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A B S T R A C T

Changes in Earth’s albedo due to vegetation dynamics, snow cover, and land cover change have attracted much
attention. However, the effects of vegetation dynamics on albedo have not been comprehensively documented
according to its spatial (regional), temporal (within growing season), and spectral (visible, near-infrared, and
shortwave) characteristics. This study examined the effects of vegetation greenness on albedo from 2000 to 2014
in China’s grasslands, which have considerable intra- and inter-annual variations, using remote sensing-based
albedo and two-band Enhanced Vegetation Index (EVI2) data. Generally, we found an insignificant negative
correlation between the shortwave (SW) albedo and EVI2 for grasslands in China. However, the visible (VIS)
albedo was more sensitive to changes in vegetation greenness than near-infrared (NIR) albedo in China’s
grasslands. The relationship between the NIR albedo and EVI2 was more complicated, especially in the Tibetan
Plateau (TP), where the correlation was negative in the early growing season and positive in the late growing
season; while the correlation between the NIR albedo and EVI2 was always negative in main part of Inner
Mongolia (IM). The different albedo-EVI2 relationships in IM and TP may be related to differences in soil al-
bedos. The higher sensitivity of the SW albedo to vegetation greenness change in IM, the stronger effect on land
surface radiation budget. Our finding about vegetation-induced changes in albedo differ in space, time and
spectral bands is expected to contribute to the improvement of land surface models.

1. Introduction

Land surface albedo, defined as the ratio of the total radiation re-
flected from a surface to the total incoming radiation that falls on it, is a
fundamental variable in the land surface radiation budget (Moody
et al., 2007). Land surface albedo is affected by numerous interrelated
factors including snow, vegetation, soil moisture, and solar zenith angle
(He et al., 2014; Li et al., 2018; Loarie et al., 2011). The contribution of
snow cover to land surface albedo is large due to its high reflectance
(Moody et al., 2007). However, the effect of changes in vegetative cover
on land surface albedo also plays a crucial role in the land surface

radiation budget. For example, previous simulations found that defor-
estation increased albedo and cooled down the Northern Hemisphere
(Brovkin et al., 2006; Govindasamy et al., 2001), while forestation in
temperate and boreal forest areas could decrease surface albedo and
offset potential carbon uptake (Betts, 2000).

Earth has been experiencing a greening trend as a result of CO2

fertilization, nitrogen deposition, climate change, and land cover
change (Zhu et al., 2016). The ongoing greening can influence regional
and global climate by altering surface albedo, surface roughness, and
the hydrologic cycle (Bonan, 2008; Li et al., 2018; Zeng et al., 2017).
Therefore, investigating the changes in surface albedo due to vegetation
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and land cover dynamics is vital to understanding their role in earth’s
changing climate. Overall, the land surface albedo in the growing
season is a combination of the vegetation and soil albedos. The main
factor determining which of the two albedos has the strongest influence
on the overall surface albedo is the fractional area covered by each of
vegetation and soil (Kala et al., 2014; Rechid et al., 2009; Wang et al.,
2016). Vegetation affects albedo in two ways. One way is to change the
contribution of soil albedo to overall albedo (Hammerle et al., 2007;
Rechid et al., 2009). When vegetation becomes greener with higher leaf
area index (LAI), more incoming solar energy is reflected, scattered,
and/or absorbed by the vegetation canopy, and only a small proportion
of radiation reaches the ground. The other way is the optical and
structural properties of the vegetation canopy itself, for example, plant
mean stand age, plant height, plant biomass, and vegetation species
composition (Lukeš et al., 2014; Kuusinen et al., 2016).

Grassland ecosystems in China play an important role in the global
biogeochemical cycle. The temperate grassland in Inner Mongolia (IM)
is the third largest in the world (Lee et al., 2002), and the grassland of
the Tibetan Plateau (TP) is earth’s largest alpine ecosystem (Coners
et al., 2016). Thus, it is of great significance to understand how changes
in grassland cover in China affect albedo. Grassland ecosystems,
dominated by therophytes, show remarkable temporal (i.e. seasonal
and inter-annual) and spatial variations that affect surface albedo (Tian
et al., 2014; Wang and Davidson, 2007). Previous studies have found a
significant negative correlation between changes in grassland and land
surface albedo during the growing season in the TP using Normalized
Difference Vegetation Index (NDVI) (Shen et al., 2015; Tian et al.,
2014). Tian et al. (2017) also found that changes in grassland greenness
which indicated by NDVI during the growing season had a greater effect
on albedo in the TP than the snow cover during the non-growing
season.

Albedo is variable in different spectrum bands and across different
land cover types. Earth’s albedo is the amount of the diffuse reflection
of solar radiation, which is shortwave (SW) electromagnetic radiation
generally in the range of 0.3–5.0 µm. Within this SW spectrum, the
visible (VIS, 0.3–0.7 µm) and near-infrared (NIR, 0.7–5.0 µm) broad-
bands are frequently used to detect and monitor vegetation due to its
marked difference in reflectance in these two spectral regions compared
to non-vegetated land cover (Liang et al., 2003). Correlations between
vegetation change and albedo in SW, NIR and VIS broadbands vary
with vegetation types and canopy densities (Blok et al., 2011;
Hammerle et al., 2007; Kuusinen et al., 2016; Lukeš et al., 2016). For
example, the deciduous broadleaf forests show a higher albedo in the
NIR and SW broadbands but lower albedo in VIS broadband in summer
(Gao et al., 2005).

Correlations between albedo and vegetation dynamics also show
temporal variability (Wang and Davidson, 2007). However, the sea-
sonal variability of albedo due to changes in vegetation during the
growing season is not explicitly understood. For example, changes in
carbon and water fluxes due to climate change in the temperate
grasslands of Inner Mongolia contrast the fluxes in the alpine grasslands
of the Tibetan Plateau (Liu et al., 2018), and the different responses by
vegetation to climate change could affect seasonal and inter-annual
albedo differently in the two regions. Specifically, Liu et al. (2018)
found that soil moisture is the major limiting factor in IM while
grasslands in TP are much more limited by thermal conditions. Further,
it is unclear whether the relationships of albedo and grassland eco-
system dynamics are the same in two different grassland types (IM and
TP). First, little is known about whether the negative relationships
between albedo and vegetation greening in the two regions are con-
sistent in each month of growing season. Second, it is not known if there
are differences between the VIS and NIR parts of the albedo spectrum.

In this study, we used remotely sensed albedo and 2-band Enhanced
Vegetation Index (EVI2) data which was designed for sensors with no
blue band and corresponded well with the original EVI (Jiang et al.,
2008) to examine the characteristics of the relationship between albedo

and grassland greenness from three aspects: (1) the VIS and NIR parts of
the albedo spectrum; (2) different months among growing season; and
(3) different geographic regions or grassland types. More specifically,
we addressed the following questions: (1) Did VIS or NIR albedo cor-
relate with grassland greenness, and which part of the albedo spectrum
was more sensitive to changes in greenness? (2) How did the re-
lationship between albedo and grassland greenness vary between dif-
ferent months of the growing season? (3) Was this temporal variability
consistent in different grasslands (e.g., temperate grassland in IM and
alpine grassland in TP)? The answers to these questions would con-
tribute to our understanding of the variability and drivers of the land
surface energy budget in the context of climate change.

2. Data and methods

2.1. Study area

The study area includes all grasslands of China, which encompasses
13 provinces. While the sparse grasslands in Xinjiang were included in
this study, we generally focused on the temperate and alpine grasslands
in Inner Mongolia and Tibetan Plateau. The temperate grassland is
generally located in the northeastern part of China, mainly Inner
Mongolia (IM), where it is strongly influenced by the temperate mon-
soon climate. Its annual precipitation is above 450mm with the rainy
season in summer (June-August), while the mean annual temperature
ranges from −3 °C to 9 °C across the temperate grassland (Zhang et al.,
2014). Annual precipitation decreases from the meadow steppe of the
east to the desert steppe of the west (Kang et al., 2007). The southwest
part of the study area is in the Tibetan Plateau (TP), which is strongly
influenced by the alpine climate. The mean annual temperature ranges
from −15 °C to 5 °C (You et al., 2013). Annual precipitation in the
plateau grassland shows a southeastward increasing pattern ranging
from 100 to 700mm, and the primary grassland types include alpine
steppe and alpine meadow (Yang et al., 2010b).

2.2. Data

2.2.1. Grassland cover data
The grassland extent was defined by using the Moderate Resolution

Imaging Spectroradiometer (MODIS) annual land cover type products
(MCD12C1.005) at a 0.05° spatial resolution with the International
Geosphere-Biosphere Program (IGBP) land cover scheme (Friedl et al.,
2010). To avoid the disturbance from land cover changes, we defined
grassland pixels as those pixels that were classified as grassland > 90%
of the time between 2001 and 2012.

2.2.2. Vegetation greenness data
Vegetation greenness was obtained from the Vegetation Index and

Phenology (VIP) Vegetation Indices Monthly Global datasets (version
4), which was developed by the VIP Research Lab at the University of
Arizona, with a spatial resolution of 0.05° (Didan and Barreto, 2016).
This version was improved by a two-step filtering approach of the input
data and using a new per pixel continuity algorithm at a monthly step,
which improved the data quality and spatial consistency compared to
version 3. We used the gap-filled monthly 2-band Enhanced Vegetation
Index (EVI2) from the VIP30 product (Jiang et al., 2008) as a proxy of
vegetation greenness, which was generated based on the MODIS surface
reflectance data (MOD09) from 2000 to 2014. The VIP EVI2 product
has been used in the Mongolian Plateau (Chen et al., 2015), the
Northern Hemisphere (Kim et al., 2014), and the global scale (Zhang
et al., 2015), all showing the reliability of this dataset.

2.2.3. Albedo data
The albedo data was obtained from the Global Land Surface Satellite

(GLASS) remote sensing products, which were produced and distributed
by the Center for Global Change Data Processing and Analysis at Beijing
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Normal University (http://www.geodata.cn). The GLASS albedo pro-
ducts have a similar accuracy to that of the MODIS MCD43 albedo
products according to a homogeneous FLUXNET sites-based validation
(53 sites) and multi-products cross-validation, and have improved data
gap-filling and smoothing algorithms to generate gapless and con-
tinuous datasets (He et al., 2014; Liu et al., 2013; Ma et al., 2017). We
used the white sky albedo (WSA) GLASS products (GLASS02B06 V4,
2000/001-2014/361) in this study, which has a spatial resolution of
0.05° and a temporal resolution of 8 days. The 8-day albedo data was
aggregated to monthly albedo data using the median value which is an
effective solution to the extreme value problem within a month to
match the monthly EVI2 data.

2.2.4. Snow cover data
The snow cover dataset (MOD10CM.006) from 2000 to 2014 was

obtained from the National Snow and Ice Data Center. The dataset is
with a spatial resolution of 0.05° and a monthly temporal resolution,
and with the unit of percent per pixel. Depending on the study area,
season and validation method, the accuracy of MODIS snow cover
products was between 85 and 95%, and snow cover accuracies are
generally higher for grassland than that of forest (Coll and Li, 2018).

2.2.5. Energy budget data
The Clouds and Earth’s Radiant Energy Systems (CERES) Energy

Balanced and Filled (EBAF) edition 4.0 (CERES EBAF-Surface_Ed4.0)
was used in this study (Kato et al., 2013), which provided monthly and
climatological averages of computed fluxes of Earth’s surface. The
standard CERES data products used cloud and aerosol properties de-
rived from MODIS radiances, meteorological assimilation data from the
Goddard Earth Observing System (GEOS) Version 5.4.1 model, and
aerosol assimilation from the Model for Atmospheric Transport and
Chemistry. We used surface downward shortwave in this study, which
has a spatial resolution of 1°. These data were obtained from the NASA
Langley Research Center CERES ordering tool (http://ceres.larc.nasa.
gov/).

2.3. Methods

2.3.1. Trend analysis of EVI2 and albedo
The trends of EVI2 and albedo were calculated using the linear re-

gression at two scales: regional scale and pixel scale. The regional scale
analysis provided a general picture of trends of vegetation greenness
and albedo for the temperate and alpine grasslands as well as the entire
study area from 2000 to 2014, while the pixel scale analyses showed
the spatial patterns of the EVI2 and albedo. Albedo/EVI2 in a regional
scale was done firstly by averaged from the all the pixels in the region
in a certain year, then the regional trend of Albedo/EVI2 and re-
lationship between albedo and EVI2 were calculated (Hou et al., 2018).
At temporal scales, analyses were conducted for both the growing
season, defined as May through September (Shen et al., 2015; Tian
et al., 2014), and each month in the growing season. The trend was
calculated as the slope of linear regression with the ordinary least
squares method:
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where n was the length of the time series that was studied (n=15), i
was the number of year, and Ai was albedo or EVI2 in the ith year. We
calculated the regression slope and the p-value for each pixel from the
EVI2 or albedo time series images. Next, we created maps of increasing
or decreasing trends in EVI2 or albedo by using the positive or negative
slopes.

2.3.2. Correlation analysis of EVI2 and albedo
To investigate the impacts of vegetation greenness on albedo, we

calculated the Pearson’s correlation coefficient (r) for EVI2 and albedo
(SW, NIR, and VIS) for the entire growing season and also each month
of the growing season from 2000 to 2014:
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where xi and yi were the values of the ith year, x̄ and were the average
values of all years. When r > 0, the two variables were positively
correlated, and when r < 0, the two variables were negatively corre-
lated. The correlation analyses were performed for the whole period
and each month of growing season. Next, we obtained maps showing
the variation of correlation between EVI2 and albedo within the
growing season.

2.3.3. Relative importance calculation of snow cover and EVI2 to albedo
change

We used a relative importance analysis approach to quantify the
relative contributions of vegetation greenness and snow cover to
changes of albedo in each grid cell (Huang et al., 2018), expressed as
the Pearson correlation in a multiple linear regression (al-
bedo = b0 + b1 × EVI2 + b2 × snow cover + ε). ε represented other
factors that might contribute to albedo variation. The analysis was
performed using the ‘relaimpo’ package in R, which was based on
variance decomposition for multiple linear regression models. One of
the most computer-intensive and commonly used methods named 'LMG'
was chosen to differentiate contributions of different correlated re-
gressors in a multiple linear regression (Grömping, 2006). The con-
tribution of EVI2 and snow cover were quantified in each grid cell
across the study area, and then the higher contribution to the albedo
variation was identified as the dominant driver (Hou et al., 2018;
Huang et al., 2018).

3. Results

3.1. Trends of greenness and albedo from 2000 to 2014

Growing season mean EVI2 (EVI2GSM) showed an insignificant in-
crease (R2= 0.18, p=0.11, Fig. 1a) from 0.196 in 2000 to 0.202 in
2014 with an increasing rate of 0.00078 year−1 across the whole study
area. The growing season mean SW albedo (SWAGSM) decreased sig-
nificantly over the past 15 years, with an average decrease of
0.00030 year−1 (R2= 0.57, p < 0.05, Fig. 1b). The growing season
mean NIR albedo (NIRAGSM) showed a slight but insignificant decrease
(R2= 0.08, p=0.32, Fig. 1c), whereas the growing season mean VIS
albedo (VISAGSM) showed a significant decrease (R2= 0.65, p < 0.05,
Fig. 1d) with a decrease rate of 0.00041 year−1.

The spatial patterns of the change rates in EVI2GSM, SWAGSM,
NIRAGSM and VISAGSM during 2000–2014 were shown in Fig. 2. Most of
the grasslands in China experienced a greening trend (67.0%) with
15.3% of the grasslands being statistically significant (p < 0.05 here-
after, red in insets of Fig. 2a). One-third (33.0%) of grasslands under-
went a decrease in EVI2GSM and only 2.2% were significant (Fig. 2a).
Notably, the EVI2 trends varied in different months of the growing
season (Fig. S1). Specifically, in May most of the grasslands (80.0%)
experienced an increasing trend, while in July only 56.0% of grasslands
experienced an increase (Fig. S1 a1, a3).

For SWAGSM and NIRAGSM, 78.0% and 52.6% of grasslands experi-
enced decreases, respectively, and were mainly distributed in IM; and
28.5% and 15.6% of pixels were statistically significant for SWAGSM and
NIRAGSM, respectively. Meanwhile, 22.0% and 47.4% of grasslands had
increasing trends in SWAGSM and NIRAGSM, respectively. Of these
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Fig. 1. Inter-annual variations and trends of the growing season mean EVI2 (May–September) (a), SW albedo (b), NIR albedo (c), and VIS albedo (d) over the
grasslands in China during the period 2000–2014. Straight lines indicate linear regressions of EVI2, SW albedo, NIR albedo, and VIS albedo against time.

Fig. 2. Spatial pattern of trends in growing season mean EVI2 (a), SW albedo (b), NIR albedo (c), and VIS albedo (d) of grasslands in China. The inset shows the pixels
with statistical significance (p < 0.05). The top inset in sub-Figure (a) shows the distribution of the studied grassland extent; the blue line in sub-Figure (a) shows the
region of the TP; the orange line in sub-Figure (a) shows the region of the IM (Loess Plateau was combined into the IM grassland region given its small proportion of
grasslands in this study). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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grasslands, 2.2% and 11.0% had statistically significant increasing
trends in SWAGSM and NIRAGSM, respectively, and were mainly dis-
tributed in the TP and northeast IM (Fig. 2b and c). VISAGSM decreased
in most of the study area (87.0%), and the decrease was statistically
significant for 35.3% of the pixels (Fig. 2d). The areas with increasing
NIR albedo varied from May to September. More than half (54.2%) of
the grasslands experienced an increasing trend in NIR albedo during
June, which were mainly distributed in the TP and the northeast of IM.
However, only 34.7% of grasslands showed an increasing trend in May
(Fig. S1 c1, c2).

3.2. Spectral variations in SW, NIR, and VIS albedo changes due to
vegetation dynamics

SWAGSM was negatively correlated with EVI2GSM in 68.8% of the
grassland pixels with 21.1% of the grassland pixels being statistically
significant (p < 0.05, hereafter). A positive correlation was found in
31.2% of the pixels with 3.0% being significant (Fig. 3a). For NIRAGSM,
56.1% of the grasslands had a positive correlation with 10.8% being
significant (Fig. 3b), and 43.9% of the pixels had a negative correlation
with 8.2% being significant. The positive correlations were mainly
distributed in TP and northeast IM, and the negative correlations were
mainly distributed in IM. For VISAGSM, negative correlations of albedo
and EVI2 were found in most areas (84.8%) with 41.1% being sig-
nificant (Fig. 3c).

3.3. Monthly variations in SW, NIR, and VIS albedo changes due to
vegetation dynamics

The correlation between the SW albedo and EVI2 varied in different
months. In each month, the number of negatively correlated grasslands
pixels was higher than those with a positive correlation, but the number
of pixels with a positive correlation increased from May to September.
The proportion of pixels with a positive correlation between SW albedo
and EVI2 in each month was 19.3% (May), 23.8% (June), 34.3% (July),
41.7% (August), and 44.3% (September), respectively. Thus, the
number of pixels with negative correlations decreased from May to
September: 80.7%, 76.2%, 65.7%, 58.3%, and 55.7% respectively.
From May to September, the shift from a negative correlation to a po-
sitive correlation mainly occurred in TP, while in IM the correlation was
consistently negative for most grasslands (Fig. 4a1-a5).

Correlations between the NIR albedo and EVI2 shifted from negative
to positive from May to September. The negative correlation between
the NIR albedo and EVI2 was obvious in May within 70.6% of study
area (Fig. 4b1). By August, the positive correlation became dominant,
with 64.3% pixels having a positive correlation (Fig. 4b4). This shift
mainly occurred in TP and northeast IM.

The negative correlation between the VIS albedo and EVI2 was
stronger than that of the NIR albedo. Most of the grasslands in China
showed a negative correlation with significant negative correlation
mainly distributed in IM. Grasslands with a negative correlation cov-
ered the largest area in June, whose area accounted for 89.2% of the
total area. Moreover, the area with a significant negative correlation

Fig. 3. Correlation coefficients between the growing season mean EVI2 and the SW albedo (a), NIR albedo (b), and VIS albedo (c) in the grasslands of China. The
insets indicate the distribution of the pixels that were statistically significant at p < 0.05. The bottom right sub-Figure (d) shows the total number of pixels that were
significantly correlated with EVI2 for the SW, NIR, and VIS albedos (p < 0.05); there were total 55,038 pixels in the studied grasslands.
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Fig. 4. The spatial pattern of correlation coefficients between EVI2 and SW albedo (a1-a5); NIR albedo (b1-b5); VIS albedo (c1-c5) for grasslands in China from May
to September. The insets indicate pixels that were statistically significant at p < 0.05. The bottom sub-Figure shows the total number of SW albedo (a6); NIR albedo
(b6) and VIS albedo (c6) pixels that were significantly correlated with EVI2 from May to September (p < 0.05). There were a total of 55,038 pixels in the studied
grasslands.

L. Zheng, et al. ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019) 1–12

6



was notably larger than that of NIR from May to September (Fig. 4c1-
c5).

3.4. Spatial variations in SW, NIR, and VIS albedo changes due to
vegetation dynamics

The relationship between SW albedo and EVI2 showed spatial het-
erogeneity. Generally, SW albedo and EVI2 were positively related in
TP while they were negatively related in most parts of IM. Therefore,
we investigated the changes in albedo in these two regions to examine
their spatial patterns (Fig. 2a). It is important to note that we combined
the small range of grassland on the edge of the Loess Plateau into the IM
zone.

For IM and TP combined, SW albedo significantly decreased during
the growing season and each month of the growing season (Fig. 5).
However, the significant positive trend (p < 0.05) in EVI2 was only
found in May. Similarly, for IM (Fig. 5) SW albedo had significant de-
creasing trends, but a significant increasing trend in EVI2 was only
observed in May. For TP, albedo had no significant annual trend for the
growing season or growing months (Fig. 5). EVI2 had a significant
positive trend only in May. The trends of the monthly NIR and VIS
albedo and monthly EVI2 from 2000 to 2014 were shown in Figs. S2
and S3.

The Fig. 6 illustrated the correlations between monthly mean EVI2
and albedo in IM and TP from May to September. For the entire
growing season, NIR and EVI2 were negatively correlated in IM and

positively correlated in TP. In May, NIR albedo and EVI2 had a sig-
nificant negative correlation in IM and an insignificant negative cor-
relation in TP. However, from June to September NIR albedo was po-
sitively correlated with EVI2 in TP. Meanwhile, the significant negative
correlation between NIR albedo and EVI2 in IM was only found in May.
The relationship between VIS albedo and EVI2 was insignificant
(p < 0.05) in TP for July, August, and September. In IM, VIS albedo
was significantly negatively correlated with EVI2 for the growing
season and each month.

3.5. Potential effects of albedo and vegetation changes on surface net
radiation

Overall, the average EVI2 in TP was higher than in IM, and the
average albedo in TP was lower than in IM. The regression slope values
of EVI2 to SW albedo were −0.23 (growing season), −0.39 (May),
−0.15 (June), −0.12 (July), −0.08 (August) and −0.16 (September)
in IM and were −0.01, −0.16, −0.02, 0.06, 0.03, and 0.01 in TP.

Based on the linear regressions of albedo and EVI2 as shown in
Fig. 6, we further calculated that the response of the surface absorbed
downward shortwave radiation to a small change of 0.01 in EVI2
(Fig. 7). The regression slopes of EVI2 and SW albedo in Fig. 6 were
multiplied by the regional mean surface downward shortwave of EBAD-
Surface product to calculate the monthly variation of the surface ab-
sorbed downward shortwave radiation. Positive values represented
more energy absorption and negative values represented the opposite.

Fig. 5. The inter-annual variability of the monthly SW albedo and monthly EVI2 from 2000 to 2014 in total regions of IM and TP, IM region and TP region.
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In May, an increase in EVI2 by 0.01 led to an increase in absorbed
downward shortwave radiation, reaching 1.00Wm−2 in IM. In June,
July, August, and September, the corresponding values were
0.39Wm−2, 0.30Wm−2, 0.18Wm−2, and 0.31Wm−2, respectively.
The corresponding values in TP were 0.42Wm−2, 0.05Wm−2,
−0.14Wm−2, −0.06Wm−2, and −0.02Wm−2 from May to Sep-
tember. However, we note that these values represent broad spatial and
temporal averages and should be interpreted as approximate potential
differences in surface net radiation rather than absolute radiative for-
cing factors.

4. Discussion

4.1. Attribution of albedo changes to vegetation from different perspectives
of space, time and spectral bands

This study examined the complex correlations between land surface
albedo and EVI2 in grasslands of China for the different broadbands of
albedo (SW, VIS, and NIR), each month of the growing season (from
May to September), and different regions (IM and TP). Generally, the
SW albedo decreased where EVI2 increased (Fig. 2a and b). The NIR
albedo was either positively or negatively correlated with EVI2 in dif-
ferent regions (IM and TP), while the VIS albedo was negatively cor-
related with EVI2 in most of the grasslands (Fig. 3b and c). The number
of pixels that had a significant correlation between EVI2 and VIS albedo
was almost two times than that of EVI2 and NIR albedo (Fig. 3d), which
indicated that the VIS albedo was more susceptible to changes in ve-
getation than the NIR albedo. This result is consistent with the previous
research on forests. For example, Lukeš et al. (2016) found that the NIR
albedo showed a weaker negative correlation with forest density than
that for the VIS albedo in Finland. The possible reason is that vegetation
absorbs more solar radiation in the VIS waveband, while reflect and
transmit most of the radiation in the NIR waveband, and the reflection
and transmit could be more susceptible to canopy structure and soil
albedo other than greenness (Kala et al., 2014).

In terms of different periods, previous studies found that in TP the
decreasing annual albedo primarily resulted from increasing grassland
greenness in the growing season (Tian et al., 2017). In this study we
found more details about monthly variation in the relationships be-
tween albedo and EVI2 during the growing season. Specifically, the
correlations between the NIR albedo and EVI2 changed from being
negative in May (early growing season) to positive in August in most of
the grasslands in TP and northeast IM (Fig. 4b1-b5). The VIS albedo was
negatively correlated with EVI2 in most of the grasslands from May to

Fig. 6. The correlations between the monthly mean EVI2 and albedo from May to September. The yellow points and regression line correspond to the IM region; the
blue points and regression lines correspond to the TP region; the red points and regression lines correspond to the total regions of IM and TP. *p < 0.1, **p < 0.05.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The variation of the absorbed downward shortwave radiation caused by
an increase of EVI2 by 0.01, according to the linear regressions of albedo and
EVI2 (Fig. 6).
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September (Fig. 4c1-c5). The changes in SW, NIR, and VIS albedos due
to EVI2 varied from May to September, but EVI2 was consistently ne-
gatively correlated with albedo in May (Fig. 6). Meanwhile, the coef-
ficients of determination in Fig. 6 decreased mostly from May to Sep-
tember. The likely reason is that the relationship between EVI2 and
albedo was affected by different amounts of litter and dead biomass
coverage which resulted in different ratios of green-to-dead biomass
during the growing season. Litter and dead biomass have different
spectral characteristics from green biomass and soil which makes the
relationship between greenness and albedo more complex, and the
canopy scale’s albedo of grassland is affected by soil, leaf, stem, and
dead material under grass (Gao et al., 2005; Liu et al., 2017; Wang and
Davidson, 2007).

As for regional differences, the change in albedo varied in IM and TP
(Fig. 6). In IM, albedo was negatively correlated with EVI2, which was
consistent with previous studies (Li et al., 2016; Planque et al., 2017).
For instance, Planque et al. (2017) showed the negative correlation
between albedo and NDVI at a French forest site. Li et al. (2016)
showed that there was a negative correlation between albedo and NDVI
in all researched catchments in the Loess Plateau. The regression slopes
of NDVI and albedo in Loess Plateau were steeper than that in TP and
were similar with our results (Li et al., 2016; Shen et al., 2015). In the
IM region, where soil is brighter resulting from sandy surfaces and
poorly organic, the soil albedo differs greatly from the vegetation al-
bedo. When the vegetation turns green, the contribution of the soil
albedo to the overall albedo is decreasing, which leads to the strong
negative correlation between vegetation greenness and albedo, and the
proportion of pixels with significant correlation is relatively high.
Especially, due to relatively low LAI and canopy height (Huang et al.,
2017), the change of fractional area covered by vegetation and soil
plays a more important role in NIR albedo than another factor of ca-
nopy development resulting in increased scattering. Unlike the IM re-
gion, we found that the negative correlation between EVI2 and SW
albedo was only significant in May and June in TP, while there were no
significant negative correlations in other months (Fig. 6). The possible
reasons are that soil moisture is relatively high in middle of growing
season (Zeng et al., 2015) which darken the soil color, and soil is
abundantly organic leading to the lower soil reflectance in VIS spectral
band, and thus the difference in the reflectance of soil and vegetation is
reduced and smaller than that in IM. Another reason is that the NIR
albedo increases with canopy development due to increased multiple
scattering within the canopy in TP with relatively high LAI (Gates,
1965) and canopy height (Huang et al., 2017). Hammerle et al. (2007)
also reported that albedo increased with green area index (GAI) in a
temperate grassland in Austria. This phenomenon is similar with the
overall albedo increase in the shrub-covered areas of the sub-Arctic due
to increasing optical scattering in the NIR spectral region (Williamson
et al., 2016). Albedo may not be constantly negatively correlated with
vegetation greening, which depended on geographic and seasonal dif-
ferences (Blok et al., 2011; Lukeš et al., 2014). Notably, the relationship
between albedo and EVI2 showed similar pattern in northeastern IM
and TP. This phenomenon is due to that these two regions own more
moist soil and higher LAI (canopy density) than the southwestern IM
region.

Our analysis indicated that the different relationships between al-
bedo and EVI2 in IM and TP regions may be due to the differences in
soil albedos which depends on the soil texture, soil organic deposition
and soil moisture (Carrer et al., 2014; Song, 1999). Our observed re-
gional differences matched the regional differences found in bare soil
albedos using the Kalman Filter method and MODIS data (Carrer et al.,
2014). The average soil albedo of the IM region was approximately
0.20–0.30 and the soil albedo of TP was approximately 0.15–0.20.
(Carrer et al., 2014). The bigger difference of albedo between vegeta-
tion and soil results in higher sensitivity of albedo to EVI2 because
changes in canopy cover rapidly change the contribution of vegetation
and bare soil albedo to the overall surface albedo (Liu et al., 2017;

Sanchez-Mejia et al., 2014), and in some cases the albedo increased as
canopy cover increased, which may be attributed to relatively low soil
reflectance (Hammerle et al., 2007). Land surface albedo is vital for
land surface models which calculate albedo as a function of vegetation
and soil albedos in the snow-free period. Thus, it is important to esti-
mate the albedo of bare soil accurately and consider the interaction
between vegetation and soil more reasonably (Kala et al., 2014; Rechid
et al., 2009; Wang et al., 2016; Yin et al., 2016).

Phenology and the different rates of change in NDVI have important
influences on albedo (Song, 1999). Our results showed that the increase
of absorbed shortwave radiation caused by the increase of EVI2 by 0.01
was largest in May (early growing season, Fig. 7). One reason is that the
regression slope of EVI2 and SW albedo was steepest in May (Fig. 6),
and another reason is that the value of surface downward shortwave
was highest in May (Yang et al., 2010a). The regression slope in May
was highest during growing reason as the variation in vegetation
(conversion from low greenness to high greenness) will quickly change
the contribution of soil reflectance to surface albedo (Liu et al., 2017).
This is consistent with the more significant correlation between the
albedo and NDVI variation (quick conversion from low greenness to
high greenness) in the sparsely vegetated zone (Tian et al., 2014).

Previous studies have reported the increased rates of NDVI in each
season are different (Piao et al., 2011; Sun and Qin, 2016). Spring is an
important season for vegetation greening, because the rate of increase
in NDVI in spring was larger than in other seasons for TP (Zhang et al.,
2013b). Moreover, the phenology of vegetation has been affected by
climate change because warming has lengthened the growing season in
most of the TP (Sun et al., 2015; Wang et al., 2017a; Zhang et al.,
2013a). Loranty et al. (2011) suggested that the albedo correlated with
vegetation changes in rapid spring transition has an important impact
on surface energy budgets. Therefore, the phenology and vegetation
greenness dynamics due to climate change will have incremental po-
tential impacts on albedo and surface energy budgets.

4.2. Uncertainties and implications

The effects of EVI2 on albedo may have two natural processes in the
TP region, especially for May: vegetation greening and length of the
growing season, which could be affected by snow cover. Previous stu-
dies indicated that snow cover considerably affects surface albedo (Li
et al., 2018). Snow cover may distort the relationship between albedo
and EVI2, although the snow cover in the TP showed no widespread
decline (Wang et al., 2017b). Particularly, the snow cover fraction in TP
is larger in May and October than the other months of growing season
(Pu et al., 2007). Therefore, we construct maps of the dominant driver
(snow cover or EVI2) influencing the SW, NIR and VIS albedos in every
month of the growing season, respectively (Fig. 8). Snow cover is
identified as the foremost important driver of the SW, NIR, and VIS
albedos in TP in May (Fig. 8a). For example, for the SW albedo, 61.2%
of the studied region in TP is dominated by snow cover in May, in
contrast, only about 20.5%, 9.7%, 11.5% and 34.1% of the total pixels
was dominated by snow cover in other months. However, the main
driver in IM is EVI2, with more than 99% of the pixels being dominated
by EVI2 in the whole growing season. The snow cover could depress the
value of EVI2 and elevate the value of SW albedo in the TP region. The
correlation between SW albedo and EVI2 in this study was likely af-
fected by snow cover in May in TP, and yet rarely affected by snow
cover in IM.

In this study, we mainly focused on the relationship between
greenness and albedo. However, human-induced land use changes, such
as agricultural expansion and grassland restoration, could affect land
surface albedo as well (Houspanossian et al., 2017; Loranty et al., 2011;
Lukeš et al., 2016; Zhai et al., 2015). Moreover, regional climate
change, especially increased temperatures, is affected by radiation/
energy fluxes, including absorbed shortwave radiation, evapo-
transpiration, and other factors (Lee et al., 2011; Peng et al., 2014; Shen
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et al., 2015; Yuan et al., 2017; Zhao et al., 2018). Thus, the relation-
ships between albedo and vegetation dynamics controlled by anthro-
pogenic activities should be investigated in future studies. In addition,
effects of phenology change as well as species composition on albedo
also need to be explored in the future.

5. Conclusions

In this study, we detected spatial, temporal, and spectral variability
in albedo due to greenness changes in the grasslands of China. We

found that more than half of grasslands (67.0%) experienced a greening
trend with 22.0% significant while 78%, (28.5% significant), 53%
(15.6% significant) and 87% (35.3% significant) of grasslands showed
decreased trends in the SW, NIR, and VIS albedos, respectively. VIS
albedo was more sensitive to vegetation change than NIR albedo. Also,
VIS albedo was negatively correlated with EVI2 in all the months of
growing season in most of China’s grasslands. However, the negative
correlation between SW/NIR albedo and EVI2 mainly occurred in the
early growing season, but changed to a positive correlation in some
regions in TP and the northern part of IM. Through analyzing the spatial

Fig. 8. The dominant factor influencing variations in albedo defined as the driving factor that contributes the most to the increase (or decrease) in albedo in each grid
cell.
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patterns of correlations between EVI2 and albedo, we found two dif-
ferent modes in temperate (IM) and alpine grasslands (TP). Soil
moisture induced soil albedo differences could be a potential reason for
the different modes of albedo-EVI2 relationships in IM and TP. The
greater change in albedo due to grassland greenness in IM indicated
that this region had a relatively larger influence on the land surface
energy budget and climate. Considering future grassland cover changes
due to climate change, these biophysical feedbacks via albedo should be
considered. The findings in this study about the spatial, temporal, and
spectral variations in albedo responses to grassland greenness changes
in China improve our understanding of land-atmosphere interactions
and are helpful for improving land surface models.
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