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A B S T R A C T

Vegetation plays an essential role in improving urban environments and enhancing the physical and mental
health of residents. However, rapid urbanization has exerted complicated influence on vegetation conditions,
which remain poorly understood. To assess the impacts of urbanization on the vegetation structure and function
in the urban area, we quantified the changes in impervious surface area (ISA) and assessed the impacts of
urbanization on vegetation greenness (enhanced vegetation index (EVI)), and gross primary production (GPP) in
megacity Shanghai during 2000–2016. The results show that 38.0% and 28.0% decreasing trends of EVI and GPP
occurred in peri-urban and rural areas due to land use and land cover conversion, whereas 2.8% and 4.6%
increasing trends of EVI and GPP occurred in the central city during 2000–2016 in Shanghai. In addition, the
enhancement of EVI and GPP owing to the indirect impact of urbanization increased as the impervious surface
coverage (ISC) gradient rose and peaked when the ISC reached ~0.8, which compensated for vegetation loss by
24.6% and 17.0%, respectively. The compensation was more stable and significant in peri-urban areas than
urban and rural areas. This study provides detailed data and insights on the impacts of urbanization on vege-
tation, which may help stakeholders to make better management plans for urban vegetation.

1. Introduction

More than half of the world's population now live in towns and
cities, and by 2030, the number of the world urban population will
swell to approximately 8.6 billion (United Nations, 2017). Vegetation in
urban areas plays an indispensable role for people living in urban en-
vironments. Urban vegetation can generate multiple environmental
benefits, for example, reducing air pollution and the effect of urban
heat islands, increasing terrestrial carbon storage, and improving en-
ergy conservation and storm water runoff quality (Akbari, 2002; Dwyer
et al., 1992; Hardin and Jensen, 2007; Mcpherson and Simpson, 2002;
Nowak et al., 2006; Roy et al., 2012). Urban vegetation also provides
significant psychological and socioeconomic benefits to local urban
residents such as stress relief and increasing property value (Donovan
and Butry, 2010; Lohr et al., 2004; Nowak et al., 2002).

Numerous studies have documented the conversion of forest and
agricultural land into impervious surface (IS, e.g., roads, houses,

buildings) over the decades of urbanization, resulting in dramatic ex-
pansion of impervious surfaces (Jr and Gibbons, 1996; Wu and Murray,
2003). Many of those studies used remote sensing technologies to
quantify land use and cover conversion, for example, the widespread
losses of vegetation area (forest, cropland and wetland) (Deng et al.,
2015; Dewan and Yamaguchi, 2009; Li et al., 2006; Salvati and Sabbi,
2011) and vegetation greenness (Liu et al., 2015; Yao et al., 2019; Zhu
et al., 2016). Some studies used net primary production (NPP) data
from process-based models and data-driven models and reported de-
crease of NPP in urban areas (Chen et al., 2017; Imhoff et al., 2004; Li
et al., 2018; Milesi et al., 2003; Xu et al., 2007; Zhou et al., 2015). Most
studies used satellite images (e.g., Landsat, MODIS) in a year or selected
years to quantify the changes in ISA and vegetation area (Table 1).
There is a need to quantify annual changes in urban land cover types, as
the resultant dataset would allow us a better link with annual changes
in social-economic factors and policy that drive urban expansion.

All of the above-mentioned studies investigated the direct impact of
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urban expansion on vegetation conditions during the urbanization
process. However, vegetation types, structure and functions are com-
plex and dynamic in urban areas, driven by many factors, ranging from
urban microclimates to human management practices (e.g., irrigation,
fertilization). A number of studies have reported that warmer climates
due to urban heat island, increased atmospheric carbon dioxide and
nitrogen deposition, along with reinforced human management, pro-
moted the growth of urban vegetation (Calfapietra et al., 2015; Lohse
et al., 2008; Lovett et al., 2000; McDonnell et al., 1993). Mcpherson
(1998) reported that canopy cover, density and the basal area of trees
increased along the rural-urban gradient in Sacramento, California,
being mainly attributed to more large, old shaded trees, diverse species,
and careful maintenance practices in the urban sector compared to the
rural sector. Vallet et al. (2010) found that species in urban woodlands
had larger leaf areas, preferences for more base- and nutrient-rich soils
and shorter life-span than rural woodlands. Zhao et al. (2016) proposed
a conceptual framework for quantifying the impacts of urbanization on
vegetation greenness and concluded that vegetation greenness en-
hancement was prevalent in 32 major cities across China. Their study
used the enhanced vegetation index (EVI) to track vegetation growth
conditions from the perspective of canopy structure (e.g., leaf area
index, greenness), and conducted EVI comparisons among cities. To
date, most of previous remote sensing studies reported the effects of
urbanization on urban vegetation in the context of single vegetation
variable over selected years (Table 1). In order to have a thorough
ecological evaluation of urban ecosystems, it is necessary to quantify
the changes of two or more vegetation variables over multiple years.

In this study, we studied the impacts of urbanization on urban ve-
getation greenness (related to canopy structure, e.g., EVI) and vegeta-
tion productivity (related to canopy function, e.g., GPP). We selected
Shanghai as the study area, as it is a megacity that has witnessed rapid
urbanization but has simultaneously preserved parts of rural areas,
making this city appropriate for assessing the impacts of urbanization
on greenness and GPP of vegetation. Using time-series Landsat satellite
imagery and modeling approaches, we aimed to investigate 1) the
process and patterns of urban expansion (use IS as an indicator) in
Shanghai from 2000 to 2016, 2) the spatial-temporal dynamics of im-
pervious surface coverage (ISC), EVI and GPP from 2000 to 2016, and
3) the impact of urbanization on EVI and GPP along the ISC gradient.
We also combined our results with previous studies and field observa-
tions to discuss what caused differences in the impacts of urbanization
on vegetation: 1) between greenness and GPP and 2) along the ISC
gradient. This study provides a comprehensive evaluation of vegetation
greenness and GPP in response to urbanization, and the results may
have significant implications for urban vegetation management.

2. Materials and methods

2.1. Study area

Shanghai (30°40′N to 31°53′N, 120°52′E to 122°12′E) lies on the
east coast of China and covers a total area of 6340.5 km2 in 2016

(Fig. 1). Given its location on the alluvial plain of the Yangtze River
delta, the vast majority of the land area is flat, with an average eleva-
tion of 4m. The city has a humid subtropical climate with four distinct
seasons. The monthly mean air temperature ranges from 4.4 °C in
January to 29.9 °C in July. Annual mean precipitation is approximately
1600mm, and>70% of precipitation is concentrated in the wet season
from April to September (Shanghai Statistical Bureau, 2017).

Shanghai is divided into 16 county-level districts, and seven of the
districts (Huangpu, Xuhui, Changning, Jing'an, Putuo, Hongkou, and
Yangpu) are referred to as the central city (or core urban area), while
the others (Pudong, Baoshan, Minhang, Jiading, Jinshan, Songjiang,
Qingpu, Fengxian and Chongming) represent peri-urban and rural areas
that lie further from the urban core.

Since the “reform and opening-up” policy in 1978, Shanghai has
gradually developed into the largest and the most prosperous me-
tropolis in China, accompanied by an increasing acceleration of urba-
nization. The permanent population grew rapidly from 16.1 million in
2000 to 24.2 million in 2016, according to 2017 human demography
statistics. To meet the economic development and people's daily needs,
the land used for construction expanded from 2267.8 km2 in 2003 to
3087.3 km2 in 2016 (Shanghai Statistical Bureau, 2017).

2.2. Data

2.2.1. Landsat imagery and preprocessing
Shanghai is covered by two (118/038 and 118/039) WRS2 path/

rows of Landsat images. We collected all available standard Level 1
Terrain-corrected (L1T) products of the Landsat surface reflectance
images on the Google Earth Engine (GEE) platform from 2000 to 2016,
including 542 Landsat TM images, 879 Landsat ETM+ images and 230
Landsat OLI images. The CFMask was implemented as the primary al-
gorithm to detect and remove clouds, cloud shadows and snow/ice for
Landsat TM, ETM+, and OLI/TIRS products (Foga et al., 2017; USGS,
2015; Zhu et al., 2015; Zhu and Woodcock, 2012).

We calculated two greenness-related spectral indices (NDVI and
EVI) and two water-related spectral indices (LSWI and mNDWI) for
each Landsat image. NDVI (Tucker, 1979) and EVI (Huete et al., 1997,
2002) were widely used to evaluate the canopy structures (e.g.,
greenness, leaf area index) of vegetation (Huete et al., 2002). LSWI
(Gao, 1996; Xiao et al., 2002a,b) and mNDWI (Xu, 2006) are sensitive
to surface water information. The annual maximum NDVI (NDVImax)
and LSWI (LSWImax) were calculated for each year, respectively.
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Table 1
A summary on remote sensing research on the impacts of urbanization on urban vegetation.

Vegetation variables Direct impact Direct + indirect impacts

Selected years data Time series data Selected years data Time series data

Vegetation area Deng et al., 2015; Dewan and Yamaguchi, 2009; Li et al., 2006;
Salvati and Sabbi, 2011;

Greenness Liu et al., 2015; Yao et al., 2019;
Zhu et al., 2016;

Jia et al., 2018; Zhao et al.,
2016;

This study

NPP Chen et al., 2017; Imhoff et al., 2004; Li et al., 2018; Milesi et al.,
2003; Xu et al., 2007;

Zhou et al., 2015; Peng et al., 2016 Guan et al., 2019;

GPP Nuarsa et al., 2018; Liu et al., 2018; This study
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where ρblue, ρgreen, ρred, ρnir, and ρswir are Blue (450–520 nm), Green
(520–600 nm), Red (B3:630–690 nm), NIR (760–900 nm), and SWIR
(1550–1750 nm) bands of the Landsat TM/ETM+/OLI imagery, re-
spectively.

2.2.2. Annual maps of impervious surface during 2000–2016
For simplicity of this study, Landsat images were classified into

three broad land cover types: (1) open surface water bodies, (2) im-
pervious surfaces (IS) and (3) other land cover types (e.g., cropland and
forest) or “unclassified”. We generated annual maps of open surface
water bodies, IS and other land cover types (or unclassified) from 2000
to 2016 (17 years, 17 maps).

Open surface water bodies were identified using an algorithm that
was documented in previous studies (Zou et al., 2017, 2018). A good-
quality observation was identified as an open surface water body if it
met the criteria ((mNDWI>NDVI or mNDWI>EVI) and (EVI <
0.1)). We calculated the annual frequency of open surface water bodies
for individual pixels in a year, and the pixels with an annual frequency
greater than or equal to 0.75 were classified as year-long water bodies
(Zou et al., 2017, 2018). We excluded year-long water bodies from the
Landsat images for each year to avoid the effect of water bodies on
urbanization impact.

Impervious surface is composed of various impenetrable materials
with different colors, textures and spectral characteristics. Numerous
methods have been successfully applied for identifying and mapping IS
using remote sensing approaches at various spatial scales (Kotarba and
Aleksandrowicz, 2016; Weng, 2012; Weng et al., 2008; Wu and Murray,
2003; L. Zhang et al., 2017; Y. Zhang et al., 2014). In this study, we
used an approach that uses both NDVI and LSWI time series data (Qin
et al., 2017), which is based on the fact that IS has low greenness and

soil moisture. The annual NDVImax reflects vegetation greenness and
leaf area index in a year, whereas the annual LSWImax reflects surface
(soil and vegetation) moisture; these were selected to differentiate IS
and other land cover types in complex urban-rural areas, including
Shanghai (Qin et al., 2017). We performed the spectral analysis of the
training data (3000 Region of Interests (ROIs)) and used the threshold
values (NDVImax < 0.6 and LSWImax < 0.3) to identify IS in a year.
The criterion of NDVImax < 0.6 can exclude most temporary fallow
fields and different deciduous forests out of growing season, and the
criterion of LSWImax < 0.3 can reduce the disturbance of urban wa-
terlogging situation caused by rainy seasons, though it is unusual in
Shanghai.

The accuracy of the resultant annual IS maps from Landsat images
was assessed using the high-resolution images and photos in Google
Earth Pro® (GE) (Luedeling and Buerkert, 2008). The validation data
collection strategy was to divide the study area into 5-km by 5-km re-
solution grid cells (a total of 289 grid cells) and to generate 10 random
points within each of the 289 grid cells (a total of 2890 points). We
applied the sampling strategy to the land cover maps in 2010 and 2016,
and we obtained 2441 points on land and 449 points in the ocean in
2010, as well as 2507 points on land and 383 points in the ocean in
2016. Each point had an acquired buffer zone with 15-m radius (area
close to a pixel at 30-m resolution), and only those land points were
used for the visual interpretation of very high spatial resolution images
and photos. The resultant validation dataset was used to calculate
confusion matrices for IS and non-IS.

The resultant annual IS maps with a spatial resolution of 30-m were
aggregated spatially into 500-m pixel (matching the pixel size of MODIS
images), and the ratios of the IS within 500-m pixels were calculated to
support the spatial analysis of EVI and GPPVPM data in Shanghai. We

Fig. 1. Population density of individual administrative districts in Shanghai (a). (P1) and (P2) are two examples that use the satellite photos from Google Earth to
show the expansion of impervious surface areas (2011–2016) and the increase of greenness (2000–2009) in Shanghai.
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defined the IS ratio as impervious surface coverage (ISC), which ranged
from 0 (full vegetation) to 1 (full IS). Impervious surface area (ISA) and
coverage (ISC) in urban areas reflect both the degree of urbanization
and the complexity of urban environments (Arnold and Gibbons, 1996;
Ridd, 1995).

2.2.3. MODIS land surface reflectance and vegetation index data
The MODIS Terra Surface Reflectance 8-Day product (MOD09A1)

provides an estimate of the surface reflectance at 500-m spatial re-
solution (Vermote, 2015). The clouds, cloud shadows and aerosols were
masked based on the quality assurance (QA) layer (Y. Zhang et al.,
2016). Considering the low temperature and rainfall in winter (De-
cember, January and February), which are unfavorable for vegetation
growth, we averaged the EVI of all the available data from March to
November for each year during 2000–2016.

2.2.4. The gross primary production (GPP) dataset
The GPP dataset is acquired from the Vegetation Photosynthesis

Model (VPM), which is based on light use efficiency theory and is
driven by satellite data from MODIS and climate data from NCEP
Reanalysis II (Y. Zhang et al., 2017). The GPPVPM dataset includes GPP
estimates for all land areas, including urban and rural areas. The
GPPVPM data in ten megacities of the world, including Shanghai, were
evaluated and compared with the solar-induced chlorophyll fluores-
cence (SIF) data from the GOME-2 instrument (Cui et al., 2017). Ma
et al. (2018) also reported the temporal consistency between GPPVPM
and GOME-2 SIF in China during 2010–2014, including urban areas.
The raw 500m 8-day GPP product was temporally aggregated to gen-
erate annual GPP from 2000 to 2016.

2.3. Statistical analysis

2.3.1. Spatial-temporal dynamics of ISC, EVI and GPP during 2000–2016
The interannual variation and trends in ISC, EVI and GPP during

2000–2016 at 500-m resolution were calculated and analyzed using
linear regression models with t-tests at the 5% significance level. The
linear relationships between EVI, GPP and ISC were also examined
using linear regressions at 500-m resolution in Shanghai from 2000 to
2016.

2.3.2. A conceptual framework for analyzing the impacts of urbanization
on EVI and GPP

A conceptual framework was proposed to quantify the impacts of
urbanization on vegetation growth, which separated the impacts into
direct and indirect impacts (Zhao et al., 2016). The direct impacts in-
duced by land use and cover conversion caused the emergence of the
ISC gradient (or urban-rural gradient) in the city during urban expan-
sion. The indirect impacts induced by natural and anthropogenic factors
may promote or exacerbate the vegetation conditions during urban
development. Theoretically, the vegetation index (VI, i.e., EVI and GPP)
of a pixel could be decomposed into contributions from vegetative and
nonvegetative areas. Hence, the relationship between VI and ISC should
be linear without indirect impacts (Fig. 2a), so the zero-impact straight
line was determined by Vv and Vnv (Eq. (5)):

= − ⋅ + ⋅V ISC V ISC V(1 ) v nvzi (5)

where Vzi was the theoretical VI of a 500-m resolution pixel, Vv was the
VI values of a fully vegetated area (ISC=0, VI=Vv), Vnv was the VI
values of a fully ISA (ISC=1, VI=VInv).

When plotting the VI observations of all pixels against their corre-
sponding ISC along the ISC gradient, the actual distribution of points
may not completely be consistent with the straight line, suggesting the
existence of indirect impacts (Fig. 2b). The relative indirect impact of
urbanization on vegetation growth was calculated as:

=
−

×ω
V V

V
100%i

obs zi

zi (6)

In addition, the growth offset (τ) was defined to quantify how much
the growth change that occurs due to indirect impacts on the remaining
vegetation can compensate (if τ>0) or exacerbate (if τ<0) vegetation
loss (i.e., Vv-Vzi) by land conversion (Eq. (7)):

=
−

−

×τ
V V
V V

100%obs zi

v zi (7)

2.3.3. The determination of VI values for fully vegetated areas and fully ISA
Given that the difference in observed VI values, which is caused by

different types of land-cover (e.g., cropland and forest) and vegetation
(e.g., grass and trees), might confuse the urbanization impact and in-
herent diversities, we averaged VI values with averaged ISC for the ISC
bins at an interval of 0.01. The VI-ISC relationships were fitted by the
cubic regression model for all years: y= a0+ a1x+ a2x2+ a3x3, where
y was averaged VI and x was averaged ISC. The perfect fit of the cubic
regression model (n=100, R2 > 0.98, p < 0.001 of EVI and GPP for
all years) indicated significant correlation between vegetation growth
and ISC.

We used the intercepts of regressions to determine Vv for each year,
as the intercepts of regressions relied on the trend of VI change and
were less affected by VI outliers (Jia et al., 2018; Zhao et al., 2016). As
small vegetation patches were often fragmented and dispersive in
highly urbanized environment of Shanghai, we manually selected 30
pixels associated with the fully ISA conditions for each year (510 pixels
in total) by checking the high-resolution Google Earth imagery to avoid
uncertainties sourced from the IS maps, and the mean VI values were
calculated to determined VInv. The resultant mean EVI value (EVInv)
was 0.072, and the mean GPP value (GPPnv) was 92.11 g·m−2·year−1.

3. Results

3.1. Annual maps of impervious surfaces during 2000–2016 at 30-m
spatial resolution

According to the annual maps of impervious surfaces in 2010
(Fig. 3a) and 2016 (Fig. 3b), the impervious surfaces in Shanghai were
mostly distributed in the central city and inner suburbs in 2010 and
expanded to the outer suburbs in 2016, especially in the Pudong,
Fengxian, Jinshan, Qingpu and Chongming districts. Accuracy assess-
ments of the annual impervious surface maps in 2010 and 2016 show
high consistency between the classification maps and ground reference
data for IS area (Table 2). The user accuracies of IS are 90.02% and
89.91% in 2010 and 2016, respectively, and the producer accuracies
are 90.72% and 90.46%. The overall accuracies are 91.81% and
91.52%, respectively, and Kappa coefficients are 0.83 for both 2010
and 2016 IS maps.

We combined all of the annual maps of IS to illustrate the spatial-
temporal patterns of IS expansion from 2000 to 2016 (Fig. 3c). The total
ISA in Shanghai increased from 1587.64 km2 in 2000 to 3097.83 km2 in
2016, an increase of 95% (Fig. 3d). According to the interannual dy-
namics of newly increased ISA shown in Fig. 3c and d, we can divide the
dynamics of IS expansion into three stages (namely, 2000–2004,
2004–2013 and 2013–2016). The slopes of three linear regressions
were 226.9 (R2= 0.975, p=0.001), 70.7 (R2= 0.983, p < 0.001)
and 6.8 (R2=0.874, p=0.04), indicating the different growth rates of
three stages. During the first stage, the ISA increased rapidly and was
mainly distributed in the peri-urban areas centered around the core
urban area. During the second stage, the pace of IS expansion gradually
slowed, but covered more rural areas. During the third stage, the ISA
expansion nearly stabilized.
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Fig. 2. The theory on the changes of EVI and GPP along the impervious surface coverage (ISC) gradient under (a) direct impact and (b) combination of both direct
and indirect impact of urbanization.

Fig. 3. Spatial distribution of impervious surface (IS) in Shanghai derived from Landsat images. IS maps in 2010 (a) and 2016 (c); expansion (c) and annual dynamics
(d) of IS in Shanghai during 2000–2016.
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3.2. Interannual variation and trends of ISC, EVI and GPP during
2000–2016 within 500-m gridcells

The analyses of ISC interannual trends within individual 500-m
gridcells (a total of 28,113 gridcells) during 2000–2016 show that
37.6% gridcells had significant increasing trends, and only 2.4% grid-
cells in the central city had decreasing trends (Fig. 4a). As expected, the
trends of EVI in most gridcells were the opposite of the trends of ISC:
38.0% gridcells showed significant decreasing trends of EVI in the peri-
urban and rural areas, but only 2.8% gridcells showed increasing trends
in the central city from 2000 to 2016 (Fig. 4b). Surprisingly, a fair
amount (4.6%) of gridcells with significant increasing GPP trends were
found in the urban core area while there were many fewer decreasing
trends in other districts, 10% less than EVI (Fig. 4c). As a whole, the
mean ISC showed a significant jump from 0.24 in 2000 to 0.43 in 2016
(Fig. 4d). With rapid and extensive urban expansion, the overall con-
ditions of vegetation showed a progressive decline. EVI and GPP both
fluctuated slightly with more-or-less downward trends. The mean EVI
of Shanghai varied between 0.5 in 2000 and 0.42 in 2016, a decrease of

16% (Fig. 4e). The mean annual GPP of Shanghai ranged from
885 g·m−2·year−1 in 2000 to 769 g·m−2·year−1 in 2016, a decrease of
13% (Fig. 4f).

The linear regression models between EVI and ISC showed sig-
nificant negative correlations (slope < 0 and p < 0.05) in Shanghai
for the 28,113 500-m pixels (Fig. 5a and b), mostly in peri-urban areas.
The linear regression models between GPP and ISC showed 28.0%
significant negative correlations (slope < 0 and p < 0.05) of all pixels
(Fig. 5c and d). Although significant negative correlations were found
in mean EVI, GPP and ISC, the determination coefficients (R2) of GPP
and ISC were significantly lower than those of EVI and ISC (Fig. 5e and
f), indicating that the decline in EVI could be explained well by urban
expansion, whereas the change in GPP was not entirely caused by ur-
banization in Shanghai from 2000 to 2016.

3.3. The impacts of urbanization on EVI and GPP dynamics during
2000–2016 within 500-m gridcells

The relationships of EVI-ISC and GPP-ISC during 2000–2016 are

Table 2
Accuracy assessment of impervious surface (IS) maps in 2010 and 2016, using the ground reference data selected from very high spatial resolution images in Google
Earth.

Year Land use User accuracy/commission error (%) Producer accuracy/omission error (%) Overall accuracy (%)/Kappa coefficient

2010 IS 90.02/9.98 90.72/9.28 91.81/0.83
Non-IS 93.14/6.86 92.61/7.39

2016 IS 89.91/10.09 90.46/9.54 91.52/0.83
Non-IS 92.75/7.25 92.33/7.67

Fig. 4. The trends of (a) ISC, (b) EVI and (c) GPP at 500-m gridcells and annual dynamics of mean (e) ISC, (f) EVI and (g) GPP in Shanghai from 2000 to 2016.
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shown in Figs. 6 and S1. We found that the distribution of 500-m re-
solution pixels presented a shift from low ISC to medium-high ISC from
2000 to 2016, representing the process of urban expansion. The aver-
aged EVI and GPP observations decreased as the ISC increased, and the
cubic regressions of the EVI-ISC and GPP-ISC curves were statistically
significant (R2 > 0.98, p < 0.001) for all years. 92%, 88% and 94% of
averaged EVI values were higher than the zero-impact lines in 2000,
2008 and 2016, respectively, while 89%, 89% and 95% for GPP, clearly
suggesting the positive impact of urbanization on vegetation greenness
and GPP.

The patterns of the indirect impacts of urbanization and the growth
offset were captured by the illustrative examples in 2000, 2008 and
2016 (Fig. 7). The variations of the absolute change along the ISC
gradient were similar for both EVI and GPP. The absolute changes of
EVI and GPP observations were close to zero, with almost all the ne-
gative values distributing over the ISC of 0–0.2, suggesting that some
vegetation in the low ISC areas was negatively affected by urbanization
(Fig. 7a and d). The ISC value of 0.2 seems to be a threshold value
where indirect impacts began to appear, indicating human management
and an urban environment. The absolute changes of EVI and GPP then
increased and peaked at ISC values of ~0.84 and ~0.76, respectively.

The relative indirect impact on EVI increased along the ISC gradient
and reached the maximum of 57.1%, 90.3% and 107.6% at the ISC of

0.81, 0.97 and 0.98 in 2000, 2008 and 2016, while the indirect impact
on GPP reached the greater maximum of 61.9%, 165.7% and 149.7% at
the ISC of 0.80, 0.97 and 0.94 in 2000, 2008 and 2016 (Fig. 7b and e).
Both the growth offset of EVI and GPP showed increases, being stable
and falling along the ISC gradient (Fig. 7c and f). The stable state
mainly occurred in medium-high ISC bins (0.3–0.8), indicating that the
growth offset in suburbs was higher than in rural and highly urbanized
areas. The averages of growth offset were 20.8%, 24.1% and 29.0% for
EVI in 2000, 2008 and 2016, while 11.4%, 18.5% and 21.0% for GPP,
which were lower than EVI. The results indicated that the positive in-
direct impact of urbanization on EVI became gradually stronger in
2000, 2008 and 2016, especially in the high ISC areas, but the impact
on GPP in the high ISC areas was weaker in 2016 than in 2008.

4. Discussion

4.1. Spatial-temporal dynamics of impervious surface in Shanghai during
2000–2016

A number of studies have used remote sensing images and various
algorithms to estimate impervious surface areas (ISA) (or urban areas)
in Shanghai (Table 3) (Fan et al., 2017; Haas et al., 2015; Shi et al.,
2018; Wang et al., 2017; J. Yin et al., 2011; Zhang et al., 2011; Zhao

Fig. 5. The relationships between (a, b) EVI and ISC, (c, d) GPP and ISC at 500-m gridcells, and (e) mean EVI and ISC, (f) mean GPP and ISC in Shanghai from 2000 to
2016.
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et al., 2006). Haas et al. (2015) reported that the amount of urban areas
increased by 1130 km2 from 2000 to 2009, and Shi et al. (2018) re-
ported that the city added 1009.46 km2 to urban built-up land during
the decade 2000–2010. Our results showed that ISA had increased by
1144.92 km2 from 2000 to 2009 and 1230.63 km2 from 2000 to2010,
respectively, which are slightly larger than the estimates of previous
studies. The discrepancy of impervious surface maps between our stu-
dies and the previous studies can be attributed in part to (1) numbers of
images used in land cover classification and (2) definition of impervious
surface areas. In our study, we used all available Landsat images, which
reduced the number of no-data pixels due to cloud cover and shadow. In
our study we include those bare land and long-term fallow fields in the
IS maps, as they were the consequences of the human-induced vege-
tation cover loss and would be likely converted into impervious surface
as urbanization continued (Ying et al., 2017).

The annual impervious surface maps at 30-m spatial resolution and
annual temporal resolution provided new insight on the process of ur-
banization in Shanghai over three distinct periods between 2000 and
2016. The increase of ISA in each period was largely affected by policies
and socio-economic development (Z. Yin et al., 2011). After the aboli-
tion of welfare housing policy in 1998, Shanghai implemented real
estate as the pillar industry of the 10th Five-Year Plan and adopted a
series of measures to stimulate the development of the housing market.
Driven by the policy planning and the real estate industry, urban ex-
pansion in Shanghai reached a new peak with extensive residential
areas, industrial parks and various functional areas around the central
city from 2000 to 2004. Over years, the in-balance between the supply
and demand of land resources was increasingly prominent. In order to
protect cultivated land and meet the construction requirements of

major industrial projects, such as the 2010 Shanghai World Exposition
and large airports, Shanghai began to strictly control the pace of new
construction land and advocated the compact urban land development
in 2006 (Shanghai Planning and Land Resource Administration Bureau,
2006). To some extent, our study revealed the positive effect of land
planning in controlling construction land growth.

4.2. The impacts of urbanization on vegetation greenness in Shanghai

Vegetation indices (e.g., NDVI, EVI) were often used to assess the
impacts of urbanization on vegetation greenness. Cui and Shi (2012)
calculated mean annual NDVI of Shanghai for 1999–2001 and
2008–2010, using 10-day SPOT-4 VGT NDVI data at 1-km resolution,
and found that the area with high NDVI (> 0.3) decreased from 85.8%
of the total area in 1999–2001 to 76.2% in 2008–2010, whereas the
area with low NDVI (0.1–0.3) increased from 12.5% of the total area to
22.6% due to urban expansion. Liu and Gong (2012) analyzed MODIS
NDVI data (500-m pixel resolution) during 2000–2010 and presented a
few increasing trends in the central city and extensive decreasing trends
in the other districts of Shanghai. Our study reported the annual trends
of EVI during 2000–2016, which offers more insights on the effect of
urbanization on vegetation greenness over years. In contrast, from all of
the observations from the 32 cities in China, Zhao et al. (2016) found
that the positive effect of urbanization (i.e., effects other than the re-
placement of vegetation with IS) on vegetation greenness, including
Shanghai in 2001, 2006 and 2011. Our study lends strong support to
Zhao's research (Fig. S1), suggesting that urbanization could benefit the
growth of urban vegetation from the perspective of canopy structure at
a finer resolution and a larger temporal scale.

Fig. 6. Illustrative examples of the relationships between (a, b and c) EVI~ISC and (d, e and f) GPP~ISC in Shanghai in 2000, 2008 and 2016. The grey circles
represent 500-m resolution pixels (n= 28,113), and black circles with error bar are the averaged EVI (GPP) with the averaged ISC of each ISC bin with an interval of
0.01 (n=100). The green, blue and red lines are the cubic regression of the averaged EVI (GPP) (p < 0.001 for all regressions), background EVI and GPP Vv (i.e., the
intercepts of the regressions), and zero-impact lines, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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The increasing trend of greenness in the downtown areas from 2000
to 2016 could be explained by the Shanghai's Five-Year Plans for eco-
logical and environmental protection, which were committed to con-
structing large public green spaces in the central city to increase urban
green areas. As the result, many scattered and new green spaces were
constructed over the last two decades (Wang et al., 2013), which clearly
contributed to the increasing trend of EVI. In addition, the dominant
land-use types differed clearly in Shanghai (Fig. S2), and each land use
has distinct features that determines the vegetation types and the
availability and allocation of growing space (Nowak et al., 1996).
Species composition and density affect all structural variables (e.g., leaf
area index, greenness) and urban ecosystem services (e.g., carbon se-
questration and storage), because different species have distinct size
profiles and traits (Graça et al., 2018; Xu et al., 2010). In Shanghai, the
public green spaces in peri-urban areas, such as parks, street greenbelts
and river banks, where canopy closure and community density are re-
latively high, would offer more favorable habitats for vegetation
greenness and carbon stocks.

4.3. The impacts of urbanization on vegetation GPP in Shanghai

Considering the importance of the carbon cycle in the urban eco-
system, we used annual GPP to represent the photosynthetic uptake of
carbon by vegetation and an indicator of vegetation conditions and
dynamics in Shanghai from 2000 to 2016. Currently, the GPP products
generated by VPM model have not been validated in urban ecosystems
using eddy flux data, as few or no urban eddy flux tower sites were
operated for years in the world. However, the temporal consistency
between GPPVPM and SIF has been reported (Cui et al., 2017; Ma et al.,
2018). To assess the reliability of GPPVPM data, we could use SIF data
from TROPOMI mission in the near future, which has SIF data at both
ungridded format and gridded format.

Cui et al. (2017) reported that Shanghai had statistically significant
linear decreases in annual GPP from 2000 to 2014 and that Shanghai
has experienced a large loss of total annual GPP from 7.78 in 2000 to
6.28 TgC year−1 in 2014. Our results found the same interannual
variation of annual GPP and showed that most decreasing trends

Fig. 7. Indirect impacts of urbanization on EVI and GPP along the ISC gradient in Shanghai in 2000 (violet circle), 2008 (orange circle) and 2016 (green circle): (a)
the absolute EVI change (EVIobs – EVIzi), (b) ωi_EVI (the relative indirect impact on EVI), (c) τEVI (the growth offset of EVI), (d) the absolute GPP change (GPPobs –
GPPzi), (e) ωi_GPP (the relative indirect impact on GPP), (f) τGPP (the growth offset of GPP). The mean values of the growth offset were showed with violet, orange and
green lines for 2000, 2008 and 2016, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 3
The comparisons of urban area in Shanghai from this study with other studies and Statistical Bureau.

Year Fan et al., 2017: urban built-
up land area (km2)

Haas et al., 2015: the
ratio of urban land

J. Yin et al., 2011: urban
area (km2)

Wang et al., 2017: IS
area (km2)

Statistical Bureau: construction
land (km2)

Our study: IS area
(km2) (ISC)

2000 1625.61 0.305 1529.43 / / 1587.64 (0.239)
2002 / / / 1234.40 / 2080.54 (0.310)
2007 / / / 2296.98 2429.08 2609.15 (0.387)
2009 / 0.470 2968.01 / 2830.00 2732.57 (0.417)
2010 2859.90 / / / 2891.20 2818.27 (0.423)
2013 / / / 2351.56 3020.00 3076.22 (0.447)
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occurred in the peri-urban and rural areas at 500-m resolution; these
results were closely related to the increasing trends of ISA (Fig. 3c).
Comparing to EVI, the more increasing GPP trends and less decreasing
trends were found in the urban core area and other districts. Probably
it's because the reflection of EVI become week in dense or closed ca-
nopies with its saturation effect (Huete et al., 2002). That may suggest
that annual GPP is a more valid and sensitive indicator for assessing
urban vegetation condition than greenness, although the common
greenness indices (e.g., NDVI and EVI) were effective enough to map
the green spaces. Recent studies have also reported such negative ef-
fects of land use and cover conversion on GPP from cities in Wuhan and
Denpasar (Liu et al., 2018; Nuarsa et al., 2018).

However, there is still a need to separate the effects of land use
changes from other environmental changes. Using eddy flux observa-
tions and remote sensing data, Xu et al. (2017) reported that land use
changes reduced the regional net ecosystem production (NEP)
(NEP=GPP - respiration) of the Taihu Lake Basin (including Shanghai)
from 14.3 TgC in 2000 to 12.1 TgC in 2010, whereas increasing at-
mospheric CO2 concentrations and nitrogen deposition compensated for
half of the total carbon loss. CO2 eddy flux study found that the annual
GPP of temperate deciduous forests was approximately 26% higher
(p < 0.05) at the urban site of Nagoya (16.89 t C ha−1 year−1) than at
the rural site of Toyota (12.46 t C ha−1 year−1), suggesting a possible
CO2 fertilization effect in photosynthesis due to elevated CO2 levels in
urban areas (Awal et al., 2010). Our results strongly support that the
absolute enhancement of annual GPP increased along the ISC (rural-
urban) gradient but declined when ISC exceeded the threshold of ~0.76
(Fig. 7d). One of the driving factors might be the spatial-distribution of
atmospheric CO2 concentration in Shanghai, as the highest near-surface
atmospheric CO2 concentration occurred in a moderately urbanized
area (423.9 ± 29.3 ppm), where there are extensive areas of trans-
portation and industrial land use types (Liu et al., 2016; Pan et al.,
2016). The results from this study clearly reveal the hot-spots of the
changes in annual GPP in Shanghai at 500-m spatial resolution.

We can conclude that urbanization has already altered the terres-
trial carbon cycle, especially the carbon loss caused by land conversion.
However, we can still maximize urbanization-induced environmental
changes to promote carbon sequestration in urban ecosystems through
effective protection, management and design, as urban green spaces
have a range of benefits for human health and well-being under the
potential pressure brought by urbanization (Douglas et al., 2017; van
den Berg et al., 2015; White et al., 2019; Wood et al., 2017). Our
findings could provide several valuable guidance for urban vegetation
management: 1) the efforts to preserve remnant forest should be tan-
tamount to planting young trees in a city; 2) it is recommendable to
arrange green spaces close to the city center to strengthen their carbon
fixing capacity; 3) the vegetation types and species selection should also
be taken into consideration as they have different responses to urba-
nization (Escobedo et al., 2010; Shen et al., 2008; C. Zhang et al.,
2014). Plant species richness is higher in cities than in surrounding
rural areas due to a high rate of alien species brought into cities by
humans (Wania et al., 2006; D. Zhang et al., 2016). However, a meta-
analysis reported that urban planners tend to select greening plants that
are highly profitable and have aesthetic ornamental properties, re-
sulting in the trend of homogenization in urban plant communities in
China (Qian et al., 2016). It can be said, humans play a key role in
deciding the positive or negative impacts of urbanization on urban
green spaces across a city. Given the findings in this study, the im-
portance of positive impact of urbanization on urban vegetation should
attract wider attention of local urban planners and global urban scholar
communities.

5. Conclusions

In this study, we used time series Landsat and MODIS images in
Shanghai during 2000–2016 to characterize the urban expansion (as

measured by impervious surface area), vegetation greenness (EVI) and
GPP. We quantified the negative and positive effects of urban expansion
(increasing ISA) on vegetation greenness and GPP in Shanghai during
2000–2016. The interannual variation and trends of ISC, EVI and GPP
showed the massive vegetation and carbon loss caused by land use
conversion in peri-urban and rural areas. The urban-rural gradient
analysis showed that the urban environment and human management
resulted in notable enhancement, and growth offset of EVI and GPP
were high in medium-high ISC areas, but low in the areas with very
high ISC or very low ISC. This study has identified the hot-spots of the
changes in ISC, greenness and GPP in Shanghai during 2000–2016 at
30-m and 500-m spatial resolution, which are useful for local urban
planners and stakeholders to better manage urban vegetation in
Shanghai, where approximately 26 million people currently live.

This study is a successful first attempt that demonstrates the po-
tential of our research approach that uses (1) time series Landsat and
MODIS images, (2) Google Earth Engine, (3) pixel- and phenology-
based land cover mapping algorithms, (4) data-driven model (VPM),
and (5) the conceptual framework for identifying negative and positive
effect of urbanization on vegetation greenness and GPP in evaluating
vegetation structure and function in the area that experienced rapid
changes in rural, peri-urban and urban environment. Although the re-
sults from this study are specific to Shanghai, the methodology illu-
strated here could be readily applied in many other cities, to explore
that if the conditions of urban vegetation are associated with different
geographical environments and development patterns.
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