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Abstract: As the biggest carbon flux of terrestrial ecosystems from photosynthesis, gross primary
productivity (GPP) is an important indicator in understanding the carbon cycle and biogeochemical
process of terrestrial ecosystems. Despite advances in remote sensing-based GPP modeling, spatial
and temporal variations of GPP are still uncertain especially under extreme climate conditions such
as droughts. As the only official products of global spatially explicit GPP, MOD17A2H (GPPMOD)
has been widely used to assess the variations of carbon uptake of terrestrial ecosystems. However,
systematic assessment of its performance has rarely been conducted especially for the grassland
ecosystems where inter-annual variability is high. Based on a collection of GPP datasets (GPPEC)
from a global network of eddy covariance towers (FluxNet), we compared GPPMOD and GPPEC at all
FluxNet grassland sites with more than five years of observations. We evaluated the performance
and robustness of GPPMOD in different grassland biomes (tropical, temperate, and alpine) by using
a bootstrapping method for calculating 95% confident intervals (CI) for the linear regression slope,
coefficients of determination (R2), and root mean square errors (RMSE). We found that GPPMOD

generally underestimated GPP by about 34% across all biomes despite a significant relationship
(R2 = 0.66 (CI, 0.63–0.69), RMSE = 2.46 (2.33–2.58) g Cm−2 day−1) for the three grassland biomes.
GPPMOD had varied performances with R2 values of 0.72 (0.68–0.75) (temperate), 0.64 (0.59–0.68)
(alpine), and 0.40 (0.27–0.52) (tropical). Thus, GPPMOD performed better in low GPP situations
(e.g., temperate grassland type), which further indicated that GPPMOD underestimated GPP. The
underestimation of GPP could be partly attributed to the biased maximum light use efficiency (εmax)
values of different grassland biomes. The uncertainty of the fraction of absorbed photosynthetically
active radiation (FPAR) and the water scalar based on the vapor pressure deficit (VPD) could have
other reasons for the underestimation. Therefore, more accurate estimates of GPP for different
grassland biomes should consider improvements in εmax, FPAR, and the VPD scalar. Our results
suggest that the community should be cautious when using MODIS GPP products to examine spatial
and temporal variations of carbon fluxes.
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1. Introduction

Gross primary productivity (GPP), which is also known as the rate of photosynthesis, is the
biggest carbon flux of terrestrial ecosystems [1]. This carbon flux plays an important role in the
terrestrial carbon cycle. GPP is also the basis for ecosystem services such as food, fuel, and wood
products [2]. The ability to accurately track the spatial and temporal variability of GPP is fundamental
for understanding the biogeochemical dynamics of terrestrial ecosystems [3,4]. Therefore, it is critical
for us to accurately estimate GPP and further understand the trends and variations of global and
regional carbon uptake. However, there still exist considerable uncertainties in GPP estimation, which
has attracted plenty of attention [5–7].

Satellite remote sensing provides an unprecedented and practical opportunity to estimate
ecosystem GPP at large scales by using a diagnostic approach. Numerous remote sensing
models have been proposed including the Global Production Efficiency Model (GLOPEM) [8],
the Carnegie-Ames-Stanford Approach model (CASA) [9], the Vegetation Photosynthesis Model
(VPM) [10,11], the light use efficiency model (EC-LUE) [12], and the net photosynthesis model
(PSN) [13]. The Moderate Resolution Imaging Spectroradiometer (MODIS) primary production
products (MOD17A2) based on the PSN model are open access datasets with high temporal and spatial
resolutions that allow for the monitoring of global GPP at the 1-km resolution every eight days [14].
Previous studies using different light use efficiency (LUE) models estimated global GPP ranging from
105 to 177 P g C a−1 [15,16] with a considerable uncertainty. Yuan et al. [17] compared seven LUE
models and they found that only two models (EC-LUE and CFlux) showed higher correlations between
GPP derived from eddy covariance (GPPEC) and modeled GPP and performed better in simulating
inter-annual variability of GPP than others. Furthermore, the performances of different models are
not the same among all vegetation types or biomes [18,19]. As the only official global GPP products
(MOD17A2/MOD17A2H), the MODIS GPP (GPPMOD) products have been widely used in addressing
scientific questions on terrestrial carbon uptake and carbon cycle [20,21]. For example, MOD17A2 has
been used to understand the drought impact on global carbon uptake of terrestrial ecosystems [22].

However, there is still a great discrepancy about the reliability of GPPMOD when compared with
in-situ data collected in different locations [23]. Due to the unavailability of directly measured GPP
data, the validation of MODIS GPP products is still challenging. The eddy covariance technique is an
effective approach to evaluate GPP on the landscape scale. A previous study found that the GPPMOD

was reliable and matched well with GPPEC in the forest biome at Vancouver Island, Canada [24].
However, there are many studies that have highlighted the uncertainties of GPPMOD data in different
ecosystem types. For example, Turner et al. [25] pointed out that the GPPMOD underestimated GPP at
hardwood forest sites and, yet, agreed well with GPPEC data at boreal forest sites. In terms of savanna
ecosystems, Leuning et al. [26] found that the GPPMOD performed differently for tropical wet/dry
savannas. It overestimated GPP during the dry season and arid summer but matched very well during
the two wet seasons. Consistent with that in Leuning et al. [26], GPPMOD underestimated GPP at dry
sites located in the Sahel region, according to a study at 12 African sites of savanna ecosystems [27]
while the product agreed well with GPPEC at wet sites. It showed that generally GPPMOD tend to be
underestimated in drier forest ecosystems or savanna ecosystems. However, these studies were mostly
based on the previous versions of the MODIS GPP product (Collection 4 or Collection 5), but the
latest version (Collection 6) significantly improved the value of the maximum light use efficiency (for
example, from 0.68 g C m−2 d−1 MJ−1 to 0.86 g C m−2 d−1 MJ−1 for grass) and the product footprint
sizes (from 1 km to 500 m) [28]. Whether performance has improved for collection 6 or not in these
ecosystems has not been studied on a global scale.

Compared to the forest and savanna biomes, validation of the MODIS GPP in grassland has also
been studied extensively. Zhang et al. [29] found that MODIS data underestimated the mean annual
GPP by 30% to 50% in the alpine meadow sites in China. Zhu et al. [30] also found that grassland
GPP (MOD17A2) was underestimated at the Haibei grassland site during the summer. In the US,
Doughty et al. [31] also found that GPPMOD performed poorly at the improved pasture sites, the native
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pasture sites, and the winter wheat sites when compared with GPPEC. However, these analyses were
based primarily on limited spatial and temporal coverage of in situ observations. Regional-scale and
global-scale evaluations of GPPMOD for grassland ecosystems has not yet been conducted. With the
increasing global distribution of eddy flux towers and the formation of networks (e.g., FLUXNET [32],
AmeriFLux [33], EuropeanFLux [34], AsiaFLux [12]), a large scale validation of GPP products has
become feasible [24,35]. Recently, the latest global flux dataset of FLUXNET2015 [36] was released and
it provided a great opportunity for the validation of GPPMOD for grassland ecosystems.

In this study, we aimed to conduct a systematic validation of GPPMOD for grassland ecosystems
by using the FLUXNET2015 dataset. The overarching goals of this study are to: (1) examine the
performance of GPPMOD across a network of grassland flux sites, (2) assess the uncertainties of
GPPMOD under different grassland biomes (temperate, tropical, and alpine), and (3) discuss the
potential reasons that cause the underestimation of GPP in the MOD17A2H products.

2. Materials and Methods

2.1. GPPMOD Algorithm

The MOD17A2H GPP product (Collection 6) is a standard global product with a 500-m spatial
resolution and eight-day temporal resolution [22]. It is based on the light use efficiency approach,
which calculates GPP by using the amount of photosynthetically active radiation (PAR) absorbed by
vegetation over a growing season [37]. The algorithm was developed below.

GPPMOD = ε × FPAR × PAR (1)

where ε is the actual light use efficiency, PAR is the photosynthetically active radiation (MJ m−2) per
unit time, and FPAR is the fraction of PAR absorbed by vegetation canopy.

ε = εmax × TMINscalar × VPDscalar (2)

where εmax (g C m−2 d−1 MJ−1) is the maximum light use efficiency, which is given in a Biome
Parameter Look-up Table (BPLUT) for each land cover type in the PSN model. The TMINscalar and
VPDscalar are environmental stress factors of temperature (daily minimum temperature, Tmin, ◦C)
and water (maximum daily vapor pressure deficit, VPD, Pa) and are parameterized according to
Equations (3) and (4).

TMINscalar =


1 TMIN > TMINmax

(TMIN − TMINmin)/(TMINmax − TMINmin) TMINmin ≤ TMIN ≤ TMINmax

0 TMIN < TMINmin

(3)

VPDscalar =


0 VPD > VPDmax

(VPDmax − VPD)/(VPDmax − VPDmin) VPDmin ≤ VPD ≤ VPDmax

1 VPD < VPDmin

(4)

where TMIN and VPD are the daily minimum temperature (◦C) and the average vapor pressure deficit
(Pa), TMINmax and VPDmax are the daily minimum temperature and the average vapor pressure deficit
at which ε = εmax, and TMINmin and VPDmin are the daily minimum temperature and average vapor
pressure deficit at which ε = 0 [28,38]. These parameters were determined, according to the BPLUT.
The NASA Global Modeling and Assimilation Office (GMAO) provided input data for the GPPMOD

algorithm including global meteorological simulations of incoming PAR, daily maximum/minimum
temperature, and daily maximum/minimum VPD. We downloaded MODIS Collection 6 data for 2000
to 2014 and we extracted GPPMOD from pixels with the 500-m resolution in which the flux towers
were located. GPPMOD for each site was transformed from monthly totals to monthly means and were
converted from kg C m−2 to g C m−2.
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2.2. CO2 Eddy Flux and Meteorological Data

We used the FLUXNET2015 datasets (http://www.fluxdata.org) to evaluate the performance
of GPPMOD. The FLUXNET2015 datasets include carbon dioxide (CO2), water vapor, energy
fluxes, shortwave and longwave radiations, photosynthetically active radiation, temperature, and
precipitation for each flux tower site. We selected all grassland flux tower sites across the world with
more than five years of observations between 2000 and 2014 using the 500-m resolution. The selection
included 15 grassland sites with eddy covariance towers. All of these were included in this study
(Figure 1 and Table 1). The meteorological data including precipitation, air temperature, solar radiation,
and VPD were used in this study. We used the gap-filled GPP data derived from the Marginal
Distribution Sampling (MDS) method for gap-filling and the night-time partitioning method for the
net ecosystem exchange (NEE) partitioning [39]. The daily GPPEC values were transformed to monthly
GPPEC values (g C m−2 day−1) for a comparison with the GPPMOD.
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Figure 1. Distribution of 15 FLUXNET sites selected with more than five years of observations.

Table 1. Basic information of FLUXNET eddy covariance tower sites selected in this study.

Site ID Site Name LAT LON IGBP Class Data Range

CH-Cha Chamau 47.2102 8.4104 Temperate grassland 2005–2014
CH-Fru Fruebuel grassland 47.1158 8.5378 Temperate grassland 2005–2014
CH-Oe1 Oensingen grassland 47.2858 7.7319 Temperate grassland 2002–2008
DE-Gri Grillenburg 50.9495 13.5125 Temperate grassland 2004–2014
NL-Hor Horstermeer 52.2404 5.0713 Temperate grassland 2004–2011
US-SRG Santa Rita Grasslan 31.7894 −110.8277 Temperate grassland 2008–2014
US-Wkg Walnut Gulch Kendall grasslands 31.7365 −109.9419 Temperate grassland 2004–2014
AU-Dap Daly River avanna −14.0633 131.3181 Tropical grassland 2007–2013
AU-Stp Sturt Plains −17.1507 133.3502 Tropical grassland 2008–2014
US-Var Vaira Ranch-Ione 38.4133 −120.9507 Tropical grassland 2001–2014
AT-Neu Neustift 47.1167 11.3175 Alpine grassland 2002–2012
CZ-Bk2 Bily Kriz grassland 49.4944 18.5429 Alpine grassland 2006–2012
IT-Mbo Monte Bondone 46.0147 11.0458 Alpine grassland 2003–2013
RU-Sam Samoylov 72.3733 126.4978 Alpine grassland 2002–2014
IT-Tor Torgnon 45.8444 7.5781 Alpine grassland 2008–2014

http://www.fluxdata.org
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2.3. Evaluation of Model Performance

In this study, GPPMOD was evaluated against GPPEC. First, according to the climate characteristics
of the grassland sites, we merged the 15 grassland sites into three grassland biomes, i.e., temperate,
tropical, and alpine grasslands. Second, we evaluated the model performance by comparing the seasonal
dynamics of GPPMOD and GPPEC by using the linear regression model (GPPEC = a × GPPMOD + b).
During the evaluation, modeled data (GPPMOD) are plotted on the x-axis and observation data (GPPEC)
on the y-axis. This avoids estimating spurious biases in the representation [40]. The coefficient of
determination (R2) was used to evaluate the models’ explanatory abilities for variances in GPP. Third,
the root mean squared errors (RMSE) were calculated to quantify the agreement between GPPEC and
GPPMOD during the plant-growing season (GPP > 1 g C m−2 day−1).

RMSE =

√
1
n
× ∑ n

n=1(Xi − Yi)
2 (5)

where n is the total number of sample points and Xi and Yi represent the observed and simulated
values, respectively.

We used the bootstrapping method to provide confidence intervals necessary to determine
whether these indicators (slopes, RMSE, and R2) are different or not and repeated sampling for 4000
times in the bootstrapping analysis.

2.4. Estimation of εmax

The εmax is an important parameter in the GPPMOD algorithm. The εmax for vegetation types can be
obtained from an analysis of gross ecosystem exchange of CO2 and photosynthetic photon flux density
(PPFD) at an eddy flux tower site [41,42]. In this study, we used a nonlinear model between GPP and
PPFD (at half-hour time step) data to estimate the εmax for each grassland site [43–45]. The abnormal
observations (including zero values or extremely high values) have been excluded before fitting the
function. The model is described below [42,43].

NEE =
α × PPFD × GEEmax

α × PPFD − GEEmax
− R (6)

where α is the apparent quantum yield and is assumed to be the εmax. R is the ecosystem respiration,
GEEmax is the maximum gross ecosystem exchange (GEE), and NEE is the net ecosystem exchange.

3. Results

3.1. Comparison of GPPMOD and GPPEC

Figure 2 illustrates the seasonal variation of GPPMOD and GPPEC at all sites. GPPMOD and
GPPEC exhibit consistency in the magnitudes and seasonal variations at most of the grassland
sites. GPP values started near zero in the winter, began to increase in the spring, reached its peak
during the summer, and decreased quickly after its peak (Figure 2). The GPPEC in most sites were
underestimated by the GPPMOD. For example, the GPPEC were underestimated by 58.48%, 56.24%,
and 53.25% in AT-Neu, RU-Sam, and IT-Tor, respectively (Figure 2a), ((l), and (j)). The coefficients
of determination (R2) between GPPMOD and GPPEC varied from 0.17 (CI, 0.08–0.29) at the RU-Sam
site to 0.83 (0.77–0.89) at the DE-Gri site with all being statistically significant at p < 0.05 (Figure 3)
and all these analyses were tested with a 95% confidence interval (Table 2). The linear regression
between GPPMOD and GPPEC showed that GPPMOD performed well at DE-Gri (R2 = 0.83 (0.77–0.89),
RMSE = 1.90 (1.61–2.18) g Cm−2 day−1), CZ-Bk2 (R2 = 0.82 (0.74–0.88), RMSE = 1.31 (1.05–1.54)
g Cm−2 day−1), CH-Cha (R2 = 0.79 (0.70–0.86), RMSE = 3.64 (3.29–4.00) g Cm−2 day−1), CH-Fru
(R2 = 0.78 (0.71–0.84), RMSE = 3.19 (2.78–3.57) g Cm−2 day−1), and AT-Neu (R2 = 0.78 (0.72–0.83),
RMSE = 4.05 (3.52–4.55) g Cm−2 day−1), but it performed poor at RU-Sam (R2 = 0.17 (0.08–0.29), RMSE
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= 0.89 (0.74–1.03) g Cm−2 day−1), AU-Dap (R2 = 0.28 (0.14–0.45), RMSE = 3.31 (2.88–3.70) g Cm−2

day−1), US-SRG (R2 = 0.40 (0.18–0.59), RMSE = 0.68 (0.58–0.77) g Cm−2 day−1), and IT-Tor (R2 = 0.50
(0.33–0.67), RMSE = 2.81 (2.23–3.34) g Cm−2 day−1) (Figure 3). Moreover, GPPMOD had a R2 of 0.66
(0.63–0.69) and RMSE of 2.46 (2.33–2.58) g Cm−2 day−1 for all grassland tower sites (Figure 4).
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Table 2. Statistics of the comparison between monthly GPPMOD and GPPEC for all sites by using the
linear regression model. The 95% confidence interval using the bootstrapping method is in parenthesis.

Site ID Slope R2 RMSE

AT-Neu 1.89 (1.72, 2.07) 0.78 (0.72, 0.83) 4.05 (3.52, 4.55)
AU-Dap 0.92 (0.60, 1.24) 0.28 (0.14, 0.45) 3.31 (2.88, 3.70)
AU-Stp 0.89 (0.70, 1.07) 0.53 (0.34, 0.70) 1.04 (0.83, 1.24)
CH-Cha 1.14 (1.03, 1.25) 0.79 (0.70, 0.86) 3.64 (3.29, 4.00)
CH-Fru 1.27 (1.14, 1.39) 0.78 (0.71, 0.84) 3.19 (2.78, 3.57)
CH-Oe1 1.14 (0.94, 1.34) 0.61 (0.48, 0.74) 3.19 (2.72, 3.66)
CZ-Bk2 1.04 (0.93, 1.15) 0.82 (0.74, 0.88) 1.31 (1.05, 1.54)
DE-Gri 1.15 (1.06, 1.24) 0.83 (0.77, 0.89) 1.90 (1.61, 2.18)
IT-Mbo 1.05 (0.92, 1.18) 0.67 (0.57, 0.76) 2.36 (1.87, 2.82)
IT-Tor 1.30 (1.01, 1.58) 0.50 (0.33, 0.67) 2.81 (2.23, 3.34)

NL-Hor 0.86 (0.71, 1.00) 0.59 (0.48, 0.68) 2.05 (1.72, 2.36)
RU-Sam 0.58 (0.37, 0.79) 0.17 (0.08, 0.29) 0.89 (0.74, 1.03)
US-SRG 0.50 (0.37, 0.63) 0.40 (0.18, 0.59) 0.68 (0.58, 0.77)
US-Var 0.91 (0.76, 1.07) 0.63 (0.46, 0.76) 1.72 (1.47, 1.97)

US-Wkg 1.59 (1.41, 1.77) 0.70 (0.61, 0.78) 0.63 (0.49, 0.75)
ALL 1.22 (1.18, 1.26) 0.66 (0.63, 0.69) 2.46 (2.33, 2.58)



Remote Sens. 2018, 10, 1771 7 of 16Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 16 

 

 
Figure 3. The relationship between GPPMOD and GPPEC for all sites. The short-dashed line is a 1:1 line. 
The unit of RMSE was g C m−2 day−1. 

 
Figure 4. The relationship between GPPMOD and GPPEC for all sites. The short-dashed line is a 1:1 line. 
The unit of RMSE was g C m−2 day−1. 

3.2. Model Performances in Different Grassland Biomes 

We also considered the seasonal dynamic of GPPMOD by analyzing the relationship between 
GPPMOD and GPPEC within each grassland biome. The 15 flux sites were divided into three grassland 
biomes including the temperate, tropical, and alpine biomes. All analyses were tested with a 95% 
confidence interval (Table 3). Figure 5 shows the different relationships between GPPEC and GPPMOD 
for each biome type. From Figure 5, we find GPPMOD had better performance in a temperate grassland 
(R2 = 0.72 (0.68–0.75), RMSE = 2.40 (2.25–2.54) g Cm−2 day−1) than an alpine grassland (R2 = 0.64 (0.59–
0.68), RMSE = 2.55 (2.30–2.79) g Cm−2 day−1) or a tropical grassland (R2 = 0.40 (0.27–0.52), RMSE = 2.45 
(2.13–2.76) g Cm−2 day−1) (Figure 5). Furthermore, MODIS GPP products underestimated GPP about 

Figure 3. The relationship between GPPMOD and GPPEC for all sites. The short-dashed line is a 1:1 line.
The unit of RMSE was g C m−2 day−1.

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 16 

 

 
Figure 3. The relationship between GPPMOD and GPPEC for all sites. The short-dashed line is a 1:1 line. 
The unit of RMSE was g C m−2 day−1. 

 
Figure 4. The relationship between GPPMOD and GPPEC for all sites. The short-dashed line is a 1:1 line. 
The unit of RMSE was g C m−2 day−1. 

3.2. Model Performances in Different Grassland Biomes 

We also considered the seasonal dynamic of GPPMOD by analyzing the relationship between 
GPPMOD and GPPEC within each grassland biome. The 15 flux sites were divided into three grassland 
biomes including the temperate, tropical, and alpine biomes. All analyses were tested with a 95% 
confidence interval (Table 3). Figure 5 shows the different relationships between GPPEC and GPPMOD 
for each biome type. From Figure 5, we find GPPMOD had better performance in a temperate grassland 
(R2 = 0.72 (0.68–0.75), RMSE = 2.40 (2.25–2.54) g Cm−2 day−1) than an alpine grassland (R2 = 0.64 (0.59–
0.68), RMSE = 2.55 (2.30–2.79) g Cm−2 day−1) or a tropical grassland (R2 = 0.40 (0.27–0.52), RMSE = 2.45 
(2.13–2.76) g Cm−2 day−1) (Figure 5). Furthermore, MODIS GPP products underestimated GPP about 

Figure 4. The relationship between GPPMOD and GPPEC for all sites. The short-dashed line is a 1:1 line.
The unit of RMSE was g C m−2 day−1.

3.2. Model Performances in Different Grassland Biomes

We also considered the seasonal dynamic of GPPMOD by analyzing the relationship between
GPPMOD and GPPEC within each grassland biome. The 15 flux sites were divided into three grassland
biomes including the temperate, tropical, and alpine biomes. All analyses were tested with a 95%
confidence interval (Table 3). Figure 5 shows the different relationships between GPPEC and GPPMOD

for each biome type. From Figure 5, we find GPPMOD had better performance in a temperate grassland
(R2 = 0.72 (0.68–0.75), RMSE = 2.40 (2.25–2.54) g Cm−2 day−1) than an alpine grassland (R2 = 0.64
(0.59–0.68), RMSE = 2.55 (2.30–2.79) g Cm−2 day−1) or a tropical grassland (R2 = 0.40 (0.27–0.52), RMSE
= 2.45 (2.13–2.76) g Cm−2 day−1) (Figure 5). Furthermore, MODIS GPP products underestimated
GPP about 4% for the tropical grassland, 29% for the temperate grassland, and 41% for the alpine
grassland, respectively.
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Table 3. Statistics regarding the comparison between GPPEC and GPPMOD for temperate, tropical, and
alpine grassland biomes using a linear regression model. The 95% confidence interval derived by the
bootstrapping method is in parenthesis.

Grass Type Slope R2 RMSE

Tropical grassland 1.02 (0.83, 1.21) 0.40 (0.27, 0.52) 2.45 (2.13, 2.76)
Temperate grassland 1.25 (1.19, 1.30) 0.72 (0.68, 0.75) 2.40 (2.25, 2.54)

Alpine grassland 1.24 (1.17, 1.32) 0.64 (0.59, 0.68) 2.55 (2.30, 2.79)

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 16 

 

4% for the tropical grassland, 29% for the temperate grassland, and 41% for the alpine grassland, 
respectively. 

Table 3. Statistics regarding the comparison between GPPEC and GPPMOD for temperate, tropical, and 
alpine grassland biomes using a linear regression model. The 95% confidence interval derived by the 
bootstrapping method is in parenthesis. 

Grass Type Slope R2 RMSE 
Tropical grassland 1.02 (0.83, 1.21) 0.40 (0.27, 0.52) 2.45 (2.13, 2.76) 

Temperate grassland 1.25 (1.19, 1.30) 0.72 (0.68, 0.75) 2.40 (2.25, 2.54) 
Alpine grassland 1.24 (1.17, 1.32) 0.64 (0.59, 0.68) 2.55 (2.30, 2.79) 

 
Figure 5. The relationships between GPPEC and GPPMOD for the temperate, tropical, and alpine 
grassland biomes. The short-dashed line is a 1:1 line. The unit of RMSE was g C m−2 day−1. 

4. Discussion 

4.1. Underestimation of MODIS GPP in Grasslands and Comparison with Previous Studies 

This study showed that GPPMOD had a promising ability to explain GPPEC variance (R2 = 0.66 
(0.63–0.69) and RMSE = 2.46(2.33–2.58) g Cm−2 day−1) at grassland sites, but GPPMOD consistently 
underestimated GPPEC (Figure 4). We also found that different grassland biomes had different 
performances. Specifically, GPPMOD performed better in the temperate grassland sites than in the 
alpine and tropical grassland sites (Figure 5). 

This study indicated that GPPMOD substantially underestimated GPP in grasslands, which agreed 
with previous studies [29–31]. For instance, Zhang [29] used GPPEC measurements to verify GPPMOD 
over an alpine meadow on the Tibetan Plateau, which further pointed out that MOD17 GPP products 
underestimated the mean annual GPP by 30% to 50%. Turner et al. [46] also reported that GPPMOD 
underestimated GPP at desert grassland sites. Xiao [47] evaluated GPPMOD by using GPP data from 
eddy covariance flux towers and their results showed that the GPPMOD products underestimated GPP 
by 45% at the Walnut Gulch Kendall grassland site. Despite the wide use of GPPMOD to analyze inter-
annual variation at regional scales in previous studies [48,49], the results from this study and the 
previously mentioned studies implied additional caution should be given when using GPPMOD for 
inter-annual and intra-annual variation analyses of GPP in grasslands. We found that GPPMOD 
underestimates observed GPP and that GPPMOD explained 66% (63%–69%) of the variance in GPPEC 
(R2 = 0.66 (0.63–0.69), RMSE = 2.46 (2.33–2.58) g Cm−2 day−1). 

In addition, we found that the GPPMOD could explain more GPP variance for the temperate and 
alpine grassland sites than for the tropical grassland sites (Figure 5). Thus, GPPMOD performed better 
in lower GPP situations (e.g., drought condition and temperate grassland biome), which further 
illustrated that the GPPMOD tended to underestimate GPP.  
  

Figure 5. The relationships between GPPEC and GPPMOD for the temperate, tropical, and alpine
grassland biomes. The short-dashed line is a 1:1 line. The unit of RMSE was g C m−2 day−1.

4. Discussion

4.1. Underestimation of MODIS GPP in Grasslands and Comparison with Previous Studies

This study showed that GPPMOD had a promising ability to explain GPPEC variance (R2 = 0.66
(0.63–0.69) and RMSE = 2.46 (2.33–2.58) g Cm−2 day−1) at grassland sites, but GPPMOD consistently
underestimated GPPEC (Figure 4). We also found that different grassland biomes had different
performances. Specifically, GPPMOD performed better in the temperate grassland sites than in the
alpine and tropical grassland sites (Figure 5).

This study indicated that GPPMOD substantially underestimated GPP in grasslands, which agreed
with previous studies [29–31]. For instance, Zhang [29] used GPPEC measurements to verify GPPMOD

over an alpine meadow on the Tibetan Plateau, which further pointed out that MOD17 GPP products
underestimated the mean annual GPP by 30% to 50%. Turner et al. [46] also reported that GPPMOD

underestimated GPP at desert grassland sites. Xiao [47] evaluated GPPMOD by using GPP data from
eddy covariance flux towers and their results showed that the GPPMOD products underestimated
GPP by 45% at the Walnut Gulch Kendall grassland site. Despite the wide use of GPPMOD to analyze
inter-annual variation at regional scales in previous studies [48,49], the results from this study and
the previously mentioned studies implied additional caution should be given when using GPPMOD

for inter-annual and intra-annual variation analyses of GPP in grasslands. We found that GPPMOD

underestimates observed GPP and that GPPMOD explained 66% (63%–69%) of the variance in GPPEC

(R2 = 0.66 (0.63–0.69), RMSE = 2.46 (2.33–2.58) g Cm−2 day−1).
In addition, we found that the GPPMOD could explain more GPP variance for the temperate

and alpine grassland sites than for the tropical grassland sites (Figure 5). Thus, GPPMOD performed
better in lower GPP situations (e.g., drought condition and temperate grassland biome), which further
illustrated that the GPPMOD tended to underestimate GPP.

4.2. Attributing Underestimation in Grassland GPP and Its Implications

In this study, GPPMOD explained GPPEC by 72% (68%–75%) at temperate grassland sites, 64%
(59%–68%) at alpine grassland sites, and 40% (27%–52%) at tropical grassland sites (Figure 5). Potential
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reasons for the uncertainty in MODIS GPP products could be due to different factors such as maximum
LUE, meteorological data, FPAR, and land cover/vegetation types [50].

These varied performances may be related to the maximum light use efficiency (εmax) [51]. For
the MODIS GPP algorithm, εmax was determined by using the Biome Properties Look-Up (BPLUT)
for given biome types, which was for 0.86 g C MJ−1 grass [38]. The underestimated εmax values could
be the major reason for underestimates of GPP in the grasslands [51]. Based on the nonlinear model
(Equation (6)), we estimated the εmax for each grassland site in this study (Table 4). In most sites
(except for AU-Stp, US-SRG, and US-Var), the estimated values of εmax were larger than that used
in the MOD17 GPP algorithm, which can partly explain the underestimation of the MODIS GPP in
these grassland sites. Moreover, when the εmax used in the MOD17 GPP algorithm (εmax-BPLUT) were
simply replaced with the estimated εmax (εmax-EST), the RMSEs were smaller than before (except for the
site of CZ-Bk2) (Figure 6). This demonstrated that the εmax have an important influence on the result
of the GPP estimation based on the MOD17 GPP algorithm. Previous studies have also suggested
different εmax for different grassland biomes. For example, 1.31 g C MJ−1 for alpine grassland and
1.21 g C MJ−1 for tropical grassland [52,53]. Sjöström et al. [27] increased εmax for grasslands from
0.86 g C MJ−1 to 2.01 g C MJ−1, which improved the ability for GPPMOD to explain the variance of
GPPEC from 25% to 74%.

Table 4. The comparison of the εmax between the estimated values based on the nonlinear model
(εmax-EST) and the values in the biome properties look-up table (εmax-BPLUT) used in the MOD17 GPP
algorithm. “RMSE after” and “RMSE before” referred to the RMSE between the GPPEC and GPPMOD

with εmax-EST and εmax-BPLUT, respectively.

Site ID εmax-EST εmax-BPLUT RMSE After RMSE Before εmax bias
g C/MJ g C/MJ g Cm−2 day−1 g Cm−2 day−1 g C/MJ

AT-Neu 1.71 0.86 2.30 4.05 0.85
AU-Dap 0.87 0.86 3.30 3.31 0.01
AU-Stp 0.73 0.86 0.98 1.04 −0.13
CH_Cha 0.97 0.86 3.19 3.64 0.11
CH-Fru 1.28 0.86 2.24 3.19 0.42
CH-Oe1 1.13 0.86 2.64 3.19 0.27
CZ-Bk2 2.57 0.86 7.42 1.31 1.71
DE-Gri 1.09 0.86 1.53 1.90 0.23
IT-Mbo 0.98 0.86 2.24 2.36 0.12
IT-Tor 1.13 0.86 2.55 2.81 0.27

NL-Hor 0.93 0.86 2.04 2.05 0.07
RU-Sam 0.93 0.86 0.89 0.89 0.07
US-SRG 0.77 0.86 0.57 0.68 −0.09
US-Var 0.76 0.86 1.52 1.72 −0.10

US-Wkg 1.07 0.86 0.60 0.63 0.21

There are also potential uncertainties from FPAR, which could affect the accuracy of GPPMOD.

The GPPMOD algorithm directly used the MODIS FPAR products (MOD15A2H), which was derived
from a radiative transfer model. The MODIS FPAR usually overestimated the “green” FPAR with a
positive offset for barren land and was saturated at high GPP values. This behavior further affected
ε and GPP estimation [54]. In this study, GPPMOD underestimated GPPEC for grassland ecosystems,
which may be caused by the uncertainty of FPAR and the methods used to simulate FPAR. For example,
Liu et al. [55] used a three-dimensional formulation of the radiative transfer process in the canopy and
assessed FPARcanopy performances of scaled EVI (FPARchl1), NDVI, scaled NDVI (FPARchl2), and EVI.
The results showed that the FPARcanopy of scaled EVI (FPARchl) improved the accuracy of GPPMOD

for grasslands.
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Another previous study [55] compared MODIS-FPAR and GLASS-FPAR (derived from the product
of the Global Land Surface Satellite (GLASS)). MODIS-FPAR performed well with a higher R2 and a
lower bias for mixed forests and cropland. However, GLASS-FPAR performed better in grasslands
with a higher R2 and a lower bias [55]. Furthermore, Kucharik et al. [33] and Wu et al. [51] pointed out
that the adaptive Savitzky-Golay filtered FPAR data could have better performance compared with the
FPAR data based on the linear interpolation approach used in the MODIS algorithm. The adaptive SG
method could maintain some intrinsic seasonal variability and keep reliable values of FPAR. Further
uncertainties also arise due to the canopy photosynthesis saturation effects on the FPAR [56]. In this
study, GPPMOD products underestimated GPP in tropical grassland sites because of the saturation
of canopy photosynthesis. A previous study showed that the MODIS light use efficiency approach
does not account for saturation of canopy photosynthesis under clear sky conditions in a tropical
forest site [50]. Saturation can result in the underestimation of GPP with low values of FPAR but
overestimation with high FPAR values [50]. The tropical grassland received solar radiation for extended
periods and it was easy for canopy photosynthesis saturation to occur [57] especially in periods of
drought. Previous studies also reported that saturation of canopy photosynthesis might occur on
clear-sky days at the hourly and daily timescales [25,58,59].

The species composition of grassland ecosystems could also cause uncertainty in GPP estimates.
Grasslands are dynamic ecosystems that often have diverse mixtures of C3 and C4 species, which
have different light use efficiencies. Furthermore, the ratio of C3 and C4 species within a grassland
can have high intra-annual and inter-annual variability [31]. Such community composition data is
not available for all the FLUXNET sites. The effects of the composition of C3 and C4 grasses on GPP
simulation is an interesting question, but it is beyond the scope of this specific study. However, a recent
GPP product considering the C3 and C4 photosynthesis pathways showed improved performances
in grassland ecosystems [60]. The water stress scalar could also have uncertainty when using VPD
as a proxy of water stress in the PSN model. To decrease uncertainties, we suggest using long-term
meteorological observation data or remote sensing-based water stress indicators [61] to quantify the
water stress scalar especially in drought conditions. Furthermore, fundamental improvements could
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be made to GPPMOD products. For instance, the Soil Moisture Active Passive (SMAP) mission has two
to three day temporal fidelity and an enhanced (≤9 km) spatial resolution that provide accurate global
mapping of the freeze–thaw state and the surface soil moisture [62].

4.3. Model Performances under Drought and Non-Drought Conditions

GPPMOD could have different performances under drought conditions. We used the Standardized
Precipitation Index (SPI) to identify the periods of drought. The SPI is designed to be a spatially
invariant indicator of drought, which recognizes the importance of time scale in the analysis of water
use [63]. In this study, the precipitation from the FluxNet sites was used to calculate SPI for each
month to determine the status of drought [64]. If SPI was less than −0.5, it was defined as drought [65].
We analyzed the relationships between monthly GPPMOD and GPPEC in both non-drought and drought
conditions. The results showed that GPPMOD had higher R2 (0.72 (0.66–0.79)) and lower RMSE
(2.33 (2.05–2.60) g Cm−2 day−1) in drought conditions than in non-drought conditions with lower R2

(0.64 (0.61–0.68)) and higher RMSE (2.48 (2.34–2.62) g Cm−2 day−1), which indicates that GPPMOD had
better explanatory capabilities for GPPEC variances under drought conditions than under non-drought
conditions (Table A1).

Although several studies have reported that the standard MODIS GPP products did not accurately
estimate carbon uptake during drought conditions [24,66,67]. The role of VPD in determining GPP
has been examined [68]. For example, Turner et al. [46] pointed out that a high VPD scalar could
reduce GPP values during a dry period. Another study also found that VPD had a weak positive
correlation with GPP. Furthermore, VPD sometimes failed to capture drought events [69]. In this
study, however, it is notable that GPPMOD had a better performance in drought conditions than in
non-drought conditions for grasslands.

We analyzed the relationships between the VPD-based water scalar and GPPMOD and found a
higher R2 between GPP and VPD-based water scaler in drought conditions (Figure 7) even though
they had weak correlations in both drought and non-drought conditions (26% vs. 8%, Figure 7b,c).
The MOD17A2H GPP products of grassland have better performance in drought conditions, which
could be attributed to the Wscalar. However, there could be some uncertainty in the drought
identification since SPI calculation was based on a short-term precipitation record in some sites.
More studies are still needed in the future for a thorough analyses. The weak correlation between
Wscalar and GPP suggest that the water scalar could be further improved in the grasslands.
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5. Conclusions

The GPP of grassland ecosystems plays a vital role in carbon sequestration, food production,
and biodiversity [70]. In this study, we investigated and evaluated the performance and robustness
of GPPMOD at grassland sites across the globe. We found that: (1) GPPMOD validation at 15 global
eddy covariance sites suggested a high explanation capability of GPP variances (66%) but GPPMOD
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generally underestimated GPP about 34% for grassland ecosystems. (2) GPPMOD performed better for
the temperate grassland (R2 = 0.72 (0.68–0.75), RMSE = 2.40 (2.25–2.54) g Cm−2 day−1) than the alpine
(R2 = 0.64 (0.59–0.68), RMSE = 2.55 (2.30–2.79) g Cm−2 day−1) and the tropical grasslands (R2 = 0.40
(0.27–0.52), RMSE = 2.45 (2.13–2.76) g Cm−2 day−1). The inconsistent underestimates of GPPMOD for
the three grassland biomes may be rooted in the MODIS GPP algorithm, which underestimated εmax

for the different grassland biomes. The varied performances of the GPP standard products in different
grassland types implied that the parameterization of the MOD17A2H GPP products (e.g., εmax, FPAR,
and water scalar) could be improved to better capture changes in GPP.
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Appendix A

Table A1. The relationship between GPPEC and GPPMOD for the temperate, tropical, and alpine
grassland biomes in both non-drought and drought conditions. The 95% confidence interval using the
bootstrapping method is in parenthesis.

Type Slope R2 RMSE

Drought
conditions

Tropical grassland 1.05 (0.26, 1.85) 0.37 (0.01, 0.86) 3.55 (2.39, 4.49)
Temperate grassland 1.22 (1.12, 1.32) 0.79 (0.73, 0.85) 2.14(1.86, 2.42)

Alpine grassland 1.20 (1.04, 1.36) 0.68 (0.57, 0.78) 2.36 (1.83, 2.84)
ALL 1.19(1.10, 1.28) 0.72 (0.66, 0.79) 2.33 (2.05, 2.60)

Non-drought
conditions

Tropical grassland 1.01 (0.81, 1.20) 0.40 (0.28, 0.54) 2.31 (1.99, 2.62)
Temperate grassland 1.26 (1.20, 1.32) 0.70 (0.66, 0.74) 2.45 (2.28, 2.61)

Alpine grassland 1.26 (1.17, 1.35) 0.63 (0.58, 0.68) 2.59 (2.32, 2.87)
ALL 1.23 (1.18, 1.28) 0.65 (0.61, 0.68) 2.48 (2.34, 2.62)
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