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A B S T R A C T   

The North China Region (NCR), a typical grain base and highly populated area in China, is a well-recognized 
global groundwater funnel. Severe water shortage has been threatening and limiting sustainable development 
in the region over the past decades. Previous studies have reported the depleted water resources in the NCR and 
attributed the major driver to intensified agricultural water use, hardly considering the effects of the large-scale 
implementation of ecological restoration (ER) programs. As terrestrial water storage (TWS) is a critical indicator 
for measuring and evaluating regional water resources, understanding its spatial and temporal dynamics and 
responses to ER programs is significant for sustainable water management in the NCR. Here, we examine the 
interannual variations and trends of TWS in the NCR during 2002–2016 by using Gravity Recovery and Climate 
Experiment (GRACE) satellite data and the Google Earth Engine cloud computing platform. We find the 
significantly (p < 0.01) decreasing TWS (-8.9 mm/yr) and identify a hotspot with the most rapid depletion 
(-12.7±0.45 mm/yr) in the western NCR, where interannual variations and spatial patterns of TWS depletion are 
consistent with those of ER-induced greening. Attribution analyses of TWS depletion by considering precipita-
tion, evapotranspiration, and runoff suggest increasing evapotranspiration induced by afforestation as the major 
driver for TWS depletion in the ER regions. Our study highlights ER is posing a new threat to water security in the 
NCR, and taking ecological water usage into account would be necessary for the synergy of food, water, and 
ecological securities and regional sustainable development.   

1. Introduction 

Water security is a global challenge (Aeschbach-Hertig and Gleeson 
2012; He et al., 2021b; Rodell et al., 2018; Shen et al., 2022), particu-
larly for China, a severe water-deficit country (7.7% of the global 

freshwater resources) with the largest population (18.5% of the world’s 
population), fastest urbanization, growing economy, and water demand 
(He et al., 2021a; Ma et al., 2020; Tao et al., 2019). The uneven distri-
bution of water resources further aggravates the water crisis in the 
country (Greve et al., 2018; Liu and Yang 2012; Wang et al., 2020). The 
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North China Region (NCR) is home to 26% of the human population in 
China and provides 25% of the national food production and gross do-
mestic product (GDP), but has only 3% of the national freshwater re-
sources (Zhou et al., 2022). Thus, detailed information about the 
spatial-temporal dynamics of water storage over the past decades is 
critical to accurately predicting water resource changes and taking 
adaptive water management measures to sustainably utilize water re-
sources in the NCR (Liu and Yang 2012; Wang et al., 2020; Zhou et al., 
2022). 

Previous studies have identified the most serious depletion hotspots 
of water storage in the world, including the NCR, Northwest India Plain, 
and U.S. High Plain (Aeschbach-Hertig and Gleeson 2012; Asoka et al., 
2017; Huang et al., 2015; Rodell et al., 2018), using the gravity recovery 
and climate experiment (GRACE) satellite data which record the 
monthly changes in terrestrial water storage (TWS) which represents the 
sum of surface water, soil water, groundwater, ice, snow, and vegetation 
water (Meng et al., 2019; Rodell et al., 2009). Although the variations of 
groundwater levels can be locally and accurately measured by wells 
(Aeschbach-Hertig and Gleeson 2012), monitoring the large-scale 
changes in groundwater storage and TWS is mostly realized based on 
the direct observations from GRACE satellite (Döll et al., 2014; Dong 
et al., 2022). The depletion of TWS in the NCR has been attributed to 
intense agricultural irrigation from groundwater pumping in the past 
decades (Aeschbach-Hertig and Gleeson 2012; Pan et al., 2017; Qin 
et al., 2013). For example, Huang et al. (2015) revealed that excessive 
pumping for irrigation caused severe groundwater storage decline (~ 
16 mm/yr in 2003–2013) in the central and eastern parts of the NCR by 
isolating groundwater storage from TWS using land surface models 
(Noah, Mosaic, Community Land Model, and Variable Infiltration Ca-
pacity) driven by global land data assimilation system (GLDAS) version 
1. Koch et al. (2020) estimated an average annual net irrigation of 126 
mm/yr (15.2 km3/yr) for the NCR using a remote sensing-based model 
(i.e., Priestly-Taylor Jet Propulsion Laboratory) and a hydrologic model 
(multiscale Hydrologic Model). However, agricultural water use may 
decrease with the implementation of water-saving irrigation technology 
and cropland loss due to the launch of ecological restoration (ER) pro-
grams (Bryan et al., 2018; Li et al., 2020a; Liu et al., 2008; Lu et al., 
2018; Wei et al., 2019; Zuo et al., 2018). In contrast, the amount of water 
used by other sectors (e.g., ecological water consumption as reforesta-
tion) could increase and cause significant effects on TWS (Feng et al., 
2016; Zhao et al., 2021). Therefore, the changes in the water use 
structure might have led to the changes in driving factors of regional 
TWS dynamics in the NCR. 

Water consumption from large-scale ER programs has been consid-
ered a significant anthropogenic contributor to TWS changes in some 
typical regions in the world, especially in Northern China (Bai et al., 
2020; Feng et al., 2016; Li et al., 2020a; Shao et al., 2019; Zhao et al., 
2021). While previous studies have reported that China led in the 
greening of the world due to ecological conservation and land man-
agement in the past two decades (Chen et al., 2019a; Li et al., 2018; Zhu 
et al., 2016), several recent studies (Bai et al., 2020; Feng et al., 2016; Li 
et al., 2020a; Shao et al., 2019; Zhao et al., 2021) have proved that the 
continuous increase of evapotranspiration (ET) induced by the imple-
mentation of ER programs has exerted excessive pressure on regional 
water resources, such as the Loess Plateau (Feng et al., 2016; Shao et al., 
2019) and Mu Us Sandyland (TWS depletion rate: 16.6 ± 5.0 mm/yr) 
(Zhao et al., 2021) of China. The western part of NCR is one of the core 
regions of ER that has been implementing the Grain to Green Program 
and Natural Forest Conservation Program on a large scale since 1999 
(Bryan et al., 2018; Li et al., 2020a; Liu et al., 2008; Lu et al., 2018; 
Ouyang et al., 2016; Zuo et al., 2018). However, it is still unclear how 
these afforestation processes would affect the extremely limited water 
resources in the region. Therefore, it will be of great significance to 
quantitatively analyze the effects of large-scale ER programs on TWS 
changes in the NCR by fully considering and using the indicators related 
to land use changes, human activities, and climate change. 

This study aimed to detect the hotspots that experienced the most 
drastic TWS changes and ER in the NCR and examine to which extent the 
pending ER programs would affect regional water storage. To achieve 
this objective, we firstly investigated the spatial-temporal patterns of 
TWS changes in the NCR during 2002–2016 by using GRACE mascon 
data, and identified the hotspot of water storage depletion; secondly, we 
explored the spatial and temporal consistency between TWS depletion 
and ER programs by integrating the changes of land use, human activ-
ities, and climate factors; finally, we clarified the effects of ER programs 
on TWS loss in the hotspot from the perspective of water balance, by 
considering the changes in annual precipitation, ET, runoffs, and agri-
cultural water use before (1980–1999) and during ER programs 
(1999–2018). This study is expected to provide an updated under-
standing of water storage changes and their driving mechanisms in the 
NCR, and warn the possible water risks of ER programs in other similar 
regions worldwide. It would shed light on the synergies of food, water, 
and ecological securities, and guide decision-making for sustainable 
management of extremely limited water resources. 

2. Materials and methods 

2.1. Study area 

The NCR is one of the major populous, economic, industrial, and 
agricultural centers in China. It geographically includes the municipal-
ities of Beijing and Tianjin and the provinces of Hebei, Henan, Shan-
dong, and Shanxi. Considering the smaller areas of Beijing and Tianjin 
Municipality compared to other provinces, they were merged as one 
region (Beijing-Tianjin, B&T) in this study. The NCR covers an area of 
about 700,000 km2 (7% of China’s land area) and is one typical region 
with a dense population (26% of China’s population) and intensive 
agriculture and strong industry (25% of national grain production and 
GDP) in China (Fig. 1a). However, it contains only 3% of the total na-
tional water resources. Groundwater accounts for 60% of the freshwater 
resources and has become an indispensable factor to support the so-
cioeconomic development of the NCR (Qin et al., 2013). Since the 
mid-1960s, extensive pumping for agricultural irrigation has caused 
severe groundwater depletion in the NCR (Han et al., 2017). However, 
rapid population growth and urbanization will consume more fresh-
water resources, and the socioeconomic development in the region is 
likely to be limited by water scarcity (Qin et al., 2013). 

2.2. Data 

2.2.1. GRACE TWS data 
We used three GRACE Release-06 mascon products provided by the 

University of Texas center for space research (CSR), national aeronautics 
and space administration (NASA) Jet Propulsion Laboratory (JPL), and 
Deutsches geoforschungszentrum (GFZ) to detect the changes in TWS 
during 2002–2016 (Table 1). The previous study suggested that an 
arithmetic mean of these data products could effectively reduce the 
noise in the gravity field solutions (Sakumura et al., 2014). The grid size 
and temporal resolution of the three data sets are 1◦ and one month, 
respectively. All these three GRACE datasets have been released and 
stored in the Google Earth Engine (GEE) cloud data archive (GEE asset 
address: NASA/GRACE/MASS_GRIDS/LAND). For each GRACE mascon 
solution, the monthly estimates are anomalies of the total terrestrial 
water mass relative to mean values from 2004 to 2010 (refers to GRACE 
data description in https://developers.google.com/earth-engine/datase 
ts/catalog/NASA_GRACE_MASS_GRIDS_MASCON). In this study, the 
trends in annual TWS were derived using the following steps based on 
the GEE platform. For each GRACE mascon solution, the months with 
missing values were filled by linear interpolation based on the data 
corresponding to the previous and following months (Ramillien et al., 
2006). The monthly GRACE estimates used in this study were derived by 
averaging the three GRACE products. For each pixel, the TWS in a year 
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Fig. 1. Variations and trends of terrestrial water storage (TWS) in the North China Region (NCR). (a) Spatial patterns of freshwater resources per capita in China and 
the percentages of the total human population, gross domestic product (GDP), and food production in the NCR relative to the entire country in 2019; (b) Spatial 
patterns of linear trends of TWS in the NCR during 2002–2016; (c–h) Interannual variations and linear trends of TWS in the entire NCR (c) and different munici-
palities and provinces (d: B&T; e: Hebei; f: Henan; g: Shandong; h: Shanxi) during 2002–2016. The symbol “+” in each grid cell indicates a statistically significant 
trend with a p-value < 0.05. The purple and dark red dotted lines represent the linear regressions of inter-annual variations of TWS during 2002–2016 and 
2004–2016, respectively. 
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was calculated by averaging the GRACE estimates of the 12 months in 
that year. 

2.2.2. Land use and land cover data 
The land use and land cover data sets used in this study were the 

NLCD-China (Table 1), collected from the Institute of Geographic Sci-
ences and Natural Resources Research, Chinese Academy of Sciences 
(Liu et al., 2003; Liu et al., 2018). The data sets were generated at a 
five-year interval with satisfactory overall accuracies higher than 92.0% 
(Liu et al., 2003; Liu et al., 2018), by interpreting the information on 
land use changes based on the images from Landsat and other satellites 
(CBERS-2 and Gaofen-1/2). Two-period land cover data from 2000 to 
2015 was used to investigate the spatial patterns of the intensity of ER 
and changes in cropland areas in the NCR. Global artificial impervious 

area (GAIA) data for 1985–2018 generated by Tsinghua University with 
a spatial resolution of 30 m were employed to depict the spatial patterns 
of changes in impervious surfaces (Gong et al., 2020). The data were 
produced with a mean overall accuracy higher than 90.0%, by using 
time-series Landsat, Sentinel-1, and nighttime light (NTL) data and the 
GEE cloud computing platform. Surface water area (SWA) was obtained 
from the annual 30-m water body maps with overall accuracies higher 
than 96.0% in the NCR from 1987 to 2020 in our previous study (Zhou 
et al., 2022). The data were generated using all the available Landsat 
imagery, water indices- and threshold-based water mapping algorithm, 
and the GEE. 

2.2.3. Human activity and water use data 
The intensities of human activities were reflected by the NTL index 

and human population (Table 1). NTL data used in the current study 
were collected from global DMSP NTL time-series data, which was 
generated by harmonizing the inter-calibrated NTL observations from 
the DMSP data and the simulated DMSP-like NTL observations from the 
VIIRS data (Li et al., 2020b). The generated global DMSP NTL 
time-series data can provide valuable support for studies related to 
human activities, including urban extent dynamics (Bennett and Smith 
2017; Zhao et al., 2020; Zhou et al., 2018). Although there are inevitable 
uncertainties in NTL pixels with digital number values lower than 10, 
the impact on the applications of DMSP NTL data is limited because 
zones with high luminance are always paid more attention (Li et al., 
2020b). Annual global human population maps for 2000–2021 pro-
duced by the WorldPop project (https://www.worldpop.org) with a 
spatial resolution of 100 m were employed to study the spatial and 
temporal changes in the human population in the NCR. 

Annual human water use data including the sectors of agricultural, 
industrial, and residential water use in different provinces in the NCR 
during 2002–2016 were collected from the Water Resources Bulletin of 
each region, namely: Beijing Water Resources Bulletin (http://swj. 
beijing.gov.cn/zwgk/szygb/), Tianjin Water Resources Bulletin (htt 
p://swj.tj.gov.cn/gztb_17212/index.html), Hebei Water Resources 
Bulletin (http://slt.hebei.gov.cn/dynamic/search.js), Henan Water Re-
sources Bulletin (http://slt.henan.gov.cn/bmzl/szygl/szygb/), Shan-
dong Water Resources Bulletin (http://wr.shandong.gov.cn/zwgk_3 
19/szygb/), and Shanxi Water Resources Bulletin (http://slt.shanxi. 
gov.cn/zncs/szyc/szygb/). In addition, we obtained data on annual 
irrigation water use in the Fenhe River Basin in Shanxi Province during 
1980–2013 from Zhou et al. (2020). 

2.2.4. Data of ecological indicators 
Normalized Difference Vegetation Index (NDVI) data used in the 

study were from the two data sets of MOD13A1 (2000–, 500 m, and 16 
days) and GIMMS-3 g (1981–2015, 0.0833◦, and 15 days) (Table 1). 
Three kinds of Leaf Area Index (LAI) data sets were used, namely: 
GLASS, GLOBMAP-V3, and LAI3g. These three LAI data sets were 
generated using the processed Advanced Very High Resolution Radi-
ometer (AVHRR) data, in which the possible errors have been fully 
considered and rectified, such as the degradation and inter-calibration of 
the AVHRR sensors and changes in sun-target-view geometry caused by 
orbital drift (Chen et al., 2019b; Tucker et al., 2005). For GLOBMAP-V3 
datasets, the temporal coverage is from 1981 to 2019 (http 
://globalmapping.org/globalLAI/), the spatial resolution is 0.072727◦, 
and the temporal resolutions vary from 16 days during 1981–2000 to 8 
days during 2001–2019 (Chen et al., 2019b; Liu et al., 2012). For GLASS 
products, the temporal coverage is from 1981 to 2018 (http://www. 
glass.umd.edu/Download.html), and the spatial and temporal resolu-
tions are 0.05◦ and 8 days, respectively (Liang et al., 2013). For LAI3g 
data sets, the temporal coverage is from 1981 to 2016, (https://drive. 
google.com/open?id=0BwL88nwumpqYaFJmR2poS0d1ZDQ), and the 
spatial and temporal resolutions are 0.0833◦ and 15 days, respectively 
(Zhu et al., 2013). Three kinds of time-series ET data sets were used, 
namely: MOD16, Penman-Monteith-Leuning (PML_V2), and the Global 

Table 1 
A detailed summary of the raster data related to TWS, land use and land cover, 
human activities, ecological indicators, and climate factors used in this study.  

Data Pixel 
size 

Temporal 
resolution 

Temporal 
span 

Source 

TWS     
CSR GRACE 1o Monthly 2002–2017 https://grace.jpl. 

nasa.gov/data/get- 
data/monthly-mass- 
grids-land/ 

JPL GRACE 1o Monthly 2002–2017  
GFZ GRACE 1o Monthly 2002–2017  
Land use 

and land 
cover     

NLCD-China 100 m Five years 1980–2020 (Liu et al., 2003; Liu 
et al., 2018) 

GAIA 30 m Yearly 1985–2018 (Gong et al., 2020) 
Water map 30 m Yearly 1987–2020 (Zhou et al., 2022) 
Human activity 
DMAP NTL 30′′ Yearly 1992–2018 (Li et al., 2020b) 
WorldPop 100 m Yearly 2020–2021 https://hub.wo 

rldpop.org/projec 
t/categories?id==3 

Ecological indicators 
MOD13A1 500 m 16 days 2000– https://lpdaac.usgs. 

gov/products/mod 
13a1v006/ 

GIMMS-3 g 0.083o 15 days 1981–2015 https://data.tpdc.ac. 
cn/en/data/9775f2 
b4-7370-4e5e 
-a537-3482c9a 
83d88/ 

GLASS 0.05o 8 days 1981–2018 (Liang et al., 2013) 
GLOBMAP- 

V3 
0.073o 16 days 

(1981–2000)8 
days 
(2001–2019) 

1981–2019 (Chen et al., 2019b;  
Liu et al., 2012) 

LAI3g 0.083o 15 days 1981–2016 (Zhu et al., 2013) 
MOD16 1000 

m 
8 days 2000– https://modis.gsfc. 

nasa.gov/data/data 
prod/mod16.php 

PML_V2 500 m 8 days 2000–2020 (Zhang et al., 2019) 
GLEAM 0.25o Daily 1980–2018 (Martens et al., 

2017) 
Climate factors 
CMA 0.25o Monthly 1981–2020 http://data.cma.cn/ 
CRU TS 0.5o Monthly 1981–2020 https://crudata.uea. 

ac.uk/cru/data/hrg/ 
TRMM 0.25o Monthly 1998–2019 https://gpm.nasa. 

gov/data/directory 
ERA5 0.25o Monthly 1979–2021 https://www.ecmw 

f.int/en/foreca 
sts/datasets/reana 
lysis-datasets/era5 

CMIP5 0.25o Daily 2020–2099 https://developers. 
google.com/earth 
-engine/dataset 
s/catalog/NASA 
_NEX-GDDP  
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Land Evaporation Amsterdam Model (GLEAM) V3.3a. For MOD16, the 
temporal coverage is from 2000 to the present, and the spatial and 
temporal resolution are 1000 m and 8 days, respectively. For PML_V2 
data sets, the temporal coverage is from 2000 to 2020, and the spatial 
and temporal resolution are 500 m and 8 days (Zhang et al., 2019), 
respectively. For GLEAM V3.3a data sets, the temporal coverage is from 
1980 to 2018, and the spatial and temporal resolution are 0.25◦ and 
daily (https://www.gleam.eu/) (Martens et al., 2017), respectively. 
Previous studies (Jia et al., 2022; Zhang et al., 2019) have demonstrated 
the applicability of GLEAM and PML_V2 ET data sets in water balance 
analyses because they are closest to the observations from the eddy 
covariance flux tower. In addition, we also used the different layers in 
PML_V2 data sets to investigate the interannual variations and spatial 
patterns of linear trends of surface water evaporation, plant transpira-
tion, soil evaporation, and interception loss in the NCR during 
2002–2016. 

2.2.5. Climatic and hydrological data 
In this study, four kinds of long-term climate data sets were used to 

examine the trends of annual precipitation in the study area (Table 1), 
namely: the monthly 0.25◦ gridded precipitation data from the China 
Meteorological Administration (CMA), the monthly 0.5◦ precipitation 
data from the Climatic Research Unit Timeseries (CRU TS) version 4.01, 
the monthly 0.25◦ precipitation data from the Tropical Rainfall 
Measuring Mission (TRMM), and the monthly 0.25◦ precipitation data 
from ERA5. Especially, Zhao et al. (2021) has confirmed the feasibility 
of using CRU TS precipitation data set to conduct water balance analyses 
in Northern China. The data sets of CMA, CRU TS, and ERA5 were 
applied to analyze the trends of annual mean temperature. Future 
climate trends were investigated by using the projected climate change 
data set in the 21st century with the spatial and temporal resolutions of 
0.25◦ and daily, which were derived from Coupled Model Intercom-
parison Project Phase 5 (CMIP5) climate model under two Representa-
tive Concentration Pathway (RCP) scenarios: the medium greenhouse 
gas emission scenario RCP 4.5 and high emission scenario RCP 8.5 
(https://esgf-node.llnl.gov/search/cmip5/). Based on the CMIP5 data 
set, annual precipitation and annual mean temperature in the study area 
from 2020 to 2099 were calculated. We obtained annual runoff data for 
the Fenhe River Basin for 1980–2018 from the Hejin Hydrological 
Station. 

2.3. Methods 

2.3.1. Trend analyses of TWS and other indicators 
Based on annual maps of TWS anomalies with a grid size of 1◦, we 

firstly applied the Theil-Sen slope estimator and the Mann-Kendall test 
method to annual TWS anomaly maps to calculate the slope of TWS and 
its statistical significance level in each pixel from 2002 to 2016. The 
median-based non-parametric slope estimation model of Theil-Sen has 
no strict requirement for specific data distribution (Yang et al., 2019). 
The Mann-Kendall trend test method is also non-parametric and has 
been widely used to analyze the trends of indicators in the field of 
geoscience (Forkel et al., 2015; Wang et al., 2018; Yang et al., 2019). 
Then, we investigated the interannual variations and trends of TWS in 
the NCR during 2002–2016 at both the provincial and prefectural scales 
using the Python 3.9 programming language and ArcGIS 10.5 software 
platform. Similarly, we investigated the interannual variations and 
linear trends of other factors related to land use (e.g., surface water 
areas), climate change (e.g., annual precipitation), and human activity 
(e.g., total population) at both the pixel and regional scales. 

2.3.2. Attribution analyses of TWS depletion based on turning point 
matching 

Based on the spatial patterns of linear trends of TWS in the NCR from 
2002 to 2016, we found the hotspot with the most rapid decreases in 
TWS in the central part of Shanxi Province, which has been experiencing 

large-scale ER since 1999. To reveal the effects of ER on TWS, firstly, we 
compared the spatial patterns of linear trends of TWS and ecological 
indicators (i.e., NDVI, LAI, and ET), and found the significant and most 
rapid increases of NDVI, LAI, and ET in the hotspot. Secondly, we 
investigated and compared the interannual variations of NDVI, LAI, and 
ET in both the regions of ER and croplands, and found that NDVI, LAI, 
and ET in the ER regions showed decreasing trends before 1999 while 
continuously increasing trends during 1999–2018. The same trends and 
time turning points for NDVI, LAI, and ET suggested that improving 
vegetation conditions significantly contributed to the increase of ET in 
the ER regions since 1999. Similarly, we carried out the same analyses of 
NDVI, LAI, and ET in the hotspot like that in all the regions of ER, and 
also found the decreases of NDVI, LAI, and ET before 1999 while 
continuous increases in these three indicators after 1999. 

2.3.3. Attribution analyses of TWS depletion based on water balance 
analyses 

The change analyses of TWS from the perspective of water balance 
are generally conducted at the watershed scale. In this study, we took 
the Fenhe River Basin, which is located in the central part of the hotspot 
of TWS decline, as an example, to quantitatively explored the effects of 
ET, precipitation, and runoff on TWS changes. Firstly, we investigated 
the interannual variations of annual precipitation, ET, and runoff from 
1980 to 2018. Then, we compared the average annual values of pre-
cipitation, ET, and runoff in the basin before and after ER programs to 
determine the possible factors leading to the continuous decline of TWS 
from 2002 to 2016. Finally, we applied partial correlations to quanti-
tatively explore the effects of the three factors on TWS dynamics. 

2.3.4. Delineation of regions of ER and permanent agriculture 
According to the characteristics of land use in China, we separated 

the regions of ER and permanent agriculture at the spatial resolution of 
1 km to ensure the spatial continuity of the same type of land and avoid 
fragmentation of land use classification (Liu et al., 2014; Liu et al., 2010) 
(Fig. S1). Firstly, we investigated the spatial distributions of forests and 
croplands in 2000 and 2015 based on the land cover maps (NLCD-China) 
with a grid size of 100 m. Secondly, we aggregated the maps of forests 
and croplands into area percentage maps of forests and croplands at 1 
km resolution. In terms of the definition of ER regions, the pixels that 
meet the criterion Ratio(F,2015) - Ratio(F,2000) ≥ 1% were identified as ER 
regions (see Text S1 for details), in which Ratio(F,2000) and Ratio(F,2015) 
represent the ratio of forest area in each grid cell in 2000 and 2015, 
respectively. In terms of the definition of permanent agricultural re-
gions, a criterion Ratio(C,2000) ≥ 50% & Ratio(C,2015) ≥ 50% was used to 
identify the pixels of permanent agriculture (see Text S2 for details), in 
which Ratio(C,2000) and Ratio(C,2015) represent the ratio of cropland area 
in each grid cell in 2000 and 2015, respectively. 

3. Results 

3.1. Depleted water storage in the NCR from 2002 to 2016 

Generally, TWS showed continuously decreasing trends in the NCR 
from 2002 to 2016. Specifically, among the 101 grid cells of annual TWS 
anomaly maps with a spatial resolution of 1◦, 92 (91%) of them expe-
rienced significant (p < 0.05) decreases in TWS during 2002–2016 
(Fig. 1b). The most severe decline of TWS (− 12.7±0.45 mm/yr) was 
found in the western part of NCR (especially in the central part of Shanxi 
Province), which included 15 GRACE pixels (14.9% or 18.5 million ha) 
and was the hotspot of depleted TWS (hereafter called hotspot) identi-
fied in this study. The TWS depletion outside the hotspot was milder, 
and the southern part of Henan Province and the eastern part of Shan-
dong Province showed the lowest decline rates. In terms of the inter-
annual variations and trends of TWS, the regional average TWS 
significantly decreased at a rate of 8.9 mm/yr in the NCR during the 
period (Fig. 1c). At the provincial scale, we found that Shanxi Province 

Y. Zhou et al.                                                                                                                                                                                                                                    

https://www.gleam.eu/
https://esgf-node.llnl.gov/search/cmip5/


Agricultural and Forest Meteorology 331 (2023) 109341

6

experienced the most rapid loss of TWS, with the rates of 11.7 mm/yr 
during 2002–2016 and 13.8 mm/yr during 2004–2016, respectively 
(Fig. 1h). 

It was worth noting that there was a sharp increase in TWS (62.8 
mm) in the NCR from 2002 (− 3.9 mm) to 2004 (58.9 mm), and then it 
substantially decreased at a rate of 11.7 mm/yr during 2004–2016 
(Fig. 1c). Therefore, the declined rate (11.7 mm/yr) of TWS in the NCR 
during 2004–2016 was higher than that (8.9 mm/yr) during 2002–2016. 
Interannual variations and trends of TWS in each province were similar 
to those in the whole NCR (Fig. 1d–h). The large-scale implementation 

of water projects could contribute to the sharp increase in TWS during 
some periods. For example, the Ecological Urgent Water Replenishing 
project, which diverted water from the Yangtze River to sustain Lake 
Nansihu (Huang 2003; Wang et al., 2020), was implemented in Shan-
dong Province in 2002 to alleviate severe drought (Fig. S2). Other water 
projects could also lead to the periodic elevation of TWS, such as the 
Yellow River Diversion project in Shanxi Province since 2002 (Zhou 
et al., 2022) and the South-to-North Water Diversion project in the 
provinces of Henan, Hebei, and Shandong since 2014 (Long et al., 2020). 

Fig. 2. Spatial patterns of changes in land use, human activities, and climate in the NCR. (a) Reforestation intensity; (b–d) Linear trends of Normalized Difference 
Vegetation Index (NDVI), Leaf Area Index (LAI), and evapotranspiration (ET); (e) Impervious area change; (f) Linear trends of nighttime light (NTL) index; (g) 
Population change; (h) Linear trends of annual precipitation; (i) Cropland area change; (j) Average annual surface water area (SWA); (k–l) Linear trends of annual 
SWA and water evaporation. The symbol “+” in each grid cell indicates a statistically significant trend with a p-value < 0.05. 
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3.2. Attribution analyses of water storage depletion to ER 

We examined the spatial patterns of changes in the factors related to 
land use, human activities, and climate with a spatial resolution of 0.5◦

× 0.5◦ We found substantial reforestation in the western (i.e., Shanxi 
Province) and northern parts of NCR (Fig. 2a) due to the large-scale 
implementation of ER programs (i.e., Grain to Green Program and 
Natural Forest Conservation Program). By investigating the spatial 
patterns of linear trends of NDVI (mean of GIMMS-3 g and MOD13A1), 
LAI (mean of GLASS, GLOBMAP, and LAI3g), and ET (mean of GLEAM, 
PML-V2, and MOD16), we found the most rapid increases of the three 
indicators in the hotspot (Fig. 2b–d). Each dataset also showed the most 
rapid increases in NDVI, LAI, and ET in the hotspot (Figs. S3–S5). On the 
contrary, the increases in artificial impervious surface areas, NTL, and 
human population (Fig. 2e–g) in the western NCR were much lower than 
those in the central and eastern parts, suggesting weaker human activ-
ities in the western NCR. Most grid cells experienced significant de-
creases in cropland areas (Fig. 2i), which was consistent with the 
decreases in agricultural water use in the NCR (Fig. 3). Although agri-
cultural water use in Shanxi Province showed a slightly increasing trend 

(0.6 mm/yr), its average annual value (23.3 mm) was much less than 
that in other provinces (Beijing-Tianjin: 68.4 mm; Hebei Province: 78.7 
mm; Henan Province: 76.1 mm; Shandong Province: 100.6 mm). To 
further demonstrate better vegetation growth while weaker human ac-
tivities in the western NCR, we investigated and compared the areas of 
croplands and forests, ET, and human population in each prefecture. 
Taking 2015 as an example, the results showed that compared with 
other regions, the forest densities and ET in the prefectures in Shanxi 
Province were higher, while the cropland areas and human population 
were relatively smaller (Fig. S6). In addition, the prefectures in Shanxi 
experienced a more severe TWS decline. Generally, rapid reforestation 
dominated the patterns of land use changes in the western NCR, while 
urbanization happened in the whole plain, especially in the eastern NCR. 

Annual precipitation showed increasing trends in the hotspot and 
even the whole northern NCR (Fig. 2h), which suggested that the pre-
cipitation change is not the major driver for rapid TWS decline in the 
hotspot. Human water use data showed that agricultural water use was 
the largest sector of water consumption in the NCR except for beijing & 
tianjin (B&T), especially in the provinces of Hebei, Henan, and Shan-
dong, which are typical agricultural production bases (Fig. 3), agreeing 

Fig. 3. Trends and linear regression of annual agricultural water use, industrial water use, and residential water use in the whole NCR (a) and different prov-
inces (b–f). 
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well with the findings in previous studies that evaporation from agri-
cultural irrigation greatly contributed to TWS decline in these regions 
(Aeschbach-Hertig and Gleeson 2012; Huang et al., 2015; Pan et al., 
2017; Qin et al., 2013; Xu et al., 2019). Though Shanxi Province expe-
rienced the most rapid decline of TWS among all the provinces, its 
agricultural water use was much lower than that in other provinces, 
which suggested that evaporation from agricultural irrigation could not 
be the largest contributor to ET increases in Shanxi. While the hotspot 
had the most rapid increase in ET, its surface water area (SWA) was 
much lower than other regions (Fig. 2j). In addition, the increasing rates 
of SWA and water evaporation in the hotspot were also much lower than 
those in the eastern NCR (Fig. 2j-l), which indicated that the changes of 
water evaporation were also not the major driver of ET increases in the 
hotspot. An interesting phenomenon was that the most rapid increase of 
SWA occurred in Shandong Province where annual precipitation showed 
decreasing trends. Our previous study (Zhou et al., 2022) has reported 
that the rapid expansion of SWA in Shandong Province in the past de-
cades was mainly caused by anthropogenic factors (i.e., constructing 
artificial lakes and coastal aquaculture ponds), rather than climate 
change. 

To further confirm the hypothesis that reforestation led to the rapid 
increases of ET in ER regions, we analyzed the changes of NDVI (GIMMS- 
3 g), LAI (the mean of GLASS, GLOBMAP, and LAI3g), and ET (GLEAM) 

in the regions of ER and agriculture (see Methods and Fig. S1 for detailed 
definition). The results showed that NDVI, LAI, and ET in the refores-
tation region showed decreasing trends (NDVI: − 0.001/yr; LAI: − 0.01 
m2/m2/yr; ET: − 6.34 mm/yr) before ~1999 and followed by signifi-
cantly increasing trends (NDVI: 0.007/yr; LAI: 0.03 m2/m2/yr; ET: 6.57 
mm/yr) (Fig. 4a–c). The same turning point for the three indicators 
around 1999 (start time of the ER programs) suggested that ER has 
significantly improved vegetation growth and consequently led to in-
creases in ET. However, the increases in NDVI (0.001/yr), LAI (0.019 
m2/m2/yr), and ET (1.68 mm/yr) in the croplands (1990–2018) were 
much lower than those in the ER regions (Fig. 4g–i). As ET is the result of 
soil evaporation, vegetation transpiration, and canopy interception loss, 
here we also investigated their trends in the ER regions during 
2000–2018 by using different data layers in PML-V2 datasets. We found 
that vegetation transpiration continuously and rapidly increased (5.94 
mm/yr) during the period (Fig. 4d). The magnitude of canopy inter-
ception loss (0.61 mm/yr) was minor compared to vegetation transpi-
ration (Fig. 4e). The decline in soil evaporation (2.27 mm/yr) was 
consistent with the decrease in croplands (Fig. 4f). Therefore, the 
increased reforestation-induced vegetation transpiration was the largest 
contributor to ET increases in the ER regions. 

Fig. 4. Variations and trends of NDVI, LAI, and ET in the regions of ER and agriculture. (a–c) Interannual variations and trends of NDVI (GIMMS-3 g), LAI (mean of 
GLASS, GLOBMAP, and LAI3g), and ET (GLEAM) in the ER regions during 1990–2018; (d–f) Interannual variations and trends of vegetation transpiration, canopy 
interception loss, and soil evaporation derived from PML-V2 datasets in the ER regions during 2000–2018; (g–i) Interannual variations of NDVI, LAI, and ET in the 
croplands during 1990–2018. The below shows the histograms (a–i) of the slopes in the linear trends (a–c: 1999–2018; d–f: 2000–2018; g–i: 1990–2018) of 
these indicators. 
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3.3. Impacts of ER on TWS from a perspective of water balance 

To attribute the decreasing TWS in the hotspot, here we took the 
Fenhe River Basin, which is in the center of the hotspot and accounts for 
25% of the area of Shanxi Province (Fig. 5a), to analyze the effects of ET 
increases on TWS decline, from a perspective of water balance. The 
variations and trends of annual precipitation, runoff, and ET in the re-
gion from 1980 to 2018 were shown in Fig. 5b–d. The average annual 
precipitation during ER programs (510.3 mm/yr) was higher than that 
before ER (476.1 mm/yr), while the average annual runoff during ER 
(12.9 mm/yr) was lower than that before ER (16.6 mm/yr), which were 
favorable to the recovery of TWS. Though runoff showed a slightly 
increasing trend (0.8 mm/yr) from 2002 to 2016, the average annual 
value of runoff (12.9 mm) was much lower than that of precipitation 
(510.3 mm). Therefore, the effects of changes in the runoff on TWS 
variations could be almost neglected. However, the average annual ET 
during ER (GLEAM: 457.8 mm/yr) was higher than that before ER 
(GLEAM: 428.2 mm/yr), and annual ET showed continuously increasing 
trends (GLEAM: 5.4 mm/yr; PML_V2: 5.4 mm/yr) during the ER period, 
which suggested that TWS decline could be caused by ET increase. To 
further confirm our inference, we quantitatively explored the effects of 
ET, precipitation, and runoff on TWS changes in the Fenhe River Basin 
using partial correlations. The results showed that the increasing ET (r =
− 0.79, p < 0.01) and runoff (r = − 0.56, p < 0.01) were significantly and 
negatively correlated with TWS decline (Fig. 6). In addition, partial 
correlations indicated that the relationship between ET and TWS 

remained significant after controlling for the effects of precipitation and 
runoff (Fig. 6), which suggested that the loss of TWS in the basin was 
mainly induced by the rapid increase of ET rather than the changes of 
precipitation and runoff. 

To further clarify the reason for ET increases, we investigated the 
interannual variations of irrigation water use in the basin and found that 
the average annual irrigation water use during ER was lower than that 
before ER (Fig. 5e), which suggested that the changes in irrigation water 
use were not the main contributor of ET increases during ER. The most 
rapid increases in temperature occurred in the provinces of Henan and 
Shandong, rather than the basin and Shanxi Province (Figure S7). The 
above analyses revealed that ER programs greatly contributed to the 
rapid increases in ET and caused the decline of TWS in the hotspot 
during 2002–2016, which agreed with the recently published studies 
that ER led to the loss of freshwater resources through the ET process in 
China’s Loess Plateau (Feng et al., 2016) and Mu Us Sandyland (Zhao 
et al., 2021). 

Similar to the ER regions, NDVI (− 0.002/yr), LAI (− 0.02 m2/m2/yr), 
and ET (− 11.9 mm/yr) in the hotspot also decreased before 1999 and 
then continuously and significantly (p < 0.01) increased (NDVI: 0.011/ 
yr; LAI: 0.05 m2/m2/yr; ET: 8.7 mm/yr) (Fig. 7a–c). Furthermore, we 
explored the contributions of the changes of the three components 
(vegetation transpiration, canopy interception loss, and soil evapora-
tion) to the variations of ET in the hotspot. Vegetation transpiration 
(8.25 mm/yr) and canopy interception loss (0.77 mm/yr) showed 
significantly increasing trends, while soil evaporation (2.68 mm/yr) 

Fig. 5. Variations and trends of annual precipitation, ET, runoff, and irrigation water use in the Fenhe River Basin during 1980–2018. (a) The geographical location 
of the Fenhe River Basin, which is in the central part of the hotspot and involves the six prefectures of Xinzhou, Lvliang, Taiyuan, Jinzhong, Linfen, and Yuncheng in 
Shanxi Province; (b–e) Interannual variations of annual precipitation (CRU), ET (PML_V2 and GLEAM), runoff, and irrigation water use in the Fenhe River Basin 
during 1980–2018 and the linear trends of these factors during different periods. 
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showed decreasing trend (Fig. 7d–F). In addition, vegetation transpira-
tion had the most rapid increase in the hotspot (Fig. 7g). By investigating 
the annual variations of vegetation canopy, soil evaporation, and 
interception loss in the ecological restoration region from 2000 to 2018 
using different data layers in PML-V2 datasets (Fig. S8a), we found that 
the proportion of vegetation transpiration to ET continuously and 
significantly increased (1.02%/yr, p < 0.01) with an average value of 
49.0% (Fig. S8b), suggesting that the increases in ET in the region were 
also mainly caused by the continuous increases in vegetation 
transpiration. 

4. Discussion 

4.1. ER exacerbates the agriculture-induced water crisis 

As a typical grain bowl and highly populated and urbanized region in 
China, the NCR has been suffering from extreme water shortage due to 
intensive agricultural irrigation(Guo and Shen 2015; Qin et al., 2013; 
Zhou et al., 2022). Agriculture was the largest water use sector, much 
higher than residential and industrial water use. Despite increasing 
residential water use, the decreasing water consumption from agricul-
ture alleviated the water crisis in the past decades (Fig. 3). Previous 
studies have demonstrated that the ER-induced greening was at the 
expense of water resources due to rapid ET increases and caused severe 
water depletion in the Loess Plateau (Feng et al., 2016; Shao et al., 2019) 
and Mu Us Sandyland (Zhao et al., 2021) of China. In this study, we also 
found that afforestation has significantly caused the increases in vege-
tation growth and subsequently ET in the western NCR that experienced 
large-scale implementation of ER programs (i.e., Grain to Green Pro-
gram and Natural Forest Conservation Program). The accelerated 
ecological water consumption has caused the rapid loss of TWS in the 
region, especially in the hotspot. While the considerable impacts of 
long-term agricultural irrigation on water storage in the NCR have been 
well documented in previous studies (Aeschbach-Hertig and Gleeson 
2012; Feng et al., 2013; Huang et al., 2015; Qin et al., 2013), this study 
proved that ER programs were posing a new threat to water security and 

exacerbating the water shortage originally caused by agriculture in the 
NCR. In the regions experiencing ER programs and TWS depletion, 
reevaluating the hydrologic impacts of afforestation will be important to 
relieve water pressure. 

4.2. Potential effects of future climate on TWS 

Whether the decline of TWS in the ER regions will continue depends 
on the interactions between afforestation intensity and local meteoro-
logical conditions (Zhao et al., 2021). Future climate projection showed 
that precipitation in the NCR was likely to increase (0.52–1.19 mm/yr, p 
< 0.01) during 2020–2099 (Fig. 8a-b), which was consistent with 
findings from previous studies (Feng et al., 2016; Long et al., 2020). 
Projected precipitation increases suggested a higher possibility of TWS 
recovery in the future. Therefore, water consumption as afforestation 
would be alleviated to some degree with the increasing precipitation, 
and TWS depletion would remain stable or reversed. If afforestation 
intensifies, water consumption would surpass the recharge from pre-
cipitation, and TWS decline would be accelerated. The CMIP5 projected 
data revealed that the annual mean temperature would significantly 
increase (0.02–0.06 ◦C/yr) in the future (Fig. 8c-d). Future wetting and 
warming are expected to promote both TWS replenishment and plant 
growth, which will probably provide more room for ER to function 
under a low level of ER efforts and fovour a strategy with reduced 
human revegetation but more nature regeneration (Zhao et al., 2021). In 
addition, it should be noted that plant water-use efficiency could in-
crease under rising greenhouse gas concentrations (Donohue et al., 
2013; Wullschleger et al., 2002). Feng et al. (2016) projected an average 
increase of water-use efficiency of 10% by 2050 using multiple CMIP5 
land surface models (Feng et al., 2016), which might partly ameliorate 
the negative effects of increasing temperature on plant transpiration. In 
general, climate conditions in the coming decades favor TWS recovery if 
the afforestation intensity is no longer enhanced. Future studies should 
focus on more comprehensive and quantitative analyses of future trends 
of TWS by fully considering ER strategies, local hydrometeorological 
conditions, plant water use, etc. 

4.3. Potential measures to promote sustainable development in the NCR 

The decline of water storage has brought significant threats to food, 
water, and ecological securities in the NCR, which are closely related to 
Target 2 (Zero Hunger), 6 (Clean Water and Sanitation), and 15 (Life on 
Land) of the sustainable development goals (SDGs), respectively. The 
synergetic development of the three closely related SDG indicators is 
critical for NCR’s sustainable development. The interactions between 
water-food-ecology are complex (Filoso et al., 2017; Karabulut et al., 
2016). In the permanent agricultural areas widely distributed in the 
central and eastern parts of the NCR, excessive groundwater pumping 
for irrigation in the past decades caused severe TWS depletion, which 
has been reported in previous studies (Feng et al., 2013; Huang et al., 
2015; Pan et al., 2017; Qin et al., 2013). While the large-scale imple-
mentation of ER programs since 1999 enhanced vegetation growth and 
improved ecological security in the western NCR, it brought consider-
able threats to water security and exacerbated the water crisis originally 
induced by agricultural irrigation in the NCR. The conflicts in water 
consumption between agriculture and ecological service maintenance 
tend to be aggravated. Therefore, more comprehensive strategies 
considering water, food, and ecological securities are urgently needed to 
instruct the balance of different SDGs to promote sustainable develop-
ment in the NCR (Aeschbach-Hertig and Gleeson 2012). 

More scientific and effective measures need to be considered to 
reverse the TWS depletion trend in the NCR. In addition to improving 
the efficiency of agricultural water use to release water shortage in the 
major agricultural production areas (Blanke et al., 2007), more adaptive 
approaches to reduce ecological water consumption in the ER regions 
are urgently needed to achieve regional sustainable development. 

Fig. 6. Correlations and partial correlations between water balance compo-
nents and TWS changes. Shown in blue, from bottom to top, is first the corre-
lation between ET and TWS, followed by partial correlations r between ET and 
TWS after controlling for the effect of precipitation and runoff. Shown in green, 
from bottom to top, is first the correlation between precipitation and TWS, 
followed by partial correlations r between precipitation and TWS after con-
trolling for the effect of ET and runoff. Shown in orange, from bottom to top, is 
first the correlation between runoff and TWS, followed by partial correlations r 
between runoff and TWS after controlling for the effect of ET and precipitation. 
Each cross symbol indicates that the trend was not statistically significant (p ≥
0.05). The symbols “*” and “**” represent the statistically significant correla-
tions with p < 0.05 and p < 0.01, respectively. 
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Reducing ER efforts and regulating plant water uptake by thinning 
densely vegetated regions is the key to relieving the loss of water stor-
age. Both ecosystems and human activities consume the same source of 
freshwater (Feng et al., 2016). Though afforestation significantly im-
proves the ecological environment in the ER regions, ecological water 
use should be maintained lower than the allowable threshold to realize 
the balance of water consumption between ecological protection and 
socioeconomic development (Feng et al., 2016). Replacing the current 
tree species with those with less ET is a good choice for promoting the 
synergetic development between freshwater resources protection and 
ecological security in the ER regions. The current vegetation species in 
the hotspot are dominated by shrubs (e.g., Pinus tabuliformis Carr. and 
Robinia pseudoacacia) and trees (e.g., Periploca sepium Bunge and Rosa 
xanthine Lindl.) (Feng et al., 2016; Han et al., 2021; Jia et al., 2017; 
McVicar et al., 2010). However, compared with shrubs, Robinia pseu-
doacacia has higher transpiration because it consumes large amounts of 
water from deep soil layers (Jia et al., 2017; McVicar et al., 2010; 
Sankaran et al., 2005; Wang et al., 2008). Therefore, it could be a po-
tential measure to replace Robinia pseudoacacia with shrubs, which have 
a lower water requirement for survival (McVicar et al., 2010). In addi-
tion, using water from outside river basins by water diversion projects 
other than local freshwater resources is another effective solution for 
protecting groundwater. For example, since the operation of the middle 

route of the South-to-North Water Diversion project in 2014, 9.5 km3 of 
water from the Yangtze River has been annually transported to the NCR, 
which has reduced cumulative groundwater depletion by ~3.6 km3 in 
Beijing and has greatly relieved water shortage there (Long et al., 2020; 
Qin et al., 2012; Yang et al., 2022; Zhang et al., 2020). 

4.4. Uncertainty analyses and effects of coal mining on GRACE TWS 

Although the current research, together with previous studies (Bai 
et al., 2020; Feng et al., 2016; Zhao et al., 2021), have contributed to the 
knowledge of the significant effects of ER programs on regional water 
resources, we have to recognize that there are still uncertainties 
remained in the analytical methods and remote sensing data used. 
Firstly, there will inevitably be deviations between remote sensing ob-
servations and field surveys regarding the ecological indicators (van 
Leeuwen et al. 2006). Zhang et al. (2013) demonstrated that the inte-
gration of different kinds of NDVI data sets (e.g., MODIS and GIMMS-3 
g) would better address issues of uncertainty related to remote sensing 
applications in vegetation change studies, here we also applied various 
data to examine the trends of ecological indicators (i.e., NDVI, LAI, and 
ET) and climate factors (i.e., temperature and precipitation) to reduce 
the uncertainties. Secondly, we aggregated the data of ecological in-
dicators into 0.5◦ raster data by using an arithmetic mean method to 

Fig. 7. Variations and trends of NDVI, LAI, and ET in the hotspot. (a–c) Interannual variations and trends of NDVI (GIMMS-3 g), LAI (mean of GLASS, GLOBMAP, and 
LAI3g), and ET (GLEAM) in the hotspot during 1990–2018; (d–f) Interannual variations and trends of vegetation transpiration, canopy interception loss, and soil 
evaporation derived from PML-V2 datasets in the hotspot during 2000–2018; (g–i) Spatial patterns of linear trends of vegetation transpiration, canopy interception 
loss, and soil evaporation in the hotspot during 2000–2018. The symbol “+” in each grid cell indicates a statistically significant trend with a p-value < 0.05. The 
below shows the histograms (a–f) of the slopes in the linear trends of these indicators (a–c: 1999–2018; d–f: 2000–2018). 
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investigate the spatial patterns of linear trends of these indicators. 
However, previous studies (Chen 1999; Jiang et al., 2006) showed that 
such aggregation was likely to introduce uncertainties to the measure-
ments of these indicators in heterogeneous surfaces because resampling 
could cause the attributes of pixels to change. Finally, annual 30-m 
yearlong water body maps used in this study, which were generated 
by Landsat data, could miss some water bodies with sizes smaller than 
30 m × 30 m. However, our previous studies (Zhou et al., 2019; Zou 
et al., 2017) have revealed that the dynamics of areas of yearlong surface 
water were mainly caused by the changes in large water bodies (e.g., 
lakes and reservoirs), which could be accurately detected by Landsat. 

GRACE detects combined mass changes that include signals from 
hydrology, solid earth, cryosphere, ocean, atmosphere, and tides (Jacob 
et al., 2012; Wang et al., 2013). Although the non-hydrologic signals are 
removed as far as possible in the GRACE TWS estimates (Landerer and 
Swenson 2012), the signals of anthropogenic mass flow (e.g., coal 
mining and transportation) are not considered during the data pro-
cessing (Tang et al., 2013). Therefore, in the regions with intense min-
eral exploitation (e.g., Shanxi Province), TWS changes detected by the 
GRACE satellite could be affected by the dynamics of anthropogenic 
mass flow. Tang et al. (2013) showed that a huge amount of coal pro-
duced by Shanxi Province has been transported to coastal demand 
centers such as Shanghai and Hong Kong. The accumulated net coal 
exportation in the western NCR reached 6.6 billion tons from 2003 to 
2011, equivalent to a loss of TWS of 28.5 mm (Tang et al., 2013). 
Similarly, we also revealed that coal mining and its cumulative equiv-
alent water thickness (59.5 mm) were the highest in Shanxi (Fig. 9a–e) 
and accounted for 39.0% of the total mass losses, which were roughly 
equivalent to water storage of 24.2 km3 in the province during 
2003–2015 (Fig. 9f). Especially in the hotspot, the cumulative equiva-
lent water thickness of coal mining during 2003–2015 reached 70.0 mm 
at an average rate of 5.4 mm/yr (Fig. 9g), accounting for 41.0% of the 
total mass losses in the region in the period (Fig. 9h). Therefore, the 
actual rate of TWS decline in the hotspot was about 7.3 mm/yr, which 

was close to the rate of ET increase (8.7 mm/yr) and could better support 
our conclusion that the increasing water consumption through ET was 
the major driver for TWS depletion. 

5. Conclusion 

The NCR is a typical grain base and highly populated and urbanized 
area in China. As a well-recognized global groundwater funnel, the re-
gion has been suffering from severe water shortage in the past decades. 
Using three kinds of GRACE satellite data sets and the GEE cloud 
computing platform, the current study investigated the interannual 
variations and trends of TWS from 2002 to 2016. The results showed 
that TWS showed continuously decreasing trends (− 8.9 mm/yr) in the 
NCR during the period. The most rapid decline of TWS (− 12.7±0.45 
mm/yr) happened in the western part of NCR, which was the hotspot of 
depleted TWS identified in this study. At the provincial scale, Shanxi 
experienced the most rapid loss in TWS (− 11.7 mm/yr), followed by 
Hebei (− 10.2 mm/yr), B&T (− 9.7 mm/yr), Shandong (− 8.4 mm/yr), 
and Henan (− 5.2 mm/yr). The rate of TWS decline (− 11.7 mm/yr) in 
the NCR during 2004–2016 was higher than that during 2002–2016 as 
there was a sharp increase in TWS from 2002 to 2004 due to the highest 
recorded annual precipitation in 2003 and the implementation of water 
projects. We found that the western and northern parts of NCR experi-
enced substantial reforestation as the result of the large-scale imple-
mentation of ER programs (i.e., Grain to Green Program and Natural 
Forest Conservation Program), and the interannual variations and 
spatial patterns of TWS depletion are consistent with those ER-induced 
greening. Attribution analyses of TWS depletion by fully considering 
precipitation, ET, and runoffs suggested that increasing ET was the 
major driver for TWS depletion in the ER regions. This study warned that 
ER programs were posing a new threat to water security and exacer-
bating the water crisis originally induced by agriculture in the NCR, and 
effective measures were urgently needed to achieve the synergy of food, 
water, and ecological securities and regional sustainable development. 

Fig. 8. Future climate projection in the NCR from 2020 to 2099. Variations and trends of annual precipitation based on the CMIP5 projected data under both 
scenarios of RCP 4.5 (a) and RCP 8.5 (b); Variations and trends of the annual mean temperature of daily-minimum (c) and daily-maximum (d) under both scenarios of 
RCP 4.5 and RCP 8.5. 
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