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A B S T R A C T   

Grassland degradation (within-state change) and desertification (state conversion from grasslands to deserts) are 
different states in the complex dynamic process of grassland deterioration. However, the dynamics and associ
ated drivers of the two states have been rarely examined separately, which is critical for early warning and 
conservation policy making. Here, the grassland degradation and desertification in Central Asia (CA) were 
studied due to their evident vulnerability to climate extremes and human activities. We performed a two-step 
approach to identify the critical state zones first (i.e., grasslands, deserts, and the desertification zones) and 
then assess the vegetation dynamics within each zone. Finally, we quantified the roles of CO2 fertilization effect, 
climate change, climate variability, land use (LU), and anthropogenic climate change (ACC) on the vegetation 
dynamics in different state zones. The results showed that the areas of grasslands and sparse vegetation regions 
(including deserts and desertification zones) were stable from 2000 to 2020, but the trends of vegetation 
greenness were divergent with a reduction in grasslands and an increase in sparse vegetation regions. Further
more, climate change and climate variability were the main driving force affecting grassland degradation in CA. 
Yet the vegetation greening in the desertification and desert zones was mainly driven by the rising CO2 and LU. 
Moreover, ACC degraded 20.63% of grasslands and sparsely vegetated lands in CA on the baseline of 2000. The 
results highlighted the risks of grassland degradation in CA. This study proposed a methodology to examine 
grassland degradation and desertification in detail and quantify the associated driving factors (especially ACC) at 
the pixel scale, which provided some insights on developing region-precise strategies for grassland conservation 
in CA and other drylands.   

1. Introduction 

Drylands cover around 41% of the land surface and support over 
38% of the human beings (Berdugo et al., 2017; Reynolds et al., 2007), 
contributing to the largest variability in the global carbon sink and 
providing wide ecosystem services (Li et al., 2021; Lian et al., 2021; 
Poulter et al., 2014). Human activities pose a serious threat to vegetation 
habitats in global drylands, such as the loss of green space caused by 
urbanization (Cetin and Sevik, 2016; Ren et al., 2022; Yucedag et al., 

2018). In addition, climate change also largely affects the dryland 
vegetation growth. For example, drought led to the water shortage and 
soil productivity decline (Varol et al., 2023). Thus, dryland ecosystems 
are increasingly endangered by land degradation and desertification, 
which furthermore threatens the environment and socio-economic ac
tivities (Koutroulis, 2019; Reynolds et al., 2007). Grasslands, as the main 
ecosystem of drylands, are under severe threat from ongoing degrada
tion undermining their capacity to support biodiversity, ecosystem 
services and human well-being (Bardgett et al., 2021). 
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Central Asia (CA) is one of the largest dryland regions, dominated by 
moisture-limited grassland, semi-desert, and desert ecosystems (Zhang 
et al., 2018). In the last 30 years, CA has been experiencing a higher 
warming rate (0.4 ℃ per decade) than the average (0.3 ℃ per decade) of 
the Northern Hemisphere (Hu et al., 2014; Ma et al., 2021). In addition, 
human activities in this region have changed dramatically since 1990, 
including the conversion of land reclamation and cropland abandon
ment, exploitation of gas and oil, and the rehabilitation of grazing ac
tivities (Karnieli et al., 2008; Zhou et al., 2019). These evident 
anthropogenic activities greatly affected the grassland conditions (Kar
nieli et al., 2008; Wright et al., 2012). Faced with significant increases in 
temperature, precipitation extremes, and dramatic land use changes (de 
Beurs et al., 2015; Hu et al., 2014; Schiemann et al., 2008), the grass
lands are under increasing pressure of degradation and desertification in 
CA. In contrast, recent studies suggested that the global drylands expe
rienced widespread greening driven by CO2 fertilization or land use 
practices (Ahlström et al., 2015; Andela et al., 2013; Fensholt et al., 
2012; He et al., 2019; Piao et al., 2020; Wang et al., 2018c). So far little 
is known about how the grassland states in CA response to the seemingly 
conflicting contexts. It is necessary to clarify the dynamics and the un
derlying driving mechanisms of grassland degradation and desertifica
tion in CA to improve our understanding and support the Sustainable 
Development Goal of zero net land degradation (SDG 15.3) in drylands 
(Jiang et al., 2022). 

According to the desertification theory in the framework of bi-stable 
ecosystem dynamics, there are critical thresholds (or tipping points) in 
the process of grassland deterioration (D’Odorico et al., 2013). When a 
tipping point was unreached, the grassland structures or functions (e.g. 
vegetation cover, productivity) reduced gradually caused by distur
bance that was called grassland degradation (gradual change within a 
state). At one tipping point, the grassland ecosystem shifted from the 
grassland state to the desert state that was called grassland desertifica
tion (state conversion) (Zhang et al., 2018). The gradual grassland 
degradation determines the potential desertification areas (Ma et al., 
2021). The conversion from vegetated to unvegetated states is the most 
sensitive and fragile area in drylands (Zhang et al., 2018). They highly 
determine the direction of the grassland desertification under distur
bance. Understanding the dynamics of grassland degradation and 
desertification separately is therefore of paramount importance to 
conduct region-precise management and restoration activities (Andrade 
et al., 2015). 

Remote sensing is often used for change detection in grasslands from 
regional to global scales (Burrell et al., 2017; Burrell et al., 2018; Sahin 
et al., 2022). For example, the Normalized Difference Vegetation Index 
(NDVI), as a proxy for ecosystem productivity and vegetation condition 
(Cetin et al., 2022; Cetin et al., 2021; Degerli and Cetin, 2022; Nama 
et al., 2022; Pace et al., 2021), was widely used to track land degrada
tion and desertification by trend analysis approaches (Bai et al., 2019; 
Higginbottom and Symeonakis, 2014; Jabal et al., 2022). The relation
ships between vegetation indices and climate variables (e.g., precipita
tion) were another commonly used indicator to measure land conditions 
(Burrell et al., 2017; Evans and Geerken, 2004). Yet, existing studies 
usually concentrated on the vegetation dynamics over the whole study 
region, which hardly separated the grassland degradation and deserti
fication individually and examined the vegetation dynamics within each 
state explicitly (Jiang et al., 2017; Mariano et al., 2018). 

The drivers of grassland degradation and desertification in CA are 
complicated in spatial scales due to the high sensitivity of vegetation to 
large climate variations and various human activities (Bardgett et al., 
2021; Chen et al., 2020). Although much attention had focused on 
examining the drivers of land degradation in CA in recent decades, it 
remains poorly quantified on the contributions of each climate and land 
use factor to grassland degradation or desertification explicitly at the 
pixel scale to present the spatial heterogeneity of the drivers (Chen et al., 
2020; Jiang et al., 2019; Xu et al., 2016). Additionally, the effects of 
rising CO2 on vegetation trends were few considered in the existing 

driving force analyses in CA (de Beurs et al., 2015; Zhang et al., 2018; 
Zhou et al., 2015). Furthermore, the roles of anthropogenic climate 
change (ACC), including both changes in water availability (driven by 
variations of precipitation and temperature) and water use efficiency 
(driven by rising CO2), were found significant in land degradation 
(degraded 5.43 million km2 of land) of drylands globally (Burrell et al., 
2020). However, how ACC affects the grassland dynamics in CA remains 
unclear (Jiang et al., 2022). 

In this study, we aimed to separately analyze the grassland degra
dation and desertification processes in CA and disentangle the contri
butions of CO2 fertilization, climate, land use, and ACC quantitatively at 
the pixel scale. To achieve these goals, we first identified the different 
land state regions, including persistent grassland zone (PGZ), desertifi
cation zone (DZ), and persistent desert zone (PDZ), by monitoring the 
annual grasslands and sparsely vegetated lands (consisting of DZ and 
PDZ) from 2000 to 2020. We then examined the vegetation dynamics 
over the three state zones during the last two decades, respectively. 
Finally, we quantified the contributions of rising CO2, climate change, 
climate variation, land use, and ACC on grassland degradation and 
desertification at the pixel scale. We especially compared the driving 
factors among different state zones. This study provided an observation- 
based methodology to carry out refined study on grassland dynamics 
and the associated drivers at regional to global scales to enhance the 
stakeholders’ knowledge. 

2. Materials and methods 

2.1. Study area 

Central Asia is in the core region of the Eurasian continent, including 
five countries of Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, 
and Tajikistan, with a total area of about 4 million square kilometers 
(Fig. 1a). It is dominated by plains and hills having the topography high 
in the east and low in the west. It has a dry continental climate, char
acterized by scarce precipitation, high evapotranspiration, and large 
temperature fluctuations (Zhu et al., 2019). The mean annual precipi
tation (MAP) is about 270 mm ranging from ~400 mm in the lowlands 
of the northern part to <100 mm in the southwest areas of Central Asia 
(Zhou et al., 2015). According to the Moderate Resolution Imaging 
Spectroradiometer (MODIS) land cover map (MCD12Q1) in 2019, 
grasslands constitute the largest ecosystem covering about 72% of the 
total area, followed by barren or sparsely vegetated lands (14.7%) and 
croplands (5.5%) (Fig. 1a). 

2.2. Data 

2.2.1. Land cover data 
The annual 500-m MODIS land cover data (MCD12Q1, Version 6.1) 

from 2001 to 2019 were collected using the Google Earth Engine plat
form (Gorelick et al., 2017). This study used the product generated 
based on the International Geosphere-Biosphere Program (IGBP) clas
sification scheme with 17 land cover classes (Sulla-Menashe et al., 
2019). 

2.2.2. Land surface reflectance data 
The MODIS surface reflectance products with 8-day intervals 

(MOD09A1) were used to build the long-term vegetation index (VI) time 
series from 2000 to 2020. The observation quality of the images was 
estimated at the pixel scale in three steps. First, the bad observations 
from clouds and cloud shadows were eliminated using the quality 
assurance layer. Then, the reflectance of the blue band ≥0.2 was also 
used as a complementary approach to remove the pixels with cloud 
contamination. Third, the snow pixels were excluded using the algo
rithms of normalized difference snow index (NDSI) > 0.4 and NIR >
0.11 (Xiao et al., 2005). 

The surface reflectance data with good quality were used to calculate 
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the Enhanced Vegetation Index (EVI) (Huete et al., 2002), Land Surface 
Water Index (LSWI) (Xiao et al., 2005), and NDSI (Hall et al., 2002). EVI 
was used considering its higher robustness to the interference of atmo
sphere and soils than NDVI (Huete et al., 2002). LSWI was sensitive to 
leaf and soil water (Xiao et al., 2006). The gaps in the VI time series 
resulting from the quality control were filled using the linear interpo
lation approach. 

NDSI =
ρGreen − ρSWIR
ρGreen + ρSWIR

(1)  

EVI = 2.5 ×
ρNIR − ρRed

ρNIR + 6 × ρRed − 7.5 × ρBlue + 1
(2)  

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(3)  

where ρBlue,ρgreen,ρRed ρNIR and ρSWIR are the surface reflectance values of 
blue, green, red, near-infrared, and shortwave-infrared bands. 

2.2.3. Land surface temperature (LST) data 
LST is a critical variable to understand land–atmosphere interactions 

(Kumar et al., 2022). A range of satellite sensors (such as ASTER, 
Landsat, and MODIS) can provide LST information over the Earth’s 
surface (Cetin, 2019). We collected the MODIS LST products from Terra 
(MOD11A2, Version 6.1) for the years 2000 to 2020, which have an 8- 
day temporal interval and 1-km spatial resolution. MOD11A2 datasets 
provide daytime and nighttime LST at ~10:30 am and ~10:30 pm local 
solar time, respectively. In this study, the thermal growing season (TGS) 
was calculated using the nighttime LST. It was reported that this LST 
product had an absolute error of <1 K (Wan, 2014). The valid pixels with 
the quality flag as ’00′ or ’01′ in the quality layer were used in this study. 
The linear interpolation approach was used to fill the gaps in the LST 
time series. The TGS was defined based on the LST following the fact that 
plant growth needs the temperature reach to a threshold. The start and 
end of the LST-based growing season were calculated with nighttime 
LST above 0 ◦C (LST0) for continuous three 8-d intervals in each year 
from 2000 to 2020. To match the spatial resolution of MOD09A1, the 
resultant maps of the start and end dates were resampled into 500 m 
using the nearest neighbor interpolation method. 

2.2.4. Climate datasets 
The climate variables of air temperature, precipitation, and CO2 

were used to examine the driving factors of vegetation dynamics in 
Central Asia. The information on air temperature and precipitation was 

obtained from the TerraClimate dataset from 2000 to 2020. The Terra
Climate provides monthly climate variables and water balance for global 
terrestrial surfaces. It was generated by using climatically aided inter
polation, combining high-spatial-resolution, but time-varying data from 
CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55) (Abatzoglou 
et al., 2018). Conceptually, the procedure applies interpolated time- 
varying anomalies from CRU Ts4.0/JRA55 to the high-spatial- 
resolution dataset that covers a broader temporal record (Abatzoglou 
et al., 2018). The dataset was obtained from the Google Earth Engine 
platform. The global CO2 concentration was obtained from the Inter
governmental Panel on Climate Change (IPCC) historical forcing data 
(Meinshausen et al., 2011). 

2.3. Methods 

To understand the dynamics and driving factors of grassland 
degradation and desertification in Central Asia in the last two decades 
(2000–2020), we developed a workflow that includes three major study 
sections (Fig. 2). First, we generated the annual vegetated and sparsely 
vegetated land during 2000 to 2020, which were used to identify the 
PGZ, DZ, and PDZ using the frequency analysis method. Second, we 
analyzed the vegetation dynamics over the vegetated zones of PGZ, DZ, 
and PDZ using trend analysis methods. Third, we quantified the con
tributions of potential driving factors (including climate and human 
activity) to grassland deterioration across the three state zones. The 
methods of each section were introduced in detail in the following text. 

2.3.1. Extraction of the targeted area 
This study focused on grassland degradation and desertification in 

Central Asia, which covered a targeted study area that included three 
land cover types, i.e., grasslands, barren or sparsely vegetated regions, 
and desert regions. We first used the IGBP-based MODIS land cover 
products (MCD12Q1) to extract the annual distribution of grasslands 
and barren or sparsely vegetated lands for the period of 2001 to 2019. 
Second, additional masks, including the water body, croplands, forests, 
and wetlands, were applied to reduce the uncertainties of the annual 
maps from MCD12Q1. According to our previous algorithms (Zhang 
et al., 2018), the water body pixels can be identified by the maximum 
EVI lower or equal to zero during the TGS within a year. The croplands, 
forests, and wetlands pixels had LSWI values >0 at least last for ten 8- 
day composites during the TGS within a year. Finally, we extracted 
the targeted area with the potential for grassland degradation and 
desertification by intersecting the annual IGBP-based maps of grass
lands, and barren or sparsely vegetated lands from 2001 to 2019. Thus, 

Fig. 1. Location of Central Asia (CA). (a) Spatial distribution and proportion of land cover types in CA in 2019 based on MCD12Q1; (b) Topography of CA using the 
digital elevation model (DEM); (c) Distribution of the annual mean precipitation during 2000–2020. 
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the targeted area allowed us to focus only on those changes between 
grasslands and sparsely vegetated regions. 

2.3.2. Separation of grasslands and sparsely vegetated lands 
To determine the ecosystem states for each year during 2000–2020 

in the bi-stable theory frame (D’Odorico et al., 2013), we reclassified the 
targeted area as grasslands and sparely vegetated lands. These two land 
cover types had significant differences in vegetation coverage, which 
resulted in the different seasonal dynamics of the land surface. This 
seasonal feature can be detected by the variation of EVI in the TGS, 
which was a stable variable to separate the sparsely vegetated lands and 
grasslands (Zhang et al., 2018). Thus, within the TGS, we calculated the 
standard deviation (SD) of EVI as an indicator to map the annual 
grasslands and sparsely vegetated lands. This indicator was denoted as 
SDEVITGS in this study. Specifically, to determine the thresholds of 
classification, we analyzed the frequency distributions of SDEVITGS for 
each vegetation type based on ~10,000 random samples obtained from 
every year of 2001–2019 (500 samples for each year) (Fig. S1a). It 
showed that the SDEVITGS for the barren or sparsely vegetated lands was 
low, which can be separated by a threshold of 0.02 from grasslands 
(Fig. S1b). Thus, the grasslands and sparsely vegetated lands were 
classified by an algorithm of SDEVITGS > 0.02 in this study. Here, the 
sparsely vegetated lands refer to the regions with vegetation coverage of 
<10%. 

2.3.3. Mapping different state zones of PGZ, DZ, and PDZ 
According to the bi-stable desertification theory (D’Odorico et al., 

2013), the targeted area consisted of single stable systems of grasslands 
(PGZ) and deserts (PDZ), and two state conversion regions (DZ) in this 
study. These three-state zones were identified by using a frequency 
analysis approach based on the annual maps of grasslands and sparsely 
vegetated lands during 2000–2020. According to the number of years for 
the pixel covered by grasslands or sparsely vegetated lands during 
2000–2020, pixels were classified as PGZ, DZ, and PDZ with sparsely 
vegetated lands covered for 0–1 year (never or rarely), 2–19 years 
(sometimes), and 20–21 years (usually or always), respectively. 

2.3.4. Analyses of vegetation trends among different state zones 
To assess the vegetation dynamics within the state zones of PGZ, DZ, 

and PDZ, we analyzed the long-term EVI trends during 2000–2020. The 
temporal trends of mean EVI during the thermal growing season 
(EVITGS) were examined by two approaches, including the linear 
regression and the Mann-Kendall test (McLeod, 2005). The slopes of the 
linear least squares regression and Mann-Kendall test were used to 
evaluate the temporal trends in the study period. The statistical signif
icances of EVITGS temporal trends were estimated at the pixel and 
different state zone scales, respectively. 

Fig. 2. The workflow of this study.  
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2.3.5. Detection of drivers for grassland degradation and desertification 
In this study, we quantified the impacts of the CO2 fertilization effect, 

climate change (CC), climate variability (CV), land use, and other factors 
on the vegetation change in the targeted area during 2000–2020 by an 
observation-based approach (Burrell et al., 2020). We used EVITGS as a 
proxy of vegetation growth to calculate the vegetation change in the 
targeted area (Eq. (4)). 

ΔEVITGS = slope× (Yend − Ystart) (4)  

where slope was the result of the Theil-Sen slope estimator. Ystart and 
Yend were the start and end years of the time series. The overall vege
tation change (ΔEVIobs) was quantified using Eq. (4) with the observed 
EVITGS time series from 2000 to 2020. 

To quantify the CO2 fertilization effect on vegetation change, we 
followed the theoretical model to indicate the relationship between 
plant productivity and increasing CO2 (Eq. (5)) (Burrell et al., 2020). 
Then we applied the relationship to EVITGS data (EVIobs) to generate the 
EVITGS estimate (EVIadj) that excluded the CO2 effect using Eq. (6) 
(Burrell et al., 2020). 

GPPrel ≈
[
(ca − Γ*)(ca0 + 2Γ*)

(ca + 2Γ*)(ca0 − Γ*)

]

(5)  

where GPPrel was the relative CO2 assimilation rate (%), ca was the at
mospheric CO2 concentration (μmol/mol), Γ* was the CO2 compensa
tion point in the absence of dark respiration (μmol/mol), ca0 was the CO2 
concentration in the start year of the time series, Γ* = 40 (μmol/mol). 

EVIobs
EVIadj

≈
NPPobs
NPPbase

≈ GPPrel (6)  

where NPPobs was the NPP at the observed atmospheric CO2 concen
tration (ca), NPPbase was the NPP given the same climate conditions but 
an atmospheric CO2 concentration of ca0. The vegetation change 
attributed to the increasing CO2 (ΔEVICO2) can be calculated by Eq. (4) 
with the (EVIobs - EVIadj) time series. 

To quantify the effects of land use (LU) on vegetation change, we 
used multiple linear regression methods with EVIadj and the climate 
factors (precipitation and temperature) to build a Vegetation Climate 
Relationship (VCR) (Burrell et al., 2020). RESTREND was applied to 
calculate the vegetation change caused by LU (ΔEVILU) by calculating 
the residuals of the VCR and EVIadj. 

The climate effects on EVITGS (EVICL) were separated into CC in a 
long period (EVICC) and interannual CV (EVICV). Based on the per-pixel 
VCR, the EVICL and EVICV were calculated using the observed climate 
data and the detrended climate data, respectively (Burrell et al., 2020). 
The difference between EVICL and EVICV was attributed to CC (EVICC). 
Thus, the EVITGS changes can be attributed to CC and CV (ΔEVICC, 
ΔEVICV). The contribution of other factors (OF) on EVITGS was calcu
lated as Eq. (7). 

ΔEVIOF = ΔEVIobs − ΔEVICO2 − ΔEVILU − ΔEVICC − ΔEVICV (7) 

Finally, the effect of ACC was calculated as the sum of CO2 and CC, 
due to it being linked to the changes in water availability driven by the 
long-term trends of precipitation and temperature and the changes in 
water use efficiency caused by rising CO2. 

3. Results 

3.1. Annual maps of grasslands and sparsely vegetated lands in CA from 
2000 to 2020 

We generated the annual maps of grasslands and sparsely vegetated 
lands in Central Asia from 2000 to 2020 based on land cover classifi
cation data and additional masks. We compared the resultant annual 
grassland maps with five national-scale land cover datasets at different 

spatial resolutions (Supplementary method 1, Fig. S2). The comparison 
showed our results were consistent with other products with slopes 
ranging from 0.94 to 1.28 and R2 of 0.99. Therefore, it is reasonable to 
analyze the grassland degradation and desertification over the past two 
decades at the annual interval based on our resultant maps. 

The grasslands in Central Asia are mainly distributed in central 
Kazakhstan, bordering on the sparsely vegetated lands in southern 
Kazakhstan and north central Uzbekistan (Fig. 3). In terms of temporal 
dynamics, the area of grasslands reached the largest in 2016, followed 
by 2002 and 2019, while that in 2008 was the lowest (Fig. 4a). 
Compared with 2000, the grassland area in 2020 only decreased by 
2.32% and no obvious decreasing trend (P > 0.1) was observed (Fig. 4a). 
In terms of the spatial dynamics of the sparsely vegetated lands, it 
showed that desertification expanded northward that directly threat
ened the northern grasslands (Fig. 4b). However, the grassland desert
ification was alleviated in recent years (after 2014). 

3.2. Recognition of three desertification state zones 

According to the pixel-scale frequency analysis on sparsely vegetated 
lands that occurred from 2000 to 2020, the targeted area was classed as 
PGZ, DZ, and PDZ (Fig. 5a). The PGZ, DZ, and PDZ were distributed from 
north to south in Central Asia, and PGZ and DZ presented strip distri
bution from west to east. DZ dominated the region with an area pro
portion of 44.76%, followed by PGZ accounting for 38.74%. The area of 
PDZ was the smallest only having a ratio of 16.50%, which was mainly 
distributed in Turkmenistan and Uzbekistan (Fig. 5a). DZ was a transi
tional zone between PGZ and PDZ that was a key hotspot to desertifi
cation in CA. This fragile ecotone determined the direction of grassland 
desertification and restoration. Between 2000 and 2020, the conversion 
frequency between grasslands and sparse vegetation lands was assessed, 
which showed the vulnerability for desertification in DZ (Fig. 5b). 

3.3. Vegetation changes in different state zones 

We analyzed the vegetation changes at the regional and pixel scales. 
At the regional scale, we examined the linear trend of the annual EVITGS 
over the entire targeted area and three state zones (PGZ, DZ, PDZ) 
(Fig. 6c). From 2000 to 2020, the annual EVITGS fluctuated in the whole 
region without an obvious trend (P > 0.1, n = 21). Considering the 
different state zones, the greenness of DZ and PDZ presented increasing 
trends (slope > 0), whereas that of PGZ showed a slightly decreasing 
trend (slope < 0) despite insignificant signals (P > 0.1). As a result, this 
indicated that the grassland desertification in CA was improving, while 
the grassland degradation here continued. 

At the pixel scale, the annual EVITGS trends were calculated by the 
linear regression and Mann-Kendall methods. According to the linear 
regression results (Fig. 6a), most regions in Central Asia showed a 
greening trend of EVITGS (63%), which was near twice the area of the 
browning trend. Specifically, the significant increasing trend was 12% 
and 18% for the targeted area at significance levels of P < 0.05 and P <
0.1, respectively. Most significant increases in EVITGS mainly occurred in 
the east-central part of Kazakhstan, which was mostly in the zone of DZ. 
In terms of the proportions of each state zone in the greening and 
browning trends (Fig. 6d), DZ dominated the greening regions ac
counting for 45% and 46% at significance levels of P < 0.05 and P < 0.1, 
followed by PDZ (~35%) and PGZ (~20%). However, the significant 
browning trends largely concentrated in the PGZ accounting for ~66% 
(P < 0.05 and P < 0.1), which was much higher than the proportions of 
DZ (~28%) and PDZ (~6%). The results showed the grassland degra
dation in CA was exacerbated from 2000 to 2020 and mainly distributed 
in western Kazakhstan. Similar results were shown in the Mann-Kendall 
test (Fig. 6b). Detailed statistical information was shown in Table S1. 
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Fig. 3. The annual distributions of grasslands and sparsely vegetated lands in Central Asia during 2000–2020.  
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3.4. Impacts of different factors on vegetation changes 

The processes of grassland degradation and desertification are 
closely related to human activities and environmental factors. 
Throughout the targeted area, the area of vegetation changes mainly 
affected by LU accounted for the largest proportion (46%), followed by 
rising CO2 (26%), CC (20%), and then CV (4%) (Fig. 7b). Land use was a 
driving factor that cannot be ignored in any region. In addition, from 
PGZ, DZ to PDZ, the proportion of the area affected by the rising CO2 
increased gradually (Fig. 7b). Although CC was not the main driving 
factor in PGZ, DZ, and PDZ, it had a very important impact on the 
browning region (Fig. 7b). 

The effects of individual driving factors, including CO2, LU, CC, and 
CV, on vegetation dynamics were showed in Fig. 8a-d at the pixel scale. 
The mean contributions of each factor were then summarized at 
different subdivisions (Fig. 8f). Vegetation degradation in PGZ mainly 
resulted from the negative impacts of CC and CV. The alleviation of 
grassland desertification in DZ and PDZ resulted from the positive im
pacts of LU and rising CO2. LU played a key role in vegetation change. In 
addition, CC and CV mainly contributed to vegetation degradation. The 
CO2 fertilization effect in PGZ was stronger than those in DZ and PDZ, 
but it could not reverse the vegetation degradation caused by climatic 

factors. ACC had a positive effect over the study periods in general. 
Despite widely positive effects, ACC also had a decreasing effect across 
20.63% of the target area, mainly distributed in west Kazakhstan and 
Uzbekistan (Fig. 8e). In most of the targeted area, the negative effects of 
LU were offset by the positive effects of ACC (Fig. 8b). 

4. Discussion 

4.1. The dynamics of grassland degradation and desertification in CA 

Grassland degradation and desertification refer to two processes 
including the vegetation change within one state and the conversion 
between vegetation and non-vegetation states (D’Odorico et al., 2013). 
Due to different conservation and restoration approaches adopted for 
different land states, accurate spatial information on the land states was 
helpful to support effective mitigation strategies, especially for the 
drylands with vulnerable land cover types (Yao et al., 2020). Previous 
studies focused on the trends of vegetation greenness or production to 
examine the combined phenomena of grassland degradation and 
desertification in CA, but the different states were not separated clearly 
(Chen et al., 2020; Jiang et al., 2017). Therefore, this study used a two- 
step approach: firstly, to identify the state zones of PGZ, DZ, and PDZ in 
the study area, respectively (Fig. 5b), and then to examine the EVITGS 
trends to describe the grassland degradation and restoration in different 
state zones (Fig. 6). This approach was developed in our previous study, 
which found the sparsely vegetated area was increasing with exacer
bated desertification during 2000 to 2014 (Zhang et al., 2018). Yet this 
study showed the sparsely vegetated area slightly decreased after 2014, 
which showed a neutral trend from 2000 to 2020 (Fig. 4a). As the start 
and end conditions affected the results of grassland dynamic trends in 
drylands, the different study periods between these two works could 
explain the discrepancy in the findings (Burrell et al., 2020; Fensholt 
et al., 2012). Our results on the dynamics of the EVITGS in CA were also 
supported by a recent study (Jiang et al., 2022). The study also observed 
a decreasing trend of land degradation in the period of 2015–2019 with 
2015 as one of the main abrupt-change years in the time series analyses 
on land degradation from 2000 to 2019 in CA. In addition, the year 2008 
was also reported as an abrupt year caused by severe drought in other 
works (Xu et al., 2016; Zhu et al., 2019). 

Our study underlined more attention should be paid to the grassland 
degradation over the PGZ (Fig. 5b). As shown in the results, the area of 
grasslands was almost stable or slightly decreasing despite obvious 
interannual variations from 2000 to 2020. However, the trends of land 
surface browning mainly happened in the PGZ, while the greening 
trends were more obvious in the DZ and PDZ (Fig. 6d). The evident 
browning trends over the grasslands in the north of Kazakhstan were 
also reported in other studies covering different time windows, such as 
2000–2014 (Zhang et al., 2018), 2000–2019 (Jiang et al., 2022), 
1998–2013 (Li et al., 2015), 1990–2009 (Mohammat et al., 2013). The 

Fig. 4. Grassland area dynamics in Central Asia. (a) Area of grasslands during 2000–2020; (b) The first year of conversion from grasslands to barren or sparsely 
vegetated lands during 2000–2020 (barren or sparsely vegetated lands in 2000 was colored as gray); (c) The first year of conversion from barren or sparsely vegetated 
lands to grasslands (grasslands in 2000 was colored as gray). 

Fig. 5. (a) Spatial distributions of three state zones in Central Asia, including 
the permanent grassland zone (PGZ), desertification zone (DZ), and permanent 
desert zone (PDZ). (b) The conversion frequency between grasslands and 
sparsely vegetated lands in DZ during 2000–2020. 
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significant greening trends mainly occurred in the sparsely vegetated 
region, especially in eastern Kazakhstan (Fig. 6), which agreed well with 
the previous results (Chen et al., 2019; Jiang et al., 2022; Jiang et al., 
2019). Due to the grasslands in these regions being sensitive to precip
itation, some sparsely vegetated regions have transferred to grasslands 
with increased precipitation that led to the desertification reversion in 
southern Kazakhstan and mountain regions (Jiang et al., 2019). These 
results agreed with the widely greening trends over global drylands in 
the past thirty years observed by satellites (Wang et al., 2022). Yet, our 
study pointed out that although the total area of grasslands may be 
stable for the study period, the degradation in PGZ would potentially 
increase the DZ or PDZ in the future. This study provided observation 
evidence for the simulation results, which revealed that the area of 
desert lands decreased during 1980–2015, but the area of potential 
desert lands increased in CA (Ma et al., 2021). 

4.2. The drivers of grassland degradation and desertification in CA 

The drivers of grassland degradation and desertification in CA have 
been widely examined in previous studies (Chen et al., 2019; Chen et al., 
2020; Jiang et al., 2022; Yuan et al., 2021; Zhou et al., 2019). However, 
these studies mainly concentrated on the climate variables of tempera
ture, precipitation, drought, and human activities (Chen et al., 2019). It 
was lacking to consider the roles of CO2 and ACC on grassland degra
dation and desertification. Our study systematically quantified the 
drivers of rising CO2, CC, CV, LU, and ACC for grassland degradation and 
desertification in CA at the pixel scale (Fig. 8). The results demonstrated 
that rising CO2 was the largest driver of vegetation greening over the 
whole targeted area and subdivision regions. This result supported the 
findings that rising CO2 was a driver of global dryland greening, as 
elevated CO2 can relieve the water stress for plant growth within the 
drying atmosphere in drylands (Lian et al., 2021; Lu et al., 2016). 

Fig. 6. Spatial-temporal dynamics of annual mean EVI in the growing season (EVITGS) during 2000–2020. (a) Linear regression trend and (b) Mann Kendall trend of 
EVITGS in the target area of Central Asia during 2000–2020. The t-value was Kendall’s tau coefficient. Plus symbols in Fig. a, b denote statistically significant trends at 
0.1 level; (c) Trends of averaged EVITGS in different state zones, i.e., permanent grassland zone (PGZ), desertification zone (DZ) and permanent desert zone (PDZ); (d) 
The area statistics of different state zones for the significant greening (trend > 0, p < 0.05; trend > 0, p < 0.1) and browning regions (trend < 0, P < 0.05; trend < 0, 
p < 0.1). 

Fig. 7. (a) Spatial distributions of the main driving factors on the annual dynamics of EVI in the growing season in Central Asia (CA). The main driving factors 
included rising CO2, land use, climate change, climate variability, and other factors. (b) The area proportions of different driving factors for individual subdivisions of 
CA, including the whole targeted area, permanent grassland zone (PGZ), desertification zone (DZ) and permanent desert zone (PDZ), greening and browning regions. 

Y. Zhao et al.                                                                                                                                                                                                                                    



Ecological Indicators 154 (2023) 110737

9

However, CC and CV mainly presented negative roles on the EVITGS 
changes in the study period, particularly CV having the largest negative 
impacts over the whole targeted area. Long-term temperature increase 
and drought could cause vegetation degradation dramatically in 
Eurasian temperate ecosystems not only in CA (de Beurs et al., 2015; 
Zhang et al., 2018; Zhu et al., 2019). Water availability played a critical 
role in vegetation growth in grasslands and sparsely vegetated lands 
(Jiang et al., 2022; Li et al., 2015). Extensive vegetation degradation has 
been caused by the inter- and intra-annual variations of precipitation 
and potential evapotranspiration in CA (Jiang et al., 2017; Xu et al., 
2016). This study showed that the CV had smaller effects on vegetation 
change in the PDZ and DZ compared to the PGZ. This result supported 
the finding that vegetation in drier regions had lower sensitivities to 
climate variability (Yuan et al., 2021). The effects of ACC combining 
rising CO2 and CC presented positive signals on the EVITGS dynamics in 
2000 to 2020 across a wide region (Fig. 8e). The wide positive contri
butions were consistent with the results of a global desertification study 
using annual NDVImax from 1982 to 2015 (Burrell et al., 2020). But the 
negative contributions to the northwest PGZ were slightly different, 
which could be caused by the different study periods and vegetation 
indices. 

Furthermore, LU was shown as a positive driver of land surface 
greening in CA, especially in DZ and PDZ. A recent study reported that 
>70% of land improvement in CA came from anthropogenic activities 
such as irrigation and grassland reclamation (Jiang et al., 2022). In the 
PGZ, LU showed negative impacts on grassland vegetation. Similarly, 
previous studies found that human activities, such as increasing live
stock, were the main driving factor of the net primary productivity 

(NPP) reduction for the grasslands in CA (Chen et al., 2019; Chen et al., 
2020). In addition, the spatial heterogeneity of the effects from different 
drivers in this study was consistent with previous reports (Fig. 7b). We 
find negative effects of CC and LU in west Kazakhstan, which was 
consistent with the findings on the drivers in the Ustyurt Plateau and the 
Atyrau region respectively (Jiang et al., 2017). The shrink of the Aral Sea 
and the adjacent land degradation resulted from the expansion of 
croplands in the Amudarya Delta, which agreed with our results (Jiang 
et al., 2022). Our findings showed that LU played positive effects on 
vegetation changes around Balkhash Lake, which was supported by the 
fact that an increase in runoff improved the dryland ecosystems around 
Balkhash Lake (Duan et al., 2020). Although the positive effect of CO2 
fertilization was stronger in PGZ than that in DZ and PDZ, the different 
effects of LU, CC, and CV caused the divergent trends between grassland 
degradation and grassland desertification in the CA. 

4.3. Implications and improvements 

This study considered grasslands and deserts as bi-stable ecosystems. 
The transition state from grasslands to deserts was identified as grass
land desertification. The reduction of vegetation greenness (i.e., 
decreasing trends of EVITGS) within the grasslands was detected as 
grassland degradation. This methodology identified more details 
regarding grassland degradation and desertification over different re
gions than previous studies. The results supported the development of 
smart mitigation strategies considering regional variations for achieving 
zero net land degradation in Sustainable Development Goal 15.3 (Jiang 
et al., 2022; Yao et al., 2020). Due to the global datasets (e.g., climate, 

Fig. 8. Contributions of individual driving factors to the changes in EVITGS between 2000 and 2020 were quantified at the pixel scale. The driving factors included (a) 
CO2 fertilization, (b) land use (LU), (c) climate change (CC), (d) climate variability (CV), and (e) anthropogenic climate change (ACC), respectively; (f) the mean 
effects of different factors estimated in different subdivisions, including the whole targeted area, permanent grassland zone (PGZ), desertification zone (DZ) and 
permanent desert zone (PDZ), greening and browning regions. 
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land cover, vegetation indices) were used in this study, it was possible to 
apply this methodology into other regions of the world. However, the 
performance of the method may be affected by the data quality such as 
data loss. In addition, variations in geographical factors such as eleva
tion, solar radiation, and the length of daytime often lead to the dif
ferences of vegetation sensitivity to climate. Therefore, the detection of 
the grassland growing season in different regions should be adjusted 
appropriately not only rely on nighttime LST. 

As grassland degradation was characterized as the regions with 
greenness reduction, we did not include the degradation processes that 
may have increased greenness such as woody plant encroachment or 
species invasion (Burrell et al., 2020; Venter et al., 2018). Woody plant 
encroachment has widely happened on the global grasslands (Stevens 
et al., 2017; Wang et al., 2018a). This phenomenon was also reported in 
CA and other drylands (Li et al., 2015; Petrie et al., 2015; Wang et al., 
2018b). The grassland degradation caused by woody plant encroach
ment or plant invasion will be examined specially in the future works 
based on our previous studies (Wang et al., 2017; Wang et al., 2018a). 

5. Conclusions 

This study separated and examined the processes of grassland 
degradation and desertification in detail, and quantified the roles of 
different driving factors at the pixel scale. We found that grassland 
desertification in CA alleviated after 2014, while grassland degradation 
remained a severe issue that could increase the desertification potential. 
Although CO2 fertilization caused vegetation greening widely, the 
different effects of LU, CC, and CV resulted in the divergent trends be
tween grassland degradation and grassland desertification in CA. The 
proposed methodology can be implemented into other regions. The re
sults provided some insights into developing region-precise strategies 
for grassland conservation in CA and other drylands. 
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