daily station used in this study.

to Christian et al. (2015), the GP was defined to include
the states of Texas, Oklahoma, Kansas, Nebraska, South
Dakota and North Dakota. A length of period (>90 years)
requirement was used to filter out stations with short peri-
ods of record. However, no filter was used to remove sta-
tions without continuous data sets during this period as few
stations within the data set have a continuous, long-term
record of observations. Thus, earlier decades may not con-
tain observations from all stations shown in Figure 1. After
filtering was completed, a total of 352 stations were iden-
tified within the GP region. As seen in Figure 1, the dis-
tribution of stations covers the entire region, with few
noticeable gaps. To focus only on the spring precipitation
maximum and the summer temperature maximum consis-
tent with the GS, the period was constrained from March
through August of each year.

While the GHCN-Daily data set is useful for climate
studies due to its long period of record, biases exist in the
daily data that can mask or artificially induce trends within
the data set (Karl et al., 1988). Additionally, the GHCN
data set is hindered by: time of observation bias (Karl
et al., 1986), instrumentation bias (Quayle et al., 1991),
station location change bias (Karl and Williams, 1987)
and a bias caused by urbanization near or at the station
site (Karl et al., 1988). While bias correction algorithms
exist for monthly averaged data a comparable method of
removing these biases from the daily data sets does not
exist. However, histogram analysis on the date of maxi-
mum temperature (Figure 2) and precipitation (Figure 3)
from the GHCN-Daily data set shows that dates from each
state match the climatological date of the respective max-
ima (Figure 4).

2.2. Asynchronous difference index

To quantify the climatological difference between the
maxima of temperature and precipitation, an index was
created. The asynchronous difference index (ADI) com-
putes the difference between the dates of the two maxima
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Figure 2. Histogram of dates for maximum temperature throughout the
entire GHCN-Daily data set for each state.

which allows for a simplistic quantitative analysis of the
data set. For this study, the ADI was defined as the differ-
ence between the date of maximum temperature and the
date of maximum precipitation, as shown in Equation (1):

ADI = D max
temp

−D max
prec

(1)

where ADI= asynchronous difference index,
DmaxTemp = date (day or week) of highest maximum tem-
perature and DmaxPrec = date (day or week) of maximum
precipitation amount.

This formulation was developed to obtain a positive aver-
age ADI during climatological conditions. As can be seen
in Figures 2 and 3, the dates of maximum precipitation
and temperature cannot be approximated as normal distri-
butions. However, the ADI normalizes these two data sets
and allows for a more simplistic statistical methodology to
be utilized for analysis.

To deduce the effect of different methodologies in find-
ing the ‘date’ of maxima, two separate techniques of
analysing the data for the maximum date were utilized.
First, the day of maximum temperature and precipitation
was analysed from the 352 stations for each year. The ADI
was then developed from this data set of daily maximum
temperature and precipitation for each year (daily ADI).
Second, daily observations were averaged, or for precip-
itation the sum total was determined, for each week and
then the maximum week within the period yielded the date

Figure 3. Same as Figure 2, except for precipitation.

of maximum. Weeks were designated as 1 through 26 for
our period, with the first week starting on the third day of
March for each year. This was done to exclude data from
September in the last week of each period and constrain the
data set to the same period as the other two date method-
ologies. The ADI was then computed as the difference
between the 2-week numbers and then multiplied by seven
to obtain an approximation for the number of days (weekly
ADI). This was done so that a direct comparison between
the daily and weekly results could be completed. Statistical
analysis was then completed for each version of the ADI
including the mean, standard deviation, Student’s t-test
significance tests and linear regression. Student’s t-tests
were completed on the decadal ADI data set using the
1890–1949 period as an estimate for the population statis-
tic and the 1950–2015 period as the test statistic. The latter
was assigned due to recent results noted by Christian et al.
(2015) and Weaver et al. (2016), which found increasing
variability of precipitation across the GP after 1950.

3. GP’ temperature and precipitation climatology

Using the GHCN-Daily data set, a climatology of
precipitation and maximum temperature was created
for each state within the study domain (Figure 4). This
daily climatology was then smoothed (using a kernel
density estimate for a random collection of points) to
remove the influences of fluctuations on the precipitation

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)



P. X. FLANAGAN et al.

Max temperature and precipitation amount climatology (smoothed) for all Great Plains states
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Figure 4. Temperature and precipitation climatology from the GHCN-Daily data set. Dashed line is precipitation (mm) and the solid line is
temperature (∘C). Lines were smoothed due to the variability in the daily precipitation climatology.

climatology. All six states have similar temperature cli-
matology with a maximum in mid-summary (late July,
∼day 200), but differ in precipitation climatology. The
four northern states have a peak of precipitation during
early summer (June, ∼day 160), but the southern states
have a bimodal pattern of precipitation with one peak
during spring (May, ∼day 140) and another peak during
fall (October, ∼day 280). In this article, the analyses focus
on the study period from March to August, which includes
both the climatological temperature maximum and the
first (spring) climatological precipitation maximum. End-
ing the study period at August removes the unwanted
secondary precipitation maximum evident in the Texas
and Oklahoma precipitation climatology that occurs in
September/October and beyond the critical GS.

4. Results

4.1. Spatial ADI analysis

Climatologically, ADI yielded features that are commonly
seen within the GP climate (Figure 5). A strong gradient of
ADI was analysed over the Southern Great Plains (SGP),
especially in Texas and Oklahoma. This matches well with
the known gradient of precipitation that occurs within this
region of the GP. Further to the north, a reversal of this
gradient occurs and ADI was climatologically lower in the
eastern portion of the Northern Great Plains (NGP) when
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Figure 5. Mean ADI for the entire study period (1890–2015) from
the GHCN dataset. Solid lines are for positive ADI and dashed lines
represent negative ADI. Data was gridded using the Barnes objective
analysis methodology in order to display smoother contours compared

to contouring raw ADI at the station level.

compared to the western portions of this portion of the
GP. The SGP ADI pattern is likely due to the overall east
to west gradient of precipitation whereby climatologically
more rainfall falls in the eastern portion of the SGP. This
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Figure 6. Same as Figure 5, except for the date of maximum precipitation (a) and temperature (b).

would cause temperatures to reach their yearly maximum
at a later date due to increased latent heat flux. Across
the western portion of the SGP, less precipitation occurs
and temperature values increase more rapidly and earlier in
the year. In the NGP domain, this pattern is more difficult
to describe as the east to west gradient of rainfall still
occurs in this portion of the GP as well and ADI appears
to be controlled more so by the date of maximum rainfall
than temperature (Figure 6). A gradient in the date of
maximum rainfall occurred across the NGP (decreasing
to the west) without a corresponding gradient in the date
of maximum temperature and would yield higher ADI
in the western portion of the NGP as seen in the mean
ADI analysis (Figure 5). The cause of the later date of
maximum precipitation in the NGP compared to the SGP
is due to mesoscale convective system (MCS) activity that
occurs in the early summer within the GP, which has been
noted numerous times in previous studies (e.g. Rasmusson,
1971; Wallace, 1975; Easterling and Robinson, 1985).

Spatial analysis of ADI standard deviation shows signif-
icant variability in the ADI (40–50 days), with (slightly)
larger values (∼50+) in the SGP compared to the NGP
(∼48; Figure 7). This is expected, as the SGP has been
noted to have higher precipitation variability when com-
pared to the NGP (Figure 8; Weaver et al., 2016). The
spatial pattern of variability in the date of maximum pre-
cipitation (Figure 8(a)) depicts a pattern much like that of
the overall ADI variability. These results demonstrate that
the variability in the ADI is most likely due to the variabil-
ity in the date of maximum precipitation more so than the
date of the temperature maxima. This result mirrors what
is seen in mean ADI, as the date of maximum precipitation
appeared to have more control on the climatological mean
of ADI than the date of maximum daily temperature.

4.2. Temporal ADI analysis

Histograms of all daily (Figure 9) and weekly (Figure 10)
ADI values showed a normal distribution around a positive
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Figure 7. ADI standard deviation for the entire study period
(1890–2015) from the GHCN data set. Data was gridded using
the Barnes objective analysis methodology in order to display smoother

contours compared to contouring raw ADI at the station level.

value of ADI. This was expected as climatologically
within the period from March to August the temperature
maximum occurs later than the precipitation maximum.
Furthermore, within the GP climate, it is difficult to get a
precipitation and temperature maximum to occur on the
same day, and few zero values of ADI were expected.
However, a secondary peak in the negative range of ADI
was not expected. To examine whether the valley in the
zero values caused this to peak to exist as a function
of the ADI itself (i.e. not a physical, real phenomenon)
analysis of the average day/week of maximum temperature
and precipitation was completed for each state (Table 1).
Results demonstrated that the average date of maximum
precipitation changed from approximately late May (posi-
tive ADI) to late July (negative ADI), an expected result
given the MCS activity that occurs later in the warm
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Figure 8. Same as Figure 7, except for date of maximum precipitation (a) and temperature (b).

Figure 9. Histogram of daily ADI values throughout the study period for
each state.

season. However, the change of the average date of
temperature maximum from late July (positive ADI) to
late June (negative ADI) was not. Summertime tempera-
ture maxima over the GP are climatologically caused by
a strong mid-tropospheric ridge that develops over the
region during the summer (Illston et al., 2004). Thus, a

Figure 10. Same as Figure 9, except for weekly ADI.

shift in the maximum temperature as systematic as shown
via the negative ADI analysis does not have a simple
explanation.

To determine the cause of this shift in maximum tem-
perature within the two different ADI regimes, several
features that influence surface temperatures over the GP
were investigated. First, the influence of precipitation on
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Table 1. Average date of temperature and precipitation maxima, separated by state and for negative/positive ADI. The number of
observations and the percent of total are also shown.

Daily
GHCN-Daily data

Temp. Prec. Number of obs. Percent of total

Texas Negative ADI 177.66 209.03 2261 27.80
Positive ADI 209.1 136.82 5872 72.20

Oklahoma Negative ADI 192.16 216.8 831 25.57
Positive ADI 211.91 140.66 2419 74.43

Kansas Negative ADI 189.6 214.83 2080 31.12
Positive ADI 208.5 149.6 4604 68.88

Nebraska Negative ADI 184.84 210.54 1460 31.71
Positive ADI 206.62 152.09 3144 68.29

South Dakota Negative ADI 186.09 212.34 1753 28.70
Positive ADI 209.52 150.67 4354 71.30

North Dakota Negative ADI 186.03 211.53 1420 29.65
Positive ADI 212.96 159.23 3369 70.35

Weekly
GHCN-Daily data

Temp. Prec. Number of obs. Percent of total

Texas Negative ADI 18.76 22.54 1888 23.18
Positive ADI 21.92 11.62 6257 76.82

Oklahoma Negative ADI 19.51 22.8 634 19.44
Positive ADI 21.91 11.86 2627 80.56

Kansas Negative ADI 19.22 22.67 1711 25.60
Positive ADI 21.61 13.17 4973 74.40

Nebraska Negative ADI 18.85 22.31 1005 21.83
Positive ADI 21.42 13.42 3599 78.17

South Dakota Negative ADI 18.71 22.39 1183 19.25
Positive ADI 21.64 13.13 4963 80.75

North Dakota Negative ADI 18.19 22.14 1093 22.75
Positive ADI 21.74 14.28 3711 77.25

The bolded information is the average day (for daily method) or week (for weekly method) of the maximum of temp/prec. This was used to show
the difference between the average date of each for negative ADI and positive ADI observations.

ADI was investigated due to links between latent/sensible
heat flux and surface moisture heterogeneities caused by
precipitation (e.g. Seneviratne et al., 2010; Berg et al.,
2014). Results from this analysis showed no significant
correlations between ADI and any of the precipitation
totals computed from the station data. Next, correlations
between noted teleconnection patterns that influence
North American temperature patterns (Ropelewski and
Halpert, 1986) and the ADI were analysed. For this
study, the Pacific-North American (PNA) pattern, El Niño
Southern Oscillation (ENSO), North American Oscilla-
tion (NAO), Pacific Decadal Oscillation (PDO) and the
Atlantic Multidecadal Oscillation (AMO) were chosen.
Using monthly ADI values derived from the monthly
climate division GHCN data set (nClimDiv) to compute
correlations with these teleconnection patters, results from
this analysis again showed little to no correlations between
any of the teleconnection patterns and the ADI. Lastly,
the role of the climatological 500 mb ridge that develops
during the summer season (Bluestein, 1993; Illston et al.,
2004) over the GP was investigated. Using NOAA-CIRES
20th Century Reanalysis Version 2 (Compo et al., 2011),
monthly average 500 mb geopotential heights were corre-
lated with gridded yearly ADI [gridded using an iterative
improvement type objective analysis scheme within the
NCAR Command Language (NCL)]. Results from this

analysis showed more utility in describing the causes of the
differences between the positive and negative ADI regimes
(correlations of ∼0.3 with July 500 mb heights), however,
no significant correlations were found during this analysis.
Thus, no direct causation of the negative and positive ADI
regimes could be found from the analysis performed within
this study. Further investigation into this feature of the ADI
is warranted given the physical difference between the two
regimes and the impacts they impart on the ecosystems
of the GP.

4.3. Daily ADI

Statewide decadal mean values of daily ADI (Figure 11)
reveal a number of results across the GP. Mean ADI val-
ues were positive and show a systematic difference (∼30
to 45 days) between temperature and precipitation max-
ima throughout the historical record. Texas and Oklahoma
had larger mean ADI values, which were expected as they
showed the earliest precipitation peak of the GP states.
The other four states were considerably lower, with no
mean ADI value analysed above 50 compared to 60 for
Texas and Oklahoma. However, this difference appears
to be changing with time over the length of the observa-
tional record. Linear trend analysis shows that each state
is incurring a trend on its decadal mean ADI. For example,
Texas, Oklahoma and North Dakota are incurring positive

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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Mean Decadal Async Difference Index (ADI; Daily ADI) for all Great Plains States
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Figure 11. Decadal average daily ADI for each state in the study domain. Solid line shows the decadal average, while the dashed line is the linear
regression line created from the ADI data. (a) Texas, (b) Oklahoma, (c) Kansas, (d) Nebraska, (e) South Dakota and (f) North Dakota.

trends. However, using 1890–1949 data as the popula-
tion statistic for the t-test, only North Dakota is showing a
statistically significant difference (90% confidence level).
Conversely, Kansas, Nebraska and South Dakota yielded
negative trends in ADI with Kansas and Nebraska showing
a statistically significant difference (95% confidence level)
using 1890–1949 as the population statistic for the t-test.
Thus, from the daily ADI analysis a significant shift in ADI
was analysed in Kansas, Nebraska and North Dakota using
a Student’s t-test for significance between the 1890–1949
and 1950–2015 periods. This was confirmed with the lin-
ear regression lines for each of the three states. The results
for Oklahoma displayed a linear regression line with a
strong (∼14 days) positive trend, however, the t-test did not
show that the two periods were significantly different. This
is likely due to the pattern of high and low mean ADI val-
ues that are seen throughout the time series, which would
overwhelm the comparatively smaller signal of the overall
increase for this statistical test.

Daily ADI variability analysis (Figure 12) also showed
significant differences between the two periods. The
average standard deviation of daily ADI across the region
ranged from ∼40 to 55 days, with the southern portion
of the domain having higher variability than the northern
states. Linear increases were noted in Texas, South Dakota
and North Dakota that were statistically significant (95%

confidence level) with the other three states also having
slight (<4 days) positive standard deviation trends. It is
evident in analysis of the ADI standard deviation time
series that after the 1940 decadal period an increasing
trend can be seen in many states (Texas, Oklahoma,
Nebraska, and North Dakota) even though a strong overall
trend was not determined through the linear regression
analysis. Thus, the analysis shows that ADI variability is
increasing over the GP, with significant increases in three
of the states at the 95% confidence level.

4.4. Weekly ADI

Analysis of the weekly ADI statewide decadal means
(Figure 13) showed similar results as daily ADI. Weekly
ADI continues to show systematic positive ADI of ∼30
to 45 days throughout the data set record. This shows
that the methodology does not affect the overall results
of obtaining a climatologically positive ADI, but the
actual value of ADI in the weekly ADI analysis is higher
when compared to daily ADI for the same state. Thus,
the change of methodology did not change the overall
nature of ADI, but it did change the decadal mean magni-
tudes, which affected the linear trends. Near zero trends in
Texas, Nebraska and South Dakota were seen with stronger
trends in Oklahoma, Kansas and North Dakota. The neg-
ative trend in Kansas was slightly higher in the weekly
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Decadal ADI Standard Deviation (Daily ADI) for all Great Plains States
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Figure 12. Same as Figure 11, except for daily ADI standard deviation.

ADI results (∼8-day increase) compared to the daily ADI
(∼7-day increase), with the trend in North Dakota show-
ing a similar change (weekly ADI ∼10-day increase, daily
ADI ∼7-day increase). The trend in Oklahoma, however,
showed a slightly weaker increase in the weekly ADI
(∼8-day increase) compared to the daily ADI (∼13-day
increase). At the same time, the statistical significance
did change. Kansas and North Dakota still revealed sig-
nificant differences between the two subset periods, how-
ever, Nebraska no longer showed statistically significant
results. This implies that the methodology (daily ADI)
likely resulted in the statistical significance for Nebraska
rather than the results shown in the daily ADI analysis
being a physically meaningful result.

Variability in the weekly ADI (Figure 14) showed sim-
ilar features to the daily ADI as well, however, with a
decreased magnitude owing to the averaging of the daily
data. The average value of variability in the region was
∼40 to 50 days, with a majority of the values in the 40s.
Furthermore, the trends align with the daily ADI variabil-
ity, with Nebraska being the main difference. In the daily
ADI analysis, Nebraska yielded a non-statistically signif-
icant increase in variability. However, with the weekly
ADI analysis, it showed a decreasing trend in variabil-
ity, showing that no trend in ADI variability is occurring
within Nebraska. Furthermore, the five other states show
very similar signals as the daily ADI analysis whereby

increasing trends were observed in all five states, with
South and North Dakota being statistically significant at
the 95% level (note – Texas, Oklahoma and Kansas were
statistically significant at the 85% confidence level). The
difference in these five states is Kansas, which analysed
the weekly ADI analysis to have a much stronger (∼7 days)
increasing trend compared to the daily ADI (∼1-day
increase) variability analysis. The other four states have
close to the same trend in variability ( approximately same
number of day increases), compared to the daily ADI
analysis, from 1890 to 2015 analysed through a linear
regression analysis.

5. Discussion and conclusions

The goal of this study was to analyse the long-term trends
in the AS between the date of maximum temperature
and precipitation (Figure 4) across the GP. To accomplish
this task, long-term data gathered from the GHCN-Daily
database for maximum temperature and precipitation was
utilized and an ADI was developed by computing the
day of each relevant maxima and further computing the
temporal span between the date of maximum temperature
and precipitation. This was also completed for the week
of maximum by averaging the data into weekly values and
determining the week of each maximum before computing
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Mean Decadal Async Difference Index (ADI; Weekly ADI) for all Great Plains States
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Figure 13. Same as Figure 11 except for weekly ADI decadal averages.

Decadal ADI Standard Deviation (Weekly ADI) for all Great Plains States
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Figure 14. Same as Figure 11, except for weekly ADI standard deviation.
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Average Julian Day of Maximum (Daily ADI) for all Great Plains States  Temperature
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Figure 15. Decadal average date of maximum temperature for daily ADI method. Solid line is the decadal average and the dashed line is a linear
regression line created from the decadal average data.

the difference between the weeks of each maximum. These
ADI values were then averaged into decadal means, and
multiple statistical analyses were utilized in the analysis.

Overall, the results show that ADI is changing through-
out the 1890–2015 period for various states in the GP.
Daily (Figure 11) and weekly (Figure 13) ADI analy-
ses yielded a statistically significant decreasing trend in
Kansas (95% confidence level for both analyses) with
a statistically significant increase in North Dakota (90%
confidence level for both analyses). Trends in other states
show significance for one analysis or the other, with
Nebraska showing a significant decrease (95% confidence
level) in the daily ADI analysis, but not the weekly anal-
ysis. Linear regression analysis on the Oklahoma data
shows a strong increasing trend in both ADI analyses, how-
ever, significance testing on the difference between the
1890–1949 and 1950–2015 periods shows no statistically
significant difference. This is likely because of the vari-
able pattern exhibited within both the daily and weekly
ADI decadal means, which caused the overall mean of both
decades (the test statistics for the Student’s t-test) to be
similar even though an overall increasing trend is seen.

Analysis of ADI standard deviation shows an increasing
trend (linear regression lines) for both analyses and most
states (Figures 12 and 14). The only state to not show
an increasing linear trend was Nebraska for the weekly

ADI analysis, which resulted in a slight decreasing trend.
Statistical significance (95% confidence level) was seen in
both analyses for South and North Dakota, with the daily
ADI analysis showing a significant increase in variability
for Texas (95% confidence level). Although statistical
significance may not have been noted, a difference was
seen between the prior to 1950 and after 1950 decadal
variability for several states. It appears as though a relative
minimum in ADI variability occurred in the 1940 and then
it increased from the 1950s onward in the central and
SGP states (Texas, Oklahoma, Kansas and Nebraska). This
result was observed in both ADI analyses.

Determining the drivers of the trends seen in ADI is dif-
ficult as the timing of maxima during a particular season
is rarely studied. However, an analysis into which vari-
able (temperature or precipitation) is driving the changes
in ADI can be completed within the purview of this
study. Daily analysis showing the decadal average day
of maximum temperature (Figure 15) and precipitation
(Figure 16) for Oklahoma, Kansas, Nebraska and North
Dakota (states with notable linear trends or significant dif-
ferences between periods) demonstrated that changes in
the date of maximum temperature are the likely cause of
the shift in ADI for North Dakota and Nebraska while a
shift in the date of maximum precipitation being the cause
for Oklahoma. The Kansas analysis displayed statistically
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Average Julian Day of Maximum (Daily ADI) for all Great Plains States  Precipitation
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Figure 16. Same as Figure 15 except for precipitation.

significant differences (90% confidence level or above)
for both the date of maximum temperature and precipi-
tation. Weekly analysis of decadal average day of maxi-
mum temperature (Figure 17) and precipitation (Figure 18)
demonstrated that only the trend in ADI for Oklahoma can
be partially attributed to shifts in the date of maximum pre-
cipitation (90% confidence level) with Kansas and Okla-
homa both yielding significant shifts (95% confidence
level) in their date of maximum temperature. Because all
of these shifts in the date of maximum temperature and
precipitation impact the decadal mean ADI, a positive shift
in ADI represents either a positive shift in temperature, a
negative shift in precipitation or both. Conversely, a nega-
tive shift in ADI reflects either a positive shift in precipi-
tation, a negative shift in temperature or both. Overall, the
shifts in the date of the occurrence of March to August
maximum temperature show more significance in regards
to the overall shifts in the ADI for both methodologies.
However, it is important to note that using the Student’s
t-test for this data may introduce errors, but because simple
bootstrap significant tests showed similar results as those
detailed above, the same methodology was used for all
analyses in the study.

The impact of the shifts between temperature and pre-
cipitation maxima is critical to the climate of the GP
region. Changes to the GS of the region impact ecosys-
tem health, water resources and socioeconomic viability

and sustainability. For example, small shifts in the tim-
ing of maximum temperature (e.g. Hughes, 2000; Men-
zel, 2003; Badeck et al., 2004; Menzel et al., 2006; Cle-
land et al., 2007; Bertin, 2008) and precipitation (Di et al.,
1994; Vivoni et al., 2008; Fay, 2009; Méndez-Barroso
et al., 2009) incur significant changes to plant and crop
phenology. This results in changes in water resource man-
agement (i.e. irrigation, land management, etc.) along with
the timing of seeding and harvesting (Terjung et al., 1984;
Rosenzweig, 1990) to maintain the current ecosystem and
level of agricultural production. However, not all shifts in
ADI could impact the ecosystem negatively. Lower values
of ADI could indicate higher soil moisture values during
the peak time of water stress, or when temperatures begin
to peak, thus mitigating the impact of the peak tempera-
tures on the ecosystem (Schlenker and Roberts, 2009).

These results provide an insight into the changes that are
occurring to the regional climate system within the GP.
While the synoptic patterns for precipitation and tempera-
ture over the region are better understood, the influences of
other critical features that drive climatological processes
such as land–atmosphere interactions are less so, espe-
cially for precipitation (André et al., 1990; Pielke et al.,
1991; Koster et al., 2004; Haugland and Crawford, 2005;
Alfieri et al., 2008). Future work is likely to be directed
into two different areas: first investigating the ADI in terms
of reanalysis and model output and second investigating
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Average Week of Maximum (Weekly ADI) for all Great Plains States  Temperature
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Figure 17. Same as Figure 15, except for weekly ADI method.

Average Week of Maximum (Weekly ADI) for all Great Plains States Precipitation
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Figure 18. Same as Figure 15, except for weekly ADI method precipitation.
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the connection between plant vigour and health [vegeta-
tion indices (e.g. NDVI, EVI), net primary productivity
(NPP) or gross primary productivity (GPP)] of terrestrial
ecosystems (Zhang et al., 2016). Analysis of model and
reanalysis output of ADI values and trends will allow for
further quantification of the causes of ADI variability and
the changes this feature could incur in the future. Further-
more, the analysis of modelled ADI across the GP would
allow for features seen in the observational data set iden-
tified within this study to be investigated in more detail,
specifically the differences observed between positive and
negative ADI regimes and the causes of the increased vari-
ability of ADI. Additionally, while the link between this
feature of the GP climate and the ecosystem is intuitive
and supported by literature, quantifying it using vegeta-
tion indices or vegetation health statistics could provide
insights into the direct effect the shifts in the ADI detailed
by this study are having on the ecosystem.

Whether the noted shifts in the ADI are being caused
by human influences or natural variability cannot be deter-
mined within the scope of this study. However, the duration
of these trends along with the specific signals noted after
1950 in the variability of ADI yield evidence that a change
has occurred within the natural variability likely impacted
by anthropogenic influences. Furthermore, the results are
consistent with Christian et al. (2015) and Weaver et al.
(2016), which both demonstrated increased variability of
precipitation in the GP domain.
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