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Abstract: In recent decades, the increasing frequency and severity of cyanobacterial blooms in
recreational lakes and water supply reservoirs have become a great concern to public health and
a significant threat to the environment. Cyanobacterial bloom monitoring is the basis of early
warning and treatment. Previous research efforts have always focused on monitoring blooms in a
few specific lakes in China using moderate resolution imaging spectroradiometer (MODIS) images,
which are available for the years 2000 onward. However, the lack of overall information on long-term
cyanobacterial blooms in the lakes and reservoirs in the middle–lower Yangtze River (MLYR) basin is
an obstacle to better understanding the dynamics of cyanobacterial blooms at a watershed scale. In
this study, we extracted the yearly coverage area and frequency of cyanobacterial blooms that occurred
from 1990 to 2016 in 30 large lakes and 10 reservoirs (inundation area >50 km2) by using time series
Landsat satellite images from Google Earth Engine (GEE). Then, we calculated the cyanobacterial
bloom area percentage (CAP) and the cyanobacterial bloom frequency index (CFI) and analyzed their
inter-annual variation and trends. We also investigated the main driving forces of changes in the
CAP and CFI in each lake and reservoir. We found that all reservoirs and more than 60% of lakes
exhibited an increasing frequency and coverage area of cyanobacterial blooms under the pressures
of climate change and anthropogenic interferences. Reservoirs were more prone to be affected by
fertilizer consumption from their regional surroundings than lakes. High temperatures increased
blooms of cyanobacteria, while precipitation in the lake and reservoir regions somewhat alleviated
blooms. This study completes the data records of cyanobacterial blooms in large lakes and reservoirs
located in hotspots of the MLYR basin and provides more baseline information before 2000, which
will present references for water resource management and freshwater conservation.

Keywords: cyanobacterial blooms; Landsat; lakes; reservoirs; time series satellite images; the
middle–lower Yangtze River basin

1. Introduction

Lakes, ponds, and reservoirs are major components of surface freshwater, which provide valuable
ecosystem services, including drinking water supply, agricultural irrigation, fisheries, flood control,
the hydrological cycle, and cultural services, amongst other services [1–3]. The adjacent regions of
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freshwater bodies are always accompanied by a high human population density, which results in
activities that increase anthropogenic eutrophication and even large-scale cyanobacterial blooms [4].
Cyanobacterial bloom is a threat to public health as well as the ecosystem. As a consequence of climate
change and anthropogenic activities, the severity and intensity of cyanobacterial blooms occurring
in lakes, reservoirs, rivers, and marine ecosystems have been increasing in recent decades [5–11].
However, more data on the mechanisms of cyanobacterial blooms, especially long-term records are still
required to complete our understanding of this phenomenon, which would allow for a more accurate
assessment of the processes that drive these blooms [7,11].

The middle–lower Yangtze River (MLYR) basin, one of the most concentrated distributions of
freshwater in East Asia, or even the world, serves as the water supply for a population size of nearly
half a billion. It plays an essential role in maintaining regional ecological and environmental functions,
as well as sustaining agricultural production and socioeconomic development [3,12–14]. Around 2000,
many national construction projects related to afforestation and dams were carried out in this region,
such as the construction of forest protection in the middle–lower Yangtze River starting in 2000, and
the operation of the Three Gorges Dam starting in 2003, which significantly influenced the adjacent
ecological environment [15–17]. As a result of the increase in anthropogenic activities over the past
decades, most of the large lakes and reservoirs are now mesotrophic and even eutrophic in the MLYR
basin, including Poyang Lake, Dongting Lake, Taihu Lake, and Chaohu Lake, which are the first-,
second-, third- and fifth-largest freshwater lakes in China, respectively [18]. Also, severe algal blooms
have been observed in these large lakes [19–25].

Remote sensing data have been widely applied to analyze spatial and temporal variations in
cyanobacterial blooms [26]. Over the past several years, although the moderate resolution imaging
spectroradiometer (MODIS) and the medium resolution imaging spectrometer (MERIS) have been used
to monitor blooms because of their high time resolution (e.g., [20,24,25,27–30]), the data they produce
are insufficient for an accurate and long-term comprehensive study due to their coarse spatial resolution,
and the lack of data before 2000. In contrast, Landsat imagery is available and freely accessible on
Google Earth Engine (GEE). Advantages of Landsat imagery include access to data that start from 1984,
a fine (30 m) resolution, and global coverage. Moreover, many researchers have demonstrated that
Landsat can successfully identify cyanobacterial blooms with quite a high accuracy [5,7,31–34]. Thus,
application of the Landsat dataset to cyanobacterial bloom monitoring could help us comprehensively
study and analyze long-term variation in many large lakes and reservoirs. Importantly, it could provide
more baseline information for periods before 2000, for which MODIS data are not available.

Previous studies on cyanobacterial blooms in the MLYR basin have often focused on single,
or no more than three lakes or reservoirs, especially several specific lakes, such as Taihu Lake and
Chaohu Lake, which have had quite severe blooms (e.g., [21–23,25,35]). Based on MODIS data, these
studies have demonstrated that occurrences of cyanobacterial bloom in Chaohu Lake have become
increasingly severe and frequent since 2000 [25]. Research in Taihu, Dongting, and Poyang Lakes
has illustrated that nutrients, temperature, and hydrological parameters dominate the process of
cyanobacterial bloom [21–23,35]. However, the spatial distribution and temporal dynamics in the
long run of cyanobacterial bloom in large lakes and reservoirs located in the MLYR basin are not
well explored. A long-term observation that covers many lakes and reservoirs in the MLYR basin
would enhance our comprehension of the historical occurrence of cyanobacterial blooms since the
twentieth century. Moreover, monitoring more large lakes and reservoirs would facilitate the overall
understanding of the mechanisms of cyanobacterial blooms. GEE is a cloud-based high-performance
computing platform in which massive quantities of data can be processed quickly and painlessly [36,37].
The benefits of available pixel-based algorithms and good observations in cloud-contaminated images
can also be added to an analysis using GEE. It can promote data utilization efficiency [17,37] and,
to some extent, compensate for the drawbacks of insufficient time resolution in Landsat data [17]
compared with the traditional method of satellite image processing, which entails simply removing



Remote Sens. 2019, 11, 1754 3 of 21

inadequate images (e.g., images with high cloud coverage). The platform allows us to obtain more
knowledge of the long-term changes in blooms.

In this study, we aimed to investigate the spatiotemporal dynamics of cyanobacterial blooms in
large lakes and reservoirs located in the MLYR basin from 1990 to 2016 using all Landsat TM/ETM+/OLI
images on the GEE cloud computing platform. The specific objectives of this study are (1) to analyze
the interannual dynamics (from 1990 to 2016) of the cyanobacterial bloom coverage area and frequency
in large lakes and reservoirs distributed in the MLYR basin, and (2) to identify the main factors that
have driven cyanobacterial blooms in lakes and reservoirs.

2. Materials and Methods

2.1. Study Area

The MLYR basin (from 29◦57’N to 31◦48’N, from 108◦38’E to 121◦52’E), a region with an area of
~785,000 km2 (Figure 1), refers to the downstream section of the Three Gorges Dam and mainly covers
Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shanghai Provinces. The region has a warm temperate
and monsoon climate with four distinct seasons. The annual average temperature ranges from 14 to
18 ◦C, and the annual mean precipitation varies from 1000 to 1500 mm, which is mostly concentrated
in the summer season.
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Figure 1. Hydrological map of the middle–lower Yangtze River basin (gray-green shaded area) and the
spatial distribution of the studied lakes and reservoirs. The black triangles mark the locations of the
meteorological stations, where ground-based measurements of temperature were used to produce the
annual temperature map. The location of the middle–lower Yangtze River basin in China is shown in
the inset.
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The large lakes and reservoirs in the MLYR basin that have an area greater than 50 km2 account
for just around 4% of all water bodies with an area of >1 km2, but they account for over 70% of the
total water body area (see in Table 1). Thus, we focused on the yearly cyanobacterial bloom change
that has occurred in lakes and reservoirs with water body areas of >50 km2. A total of 30 lakes and
10 reservoirs were included. Table 2 shows the codes, names, locations (longitude and latitude), and
waterbody areas (i.e., the regions with annual inundation frequency of >25% between 2001 and 2004)
of these lakes and reservoirs. The code numbers were allocated to these lakes and reservoirs in terms
of their longitudes, and the numbers increase sequentially from east to west within the MLYR basin.

Table 1. The statistics of water bodies with areas between 1 and 50 km2 and an area greater than 50
km2 located in the middle–lower Yangtze River basin.

Water Body Number Total Area (km2)

With an area between 1 and 50 km2 1009 4993.05
With and area of > 50 km2 40 12,815.05

Total 1049 17,808.10

Table 2. The codes, names, locations and water areas (which have an annual frequency of an open
water body of > 25% between 2001 and 2004) of the studied lakes.

Code Name Longitude Latitude Area
(km2) Code Name Longitude Latitude Area

(km2)

L01 Dianshan Lake 120.96 31.12 74.05 L21 Baoan Lake 114.71 30.25 55.75
L02 Yangcheng Lake 120.77 31.43 151.04 L22 Liangzi Lake 114.51 30.23 401.25
L03 Taihu Lake 120.19 31.20 2796.61 L23 Luhu Lake 114.20 30.22 57.78
L04 Gehu Lake 119.81 31.60 180.478 L24 Futou Lake 114.23 30.02 156.57
L05 Changdang Lake 119.55 31.62 99.51 L25 Xiliang Lake 114.08 29.95 104.45
L06 Nanyi Lake 118.96 31.11 219.84 L26 Huanggai Lake 113.55 29.7 77.14
L07 Shijiu Lake 118.88 31.47 247.12 L27 Honghu Lake 113.34 29.86 364.29
L08 Chaohu Lake 117.53 31.57 925.18 L28 Dongting Lake 113.12 29.34 2089.19
L09 Shengjin Lake 117.22 30.38 142.27 L29 Datong Lake 112.51 29.21 96.67
L10 Pogang Lake 117.14 30.65 68.11 L30 Changhu Lake 112.40 30.44 157.38

L11 Caizi Lake 117.07 30.80 236.85 R01 Taipingcun
Reservoir 118.04 30.38 80.72

L12 Poyang Lake 116.32 29.08 3506.39 R02 Hongmen
Reservoir 116.82 27.46 55.18

L13 Wuchang Lake 116.69 30.28 84.36 R03 Bailianhe
Reservoir 116.18 30.53 55.04

L14 Bohu Lake 116.44 30.17 167.50 R04 Zhelin Reservoir 115.24 29.31 299.19

L15 Huangda Lake 116.38 30.02 299.61 R05 Wanan
Reservoir 114.93 26.28 82.66

L16 Longgan Lake 116.15 29.95 310.06 R06 Fulin Reservoir 114.75 29.68 63.47

L17 Saihu Lake 115.85 29.69 62.02 R07 Dongjiang
Reservoir 113.37 25.83 158.53

L18 Chihu Lake 115.69 29.78 66.79 R08 Zhanghe
Reservoir 112.02 31.04 70.64

L19 Wanghu Lake 115.33 29.87 60.53 R09 Yahekou
Reservoir 111.49 32.07 80.85

L20 Daye Lake 115.1 30.10 77.77 R10 Danjiang
Reservoir 112.60 33.35 568.85

2.2. Landsat Image Data and Preprocessing

On the GEE platform, we used all the available standard Level 1 terrain corrected (L1T) products
of the Landsat surface reflectance images [38] covering our study area from 1990 to 2016, including
15,097 Landsat TM images, 12,830 Landsat ETM+ images, and 3504 Landsat OLI images in total
(Figure 2). The products are atmospheric corrected considering the aerosols impacts, such as molecular
(Rayleigh) scattering [39]. Poor-quality observations, such as clouds, cirrus, snow, and ice observations
and scan line corrector (SLC)-off gaps were excluded by a quality assessment (QA) band according to
the algorithm developed by Zhu et al. [40]. Thus, all good-quality Landsat pixels were applied to form
our maps.
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Figure 2. The total number of images from different sensors (Landsat 5/7/8) taken from 1990 to 2016
used in this study.

We calculated three widely used vegetation indices (VIs), one water-related spectral index, and
one algae-related spectral index from good-quality Landsat surface reflectance data. The Nominalized
Difference Vegetation Index (NDVI) [41] and the Enhanced Vegetation Index (EVI) [42,43] are related to
vegetation greenness; the Land Surface Water Index (LSWI) [44,45] was first used to estimate the water
content of vegetation; and the Modified Normalized Difference Water Index (mNDWI) [46] is sensitive
to open-surface water bodies. The Float Algal Index (FAI) [47] is an index developed especially to
detect cyanobacterial blooms and was originally intended for use with MODIS, but it can also be
calculated from the reflectance in the RED, NIR, and SWIR bands of Landsat images [33].

NDVI =
ρNIR − ρred

ρNIR + ρred
(1)

EVI = 2.5×
ρNIR − ρred

ρNIR + 6× ρred − 7.5× ρblue + 1
(2)

LSWI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(3)

mNDWI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(4)

FAI = ρNIR −

[
ρred + (ρSWIR1 − ρred) ×

865− 655
1610− 655

]
(5)

where ρred, ρblue,ρgreen, ρNIR and ρSWIR1 are the red (630–690 nm), blue (450–520 nm), green (520–600
nm), near-infrared (NIR: 760–900 nm), and shortwave infrared (SWIR: 1550–1750 nm) bands of the
Landsat TM/ETM+/OLI imagery, respectively.
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2.3. Algorithms to Identify Open Surface Water Body of Lakes and Reservoirs

To map the yearly cyanobacterial bloom conditions associated with the selected lakes and
reservoirs, we needed to determine the boundary of each lake and reservoir first. The mNDWI is the
most widely used water index [17,46], and the optimal band analysis for Normalized Difference Water
Index (NDWI) was also demonstrated with good accuracy [48]. Zou et al. [49,50] documented that the
open water body can be extracted with high accuracy when the criteria ((mNDWI > NDVI or mNDWI
> EVI) and (EVI < 0.1)) are satisfied. The pixels in which the annual frequency of the open water body
are greater than or equal to 0.25 can be defined as surface water. We adopted this algorithm since it has
been proven to be efficient in both the United States and the Poyang Lake in China [17]. Considering
the impact of the Three Gorges Dam, which started operating in 2003, and the limitation of GEE (no
more than 5000 images per run), we extracted the surface water region by the surface reflectance data
with good-quality observations from 2001 to 2004. Then, we determined the names of the lakes and
reservoirs by referring to the China Lake Scientific Database (http://lake.data.ac.cn/lake_museum/) and
removed farmlands and ponds based on high-resolution images and photos incorporated into Google
Earth Pro® (GE) [51]. The boundaries of the 40 selected lakes and reservoirs are shown in Figure 1.

2.4. Annual Mapping of Cyanobacterial Blooms

Oyama et al. [33] found that the algorithm combining the FAI and NDWI calculated by Band
4 (RED) and Band 5 (SWIR1) (which is the LSWI) can successfully recognize cyanobacterial bloom
regions when FAI > 0.05 and LSWI > 0.63 are both satisfied, which were qualitatively validated in six
lakes in Japan and Indonesia. We calculated the annual occurrence times of surface cyanobacterial
bloom for individual pixels in the MLYR from 1990 to 2016 and extracted the annual results in each
lake and reservoir by the boundaries we produced.

We defined two parameters to assess the cyanobacterial bloom conditions and the corresponding
interannual dynamics in the selected lakes and reservoirs. These parameters are the yearly
cyanobacterial bloom area percentage (CAP) and the cyanobacterial bloom frequency index (CFI). The
formulas are:

CAP =
NCB
Ntotal

× 100% (6)

CFI =
n∑

i=0

i·Ni

Ntotal
(7)

where NCB, Ntotal, i, n, and Ni are the total number of pixels with detected cyanobacterial bloom
occurrence, the total number of pixels in a lake or reservoir, the occurrence times in the pixels, the
maximum occurrence times in a lake or reservoir, and the total number of pixels with cyanobacterial
bloom occurrence detected i times, respectively.

The CAP mainly represents the coverage of surface cyanobacterial bloom, while the CFI reflects
the frequency. We performed linear regressions for the 27 years of annual data to obtain the change
rate of CAP and CFI values during our study period. The change rate was considered statistically
significant when the p-value associated with the linear regressions was <0.05 (t-test).

2.5. Accuracy Assessment of Annual Maps of Cyanobacterial Blooms

Ideally, in situ data are the best reference for validating the cyanobacterial blooming size, but
this is difficult in practice; for example, a field survey tool (such as a boat or aircraft) disturbs the
surface algae. However, comparison with concurrent higher-resolution observations is a good way
to evaluate the accuracy [27]. The surface cyanobacterial blooms can be easily recognized by their
spatial texture in Landsat images with a 30 m high resolution [27], so Sentinel-2 L1C images, which
have an even finer resolution of 10 m, can be used for validation. Thus, the atmospherically corrected
Sentinel-2 Multispectral Instrument, Level-1C data [52] at a 10 m resolution were obtained from GEE
and used to validate the results. We visually examined concurrent standard false-color Sentinel-2

http://lake.data.ac.cn/lake_museum/
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images to distinguish the cyanobacterial bloom region and compared it with the cyanobacterial bloom
region extracted from Landsat images in the same place to validate the accuracy of the algorithm when
applied to lakes located in China.

2.6. Datasets of Various Driving Factors

2.6.1. Precipitation

The monthly precipitation data from 1990 to 2016 were collected from the National Oceanic and
Atmospheric Administration PERSIANN Climate Data Record (NOAA/PERSIANN-CDR) on GEE. All
pixels that overlapped with individual lakes and reservoir boundaries were extracted, and the mean
values were regarded as the precipitation conditions for that lake or reservoir.

2.6.2. Annual Temperature Map in the MLYR Basin

Daily air temperatures were obtained from the China Meteorological Data Sharing Service System
(http://data.cma.gov). We collected data from all available meteorological stations with at least one
year of complete observations during 1990–2014 in Shaanxi, Henan, Guizhou, Hunan, Hubei, Jiangsu,
Jiangxi, Anhui, Zhejiang, and Shanghai. The Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) data in China, with a resolution of 1 × 1 km, was applied to perform kriging
interpolation of temperature, taking the vertical temperature gradient into account.

We used the concept of active temperature (AT) in agriculture and redefined it as the sum of the
daily mean temperatures above 25 ◦C in one year because the maximum growth rates of cyanobacteria
occur at this threshold of air temperature [10]. The active temperature in our study represents the
high temperatures for a specific year. Then, active temperature and yearly mean temperature (YT)
were calculated for all available stations, and the results were used to produce the annual MLYR basin
AT map and MLYR basin YT map by kriging interpolation. The mean values of AT (ATmean) and YT
(YTmean) extracted by lake and reservoir boundaries were separately regarded as the AT and YT for the
corresponding lake or reservoir in a specific year.

2.6.3. Data of Anthropogenic Activities for Each Lake and Reservoir

The population, gross domestic product in primary industries, secondary industries and tertiary
industries (denoted as PGDP, SGDP, TGDP, respectively), and the amount of yearly used chemical
fertilizer for farmlands (hereinafter referred to as the “fertilizer”) were obtained from the online local
annual statistical books (http://tongji.cnki.net/, Anhui, Hunan, Hubei, Jiangsu, Jiangxi, Zhejiang, Henan:
1991–2017). The secondary watershed boundary extracted from a Digital Elevation Model (DEM) [53]
was obtained from the Resource and Environment Data Cloud Platform.

The population, fertilizer consumption, PGDP, SGDP, and TGDP of the surrounding cities were
used to quantify the impact of anthropogenic activities on cyanobacterial bloom. Besides, the regions
in which secondary watershed boundaries overlapped with a lake or reservoir were regarded as the
watershed of the lake or the reservoir. Considering the different impact ratios of surrounding cities due
to the different distribution areas of lakes and reservoirs in cities, we calculated the overlap ratio of the
watershed of the lake or reservoir with the surrounding cities. The computational method is shown in
Figure 3. The ratio in individual cities was regarded as the impact ratio of anthropogenic activities from
that city, and then the sum of the surrounding cities represented the population, fertilizer consumption,
PGDP, SGDP, and TGDP for lakes and reservoirs.

http://data.cma.gov
http://tongji.cnki.net/
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2.7. Statistical Analysis of the Relationship between Annual Cyanobacterial Bloom Dynamics and
Driving Factors

To assess the relationships between cyanobacterial bloom conditions (including CAP and CFI)
and climatic changes (represented by ATmean, YTmean, and precipitation) and anthropogenic activities
(represented by population, fertilizer, PGDP, SGDP, and TGDP), we constructed a series of generalized
linear models (GLMs). Highly correlated variables (Spearman’s ρ > 0.8) [54] were not included in the
same model. Then, we evaluated relative models supported by the information-theoretic Akaike’s
information criterion corrected (AICc) for small sample sizes, and the model with the smallest AICc
was selected in our analysis. A z-value was estimated for each effective variable with the GLM as well,
where z-value <0.05 showed that the correlation of that variable was statistically significant.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 22 
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3. Results

3.1. Accuracy Assessment for Annual Cyanobacterial Bloom Map in 2018

According to previous studies, cyanobacterial bloom has always been observed in western coastal
areas, Zhushan Bay, and the Meiliang Bay, while aquatic plants have been found distributed in the East
Bay in Taihu Lake [30]. The results of cyanobacterial bloom coverage extracted according to FAI > 0.05
and LSWI > 0.63 from Landsat were consistent with the visually determined results from Sentinel-2
imagery (Figure 4a1,b1), confirming that we did not falsely identify aquatic plants as cyanobacterial
bloom (Figure 4a2,b2). This indicates that the FAI- and LSWI-based algorithm can also be applied to
the detection of cyanobacterial bloom regions in water bodies located in China.
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Figure 4. Validation of the Landsat Float Algal Index (FAI) and Land Surface Water Index (LSWI)
threshold for distinguishing cyanobacteria blooms in Taihu Lake. (a) Standard false-color Sentinel-2
imagery on 16 September 2017 covering Taihu Lake and showing cyanobacterial bloom. (b) Standard
false-color Sentinel-2 observation overlapped with results extracted from Landsat. The green-colored
shaded area shows the bloom region determined by FAI > 0.05 and LSWI > 0.63 from the Landsat
image. (a1,a2,b1,b2) Enlargement of the small areas marked in (a) and (b).

3.2. Spatiotemporal Changes in Cyanobacterial Blooms in 1990–2016

3.2.1. Temporal and Spatial Distributions of Cyanobacterial Bloom

The CAP climatology data of all 40 selected lakes and reservoirs over 27 years are displayed in
Figure 5, and the spatial patterns of the CAP distributions can be observed. On average, the yearly
cyanobacterial bloom area percentage of lakes ranged from 1.21% (Yangcheng Lake) to 16.44% (Shijiu
Lake), and that of reservoirs varied from 0.91% (Zhanghe Reservoir) to 5.40% (Bailianhe Reservoir)
from 1990 to 2016 (Figures 5–7). Overall, of the 30 lakes, only 10% had 27-year mean CAP values
of ≤2%; 43.3% were between 2% and 4%; 23.3% ranged from 4% to 6%; 3.3% were between 6% and
8%; and 20% were >8%. Of the 10 reservoirs, 50%, 20%, and 30% had values of ≤2%, 2–4%, and
4–6%, respectively.
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represent the 27-year average CAP and the standard deviations.
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Figure 7. The interannual changes in the yearly cyanobacterial bloom area percentage (CAP) values
for each studied reservoir ((R01)–(R10)). The number in the upper right corners represent the 27-year
average CAP and the standard deviations.

The changing trends of interannual CAP for each lake and reservoir from 1990 to 2016 (Figures 6
and 7) and the change rates for all the lakes and reservoirs with spatial distributions are displayed by
color shading in Figure 8. When the CAP change rates were classified into five levels (≤−0.4% year−1,
−0.4% to 0% year−1, 0–0.1% year−1, 0.1–0.4% year−1, and >0.4% year−1), the corresponding proportions
of each level were 7.5%, 20%, 27.5%, 37.5%, and 7.5% of the studied lakes and reservoirs, respectively.
The CAPs for about 63% of the lakes (19/30) and all reservoirs showed increasing trends, and the most
pronounced increase was observed in Chaohu Lake (L05, with a change rate of 0.57% year−1), while
the greatest decrease was found in Shengjin Lake (L09, with a change rate of −1.04% year−1). Three
lakes and one reservoir showed statistically significant increasing trends, while four lakes had CAPs
that decreased significantly during the study period.
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3.2.2. Interannual Changes in the Frequency of Cyanobacterial Bloom

The 27-year mean CFIs of each lake and reservoir are presented in Figure 9. Specifically, the
climatological CFI of lakes varied from 0.015 (Yangcheng Lake) to 0.389 (Shijiu Lake), and that of
reservoirs ranged from 0.011 (Wan’an Reservoir) to 0.071 (Fushui Reservoir) during the study period
(Figures 9–11). In general, of the 30 lakes, only 16.7% had a 27-year mean CFI value of ≤0.03; 20%
were between 0.03 and 0.05; 30% ranged from 0.05 to 0.07; 20% were between 0.07 and 0.14; and 13.3%
were >0.14. Of the 10 reservoirs, 50%, 30%, 10% and 10% had values in the previously mentioned five
levels, respectively.
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Figure 10. The interannual changes in the yearly cyanobacterial bloom frequency index (CFI) values for
each studied lake ((L01)–(L30)). The red and blue arrows indicate the lakes with significant (p < 0.05)
increasing or decreasing trends in CFI values over 27 years. The number in the upper right corners
represent the 27-year average CFI and the standard deviations.
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results for CAP, 60% of lakes (18/30) and all reservoirs showed increasing trends in their CFIs, and 
the greatest increasing trend was found in Huanggai Lake (L26, with a change rate of 0.010 year−1), 
whereas the most pronounced decrease was observed in Shijiu Lake (L09, with a change rate of −0.016 
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The interannual variation trends of the CFI and the associated change rates of CFI from 1990 to
2016 for all lakes and reservoirs were analyzed and are displayed in Figures 10 and 11, respectively.
With the changing rates of CFI (Figure 12) categorized as five levels (≤−0.002 year−1, −0.002 to 0 year−1,
0–0.0.002 year−1, 0.002–0.005 year−1, and >0.005 year−1), the number of selected lakes and reservoirs
that fell into each level accounted for 15%, 12.5%, 40%, 25% and 7.5%. Similar to the results for
CAP, 60% of lakes (18/30) and all reservoirs showed increasing trends in their CFIs, and the greatest
increasing trend was found in Huanggai Lake (L26, with a change rate of 0.010 year−1), whereas the
most pronounced decrease was observed in Shijiu Lake (L09, with a change rate of −0.016 year−1).
Three of the lakes and two of the reservoirs showed statistically significant increasing trends in the CFI
in 1990–2016. On the contrary, statistically significant decreasing trends in the CFI were observed in
only two lakes, and these lakes were found in the middle and eastern MLYR basin.
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3.3. Major Driving Factors for the Observed Spatiotemporal Dynamics of Cyanobacterial Blooms from 1990
to 2016

To further investigate the relationship between cyanobacterial bloom and climatic and
anthropogenic factors, a relative model of the lakes and reservoirs with the eight above-mentioned
driving factors was analyzed. The regression coefficients (denoted as “Slope”) between explanatory
variables and the CAP and CFI are displayed in Figures 13 and 14, respectively.

The response of the annual coverage area (represented by CAP) and frequency (represented by CFI)
of cyanobacterial bloom to the eight driving factors varied differently for lakes and reservoirs. Forty
percent of the reservoirs (4/10) exhibited correlations between coverage area and fertilizer consumption
while just 7% of the lakes (2/30) had this correlation. The results for the frequency were almost the
same. Besides, the correlations for all reservoirs and lakes were positive, and two of the reservoirs
showed significantly positive correlations (z < 0.05). The results indicated that reservoirs were more
inclined to be affected by the use of fertilizer by surrounding farmlands in one year than lakes in the
MLYR basin. As a whole, the population distribution surrounding the lakes and reservoirs seemed
to show a weak relationship with cyanobacterial blooms, where about 20% of the lakes and 10% of
reservoirs were correlated. Compared with reservoirs, the GDP (including PGDP, SGDP, and TGDP)
seemed to be more correlated with the cyanobacterial bloom coverage area and frequency in lakes. Our
results demonstrated that the development of tertiary industries might be related to the cyanobacterial
bloom increase while the development of secondary industries may be related to its decrease. Overall,
GDP had little effect on cyanobacterial blooms.

In contrast, the precipitation and air temperature (quantified by ATmean and YTmean) were more
relevant to cyanobacterial blooms. Approximately 50% of the lakes and reservoirs displayed a negative
correlation with the annual coverage area and frequency of cyanobacterial blooms, where eleven
lakes showed a statistically significant negative relationship, which demonstrated that an increase in
precipitation in a lake and reservoir region might be related to the reduction in cyanobacterial blooms.
Conversely, the increase in yearly mean temperature and extremely high temperature in a specific year
might be linked with the increase in cyanobacterial blooms. We found that near 30% of lakes and
10% of reservoirs exhibited a positive correlation between the ATmean and the cyanobacterial bloom
coverage area and frequency, where approximately half of the lakes showed a significant relationship.
The YTmean showed a lower correlation with cyanobacterial blooms, but virtually all were positive
and statistically significant. As a whole, the cyanobacterial bloom seemed to be more related to
meteorological factors.
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Figure 13. The regression coefficients (denoted as “Slope”) between the effective explanatory variables and the yearly cyanobacterial bloom area percentage (CAP) of
the 30 lakes and 10 reservoirs examined. The “*” sign represents the statistically significant (i.e., z < 0.05) impact of the explanatory variable on CAP. The Slope (βi)
indicates the degree of the direct influence of xi on y in the generalized linear model (GLM) equation “y = β0 + β1x1+β2x2+ . . . +βixi+µi”. The value of each Slope is
shown to avoid that the fill color is too shallow to see clearly. To normalize the magnitude of the Slope, each driving factor was multiplied by a factor. The labels of the
abscissa axis from right to left are consistent with the positions of the lakes and reservoirs from east to the west in the middle–lower Yangtze River basin, and the codes
(e.g., L01) correspond to those in Table 1, which are arranged by their longitudes.
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Figure 14. The regression coefficients (denoted as “Slope”) between the effective explanatory variables and the yearly cyanobacterial bloom frequency index (CFI) of
the 30 lakes and 10 reservoirs examined. The “*” sign represents the statistically significant (i.e., z < 0.05) impact of the explanatory variable on CFI. The Slope (βi)
indicates the degree of the direct influence of xi on y in the generalized linear model (GLM) equation “y = β0 + β1x1+β2x2+ . . . +βixi+µi”. The value of each Slope is
shown to avoid that the fill color is too shallow to see clearly. To normalize the magnitude of the Slope, each driving factor was multiplied by a factor. The labels of the
abscissa axis from right to left are consistent with the positions of the lakes and reservoirs from east to the west in the middle–lower of the Yangtze River basin, and the
codes (e.g., L01) correspond to those in Table 1, which are arranged by their longitudes.
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4. Discussion

4.1. Detection and Mapping of Cyanobacterial Blooms

In this study, we illustrate that the algorithm produced by Oyama et al. [33] that distinguishes
a cyanobacterial bloom region from Landsat data can also be well applied to water bodies in China.
Many researchers have conducted the cyanobacterial bloom monitoring in several large and vital lakes
located in the MLYR basin, such as Taihu Lake and Chaohu Lake. Duan et al. [20,55] demonstrated that
the occurrences of algal blooms in Taihu Lake became increasingly severe from 1987 to 2011, mainly
reflected by an increased frequency, duration, and coverage. The same tendency was also found in
Chaohu Lake from 2000 to 2013 [25]. Our results for Taihu and Chaohu Lakes are consistent with
the previous results. We also verified the results of deteriorating water quality and eutrophication
in Poyang and Dongting Lakes [18,23]. Moreover, we completed the monitoring of dynamics of
cyanobacterial blooms in many other large lakes and reservoirs located in the MLYR basin from 1990
to 2016, as this was lacking in previous studies.

Ideally, all time-series images would detect every cyanobacterial bloom event in a specific year
during our observation period. Nevertheless, with a 16 day revisit period, Landsat satellites can only
partially obtain the information of full cyanobacterial bloom conditions in a year, and some blooming
events may be missed. Thus, the yearly maximum area coverage and frequency of cyanobacterial
bloom in this study have some limitations on the accuracy. However, it is still certain that the proposed
approach analyzed by Landsat can be effectively used for long-term cyanobacterial bloom monitoring
because the changing trend and main driving forces of cyanobacterial bloom in lakes and reservoirs
are consistent with previous studies.

4.2. Driving Factors of Cyanobacterial Bloom Dynamics

The increase in both phytoplankton biomass and the frequency of cyanobacterial blooms have
been associated with the overall increase in nutrient inputs from agricultural, urban, and industrial
sources [10]. The availability and composition of nitrogen (N) and phosphorus (P) in freshwater
bodies control the production and compositions of phytoplankton communities [9,11,56]. Fertilizer
consumption and wastewater discharge were identified as main ways through which anthropogenic
activities import nutrients into surrounding water bodies [5,10,57]. Compared with the reservoirs,
the lakes showed less correlation with fertilizer consumption (Figures 13 and 14). This might be
attributable to the different trophic states, as Wang et al. [18] demonstrated that, in the middle–lower
Yangtze region, large lakes were mainly eutrophic, while the reservoirs studied were mesotrophic.
Since the population and GDP affect the process of cyanobacterial generation or bloom indirectly, they
showed no significant regularity in their effects. However, the significant decrease in blooms in several
lakes was related to the population or GDP, and this might be attributable to the effects of the aggressive
recovery strategy for environmental protection proposed by the government, especially after the severe
cyanobacterial bloom in Taihu Lake in 2007 [6]. For instance, researchers have revealed that the River
Chief Policy could improve the water quality of water bodies in the Yangtze River Economic Belt, and
the positive effect may be relevant to industrial structural upgrades and industrial waste discharge
control especially in cities with higher GDP [58]. Nevertheless, a more detailed investigation should be
conducted in the future in the lakes with a significant decrease in blooms, such as Shengjin Lake, Shijiu
Lake, Daye Lake, and Changdang Lake.

In addition to the promotion of blooms due to nutrient over-enrichment, climate change,
including rising global temperatures and changing precipitation patterns, also affected the process of
cyanobacterial blooms [10,11,59]. High temperatures increase the generation of phytoplankton and
alter their vertical stratification, which contributes to the surface accumulation of algae [56,59]. Our
results show that high temperatures in a year were correlated with the increase in cyanobacterial bloom,
which is in agreement with previous studies. Besides, we found that precipitation was related to the
decrease in cyanobacterial bloom. In past efforts, precipitation events were hypothesized to enrich the
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nutrients of water bodies through surface runoff or promote flushing by freshwater discharge, which
would increase or (in the short-term) prevent blooms, respectively [8,9]. Our results confirm the latter.
Precipitation is usually concentrated in spring and summer in the MLYR basin when the temperature
is extremely suitable for the generation of cyanobacteria. Thus, precipitation events can interrupt long
periods of diurnal stratifications, increase the disruption of water bodies, dilute the concentration of
nutrients in water [56], and therefore, decrease the occurrence of bloom. Overall, the cyanobacterial
bloom is complex, it is related to a mixture of anthropogenic and climatic factors and displays different
combination patterns in different lakes and reservoirs.

4.3. Implications

At present, this work is restrained by the quantity and quality of Landsat images. Nonetheless,
along with the development of remote sensing technology, Sentinel-2 [60–63] and Worldview 3 [64]—two
of many multi-spectral sensors with higher temporal and spatial resolutions—are potential sources of
available data for land use/cover change monitoring with higher precision. In the future, we could
combine more image data (e.g., Landsat, Sentinel-1 and 2, Worldview 3) to build a more accurate
and scientifically recognized database of cyanobacterial bloom events in China and worldwide. The
algorithm produced by Oyama et al. [33] can be applied effectively to the many lakes distributed
in Japan, Indonesia, and China; thus, we could attempt to discover the dynamics of cyanobacterial
blooms in water bodies around the world in the future. Besides, the process of cyanobacterial bloom is
so complex that we still need more field records to enrich our understanding of it. If successful, we
might find an appropriate approach to defeat the green monster.

5. Conclusions

In this study, Landsat images were processed using FAI and LSWI by the GEE platform to explore
the spatial distributions and temporal dynamics of cyanobacterial blooms over the last 27 years in
large lakes and reservoirs distributed in the MLYR basin. The results illustrate the reliability of
long-term cyanobacterial bloom monitoring by Landsat satellites, and the approach can be utilized by
changing trend analysis. The interannual variation and trends of the cyanobacterial bloom coverage
area and frequency from 1990 to 2016 were analyzed. All reservoirs and more than 60% of lakes
tended to increase in the coverage area and frequency of cyanobacterial blooms under the pressures
of climate change and anthropogenic interferences. Compared with lakes, reservoirs were more
inclined to be affected by fertilizer consumption from their regional surroundings. High temperatures
appear to increase cyanobacterial blooms while precipitation in the lake and reservoir region might
somewhat alleviate blooms. With results that can be traced back to the 20th century, this study
provides baseline information on cyanobacterial bloom changes in 30 large lakes and 10 large reservoirs
in the middle–lower Yangtze River basin. Thus, the findings could serve as a reference for future
environmental monitoring and governance of these lakes and reservoirs.
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