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A B S T R A C T   

Quantification of the spatial pattern of forest carbon (C) sinks in high resolution is helpful to reveal the factors 
that affect the C cycle and provides valuable information for developing sustainable forest management policies. 
Here we developed a method using the data of long-term forest inventories (1977–2018) and spatially-explicit 
remotely sensed information from land-use maps and the Normalized Difference Vegetation Index (NDVI) 
datasets, to estimate the spatial and temporal variation of forest biomass C in China. At first, we calculated forest 
biomass C stocks using the refined Continuous Biomass Expansion Factor (CBEF) model with parameters for each 
forest type based on eight national forest inventories. Secondly, based on multi-temporal land-use remote sensing 
and national forest inventory datasets, we obtained forest coverage datasets with high resolution (1 km*1 km). 
Thirdly, we downscaled the forest biomass C density using the calibrated forest coverage maps and the maximum 
NDVI values derived from GIMMS-NDVI3g imagery. Our results showed that China’s forest functioned as a C sink 
of 3777.73 Tg C, and the C density of forest stands increased from 35.41 Mg C ha− 1 during 1977–1981 to 43.95 
Mg C ha− 1 during 2014–2018. In addition, the validation results for most of the provinces based on published 
inventory estimates during the eight periods showed that the forest area at the pixel scale was successfully 
calibrated. From this, we produced the maps with a finer resolution for a series of spatially continuous forest 
biomass carbon density distribution and carbon sinks. Notably eight major forest projects have accounted for 
44%–51% of the forest C stocks added in China from 1977 to 2018. Our research provides new insights for 
understanding and monitoring the spatiotemporal variations in of forest biomass and key information to support 
the development of new afforestation policies moving forward.   

1. Introduction 

Forests are one of the important terrestrial ecosystems and play a 
prominent role in the global carbon (C) cycle, incorporating about 80% 
of the aboveground biomass C and 40% of below ground C in terrestrial 

ecosystems (Dixon et al., 1994; Bonan et al., 2008; Arneth et al., 2010; 
Pan et al., 2011; Qin et al., 2019). Accurate estimation of the spatial and 
temporal variation in forest C sinks can help to: (1) identify the factors 
driving C cycling; (2) predict the future changes in forest C sinks; and (3) 
provide a baseline for verifying the simulation results of ecosystem 
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process models (Fang et al., 2001, 2018; Ju et al., 2007). In previous 
studies, regional forest biomass estimation relied on forest inventory 
statistics and lacked fine-scale spatial information, or the spatial pattern 
was presented notwithstanding large uncertainties due to the lack of 
field sample data and fine-resolution remotely sensed data (Fang et al., 
2007; Piao et al., 2005, 2009; Gong et al., 2012; Zhang et al., 2013, 
2015; Chen et al., 2019). 

Characterizing the spatiotemporal variation of forest C sinks in China 
is necessary to understand forest ecosystem C dynamics and to quantify 
the contributions of reforestation and afforestation to C sequestration in 
past decades and better stewardship of the forests in the future (Chen 
and Luo, 2015; Babcock et al., 2016; Matasci et al., 2018). Generally, 
forest inventories are recognized as the most accurate method to assess 
forest biomass and C density at regional scales. China has conducted 
5-year national forest inventories since the 1970s (Fang et al., 2001, 
2007; Pan et al., 2004, 2011; Zhang et al., 2013, 2015) and the method 
based on the allometric relationships between forest biomass and timber 
volume proposed by Fang et al. (2001) has been widely used to estimate 
forest carbon stocks (e.g. Fang et al., 2007, 2014; Pan et al., 2011; Zhang 
et al., 2015). However, inventory data cannot document the continuous 
spatial patterns of forest C sinks at large scales (Brown, 2002; He et al., 
2017). Remote sensing makes up for this deficiency and enables the 
estimation of forest biomass at multiple scales with large spatial and 
temporal coverage (Gong et al., 2012). The description of the relation-
ships between biomass and the Normalized Difference Vegetation Index 
(NDVI) or Net Primary Production (NPP) remote sensing products is 
challenging due to the complexities of the canopy characteristics and 
limitations of using radar and Light Detection and Ranging (LiDAR) data 
in large scale studies because of expensive cost (Rauste, 2005; Piao et al., 
2005; Kindermann et al., 2008; Knapp et al., 2018). Given the charac-
teristics of different data, integrated multi-source and multi-scale data 
might provide a viable path to improve spatially explicit estimates of 
biomass over large areas (Blackard et al., 2008; Kindermann et al., 2008; 
Huang et al., 2019). 

Although the advantages of combining satellite-based remote 
sensing and inventory datasets are obvious, it has apparent discrep-
ancies in terms of the forest characteristics (such as forest area and 
volume) and the spatial resolutions of the source data (Kindermann 
et al., 2008; Huang et al., 2019). Therefore, the forest cover proportion 
map may be a good bridge to link forest inventory and remote sensing 
data using the methodology developed by Päivinen et al. (2009). The 
NOAA-based forest cover proportion map was calibrated and the dis-
tribution of forest biomass was estimated based on forest inventories in 
Europe (Päivinen et al., 2009). This methodology can estimate the actual 
forest cover objectively within a pixel and has been used in other recent 
studies (Hansen et al., 2013; De Jong et al., 2013; Du et al., 2014). 
Therefore, combining calibrated forest cover proportion maps with 
NDVI maximum values which represents the best state of forest growth 
would be the effective method to predict of forest C storage over the past 
few decades. 

Mapping the spatial pattern of large-scale forest biomass by 
combining multi-source data can be used to verify the simulation results 
for process-based carbon cycle models (Le Toan et al., 2011). Here, we 
calibrated forest cover proportion maps and estimated the forest C 
storage and C density using the data of the statistical reports from eight 
national forest inventories. We next spatially downscaled the forest 
biomass map of China at 1 km resolution using multi-source data (the 
calibrated forest cover proportion map, NDVI data derived from the 
NOAA/AVHRR land dataset and statistically derived forest inventory 
biomass C stock estimates) from 1977 to 2018. Using this approach, we 
examined the spatiotemporal variation of forest biomass carbon sinks 
and biomass carbon density to figure out the possible factors that affect 
forest biomass and the effects of afforestation on forest biomass dy-
namics in China during the past four decades. 

2. Data and methods 

2.1. Data sources 

2.1.1. Forest inventory data 
In recent decades, China has periodically conducted national-level 

forest resource inventories. These inventories report information on 
forest area and timber volume by age group and forest type for all 
provinces. In this study, we used national forest inventory datasets for 8 
periods (1977–1981, 1984–1988, 1989–1993, 1994–1998, 1999–2003, 
2004–2008, 2009–2013 and 2014–2018), where China’s forests are 
divided into forest stands (including natural and planted forests), eco-
nomic forests, woodlands, and other forests (Chinese Ministry of 
Forestry, 1982, 1989, 1994, 1999, 2004, 2009, 2014, 2019). We used 
forest area and timber volume statistics of forest stands to calibrate the 
forest cover proportion data and estimate the forest biomass C density in 
31 provinces. The forests in Hong Kong, Macao, and Taiwan were not 
included in this study due to the lack of data. 

2.1.2. Forest cover proportion map 
We used the forest cover proportion map that was extracted from the 

land-use maps and products that were based on Landsat 8 OLI and GF-2, 
and China’s land-use remote sensing mapping system (Liu, 1996; Liu 
et al., 2003a, 2003b, 2010, 2014a, 2018). Using a high-resolution 
remote sensing-UAV-ground survey observation system, Liu et al. 
(2018) constructed the land-use vector status dataset via 
human-computer interaction, including land use in 1980, 1990, 1995, 
2000, 2005, 2010 and 2015, based on priori geographic knowledge. 
Compared with traditional discrete classification data, this data set is 
more appropriate for describing forest cover changes (Liu et al., 2010, 
2018). 

The land use maps provided by Liu et al. (2018) distinguish the 
dominant land use types that include cultivated land, woodland, grass-
land, water area, residential land, and unused land at 30-m spatial res-
olution. In this study, we used these land use maps to generate a series of 
forest cover proportion maps with a spatial resolution of 1 km. To match 
the forest inventory periods, we used the average forest cover proportion 
in 1980 and 1990 to estimate forest coverage in 1985 because the land 
use maps did not cover this particular year. 

2.1.3. NDVI data 
The third generation Global Inventory Modeling and Mapping 

Studies Normalized Difference Vegetation Index (GIMMS NDVI3g) with 
a spatial resolution of 8 × 8 km and a 15-day temporal interval is used 
for establishing a correlation between biomass and annual maximum 
NDVI values at the provincial level (Tucker et al., 2004; Pinzon and 
Tucker, 2014). The GIMMS-NDVI3g dataset has been more carefully 
optimized than other NDVI datasets and is a very effective data source 
for large-scale studies of ecological processes (Myneni et al., 2001; 
Tucker et al., 2001; Piao et al., 2005; Militino et al., 2017). The 
disturbance from cloud and atmospheric effects and solar altitude angle 
can be further eliminated, and non-vegetation effects can be minimized 
using the maximum value composites (MVC) method (Holben, 1986). 

2.1.4. Spatial distribution of forest projects in China 
Since the late 1970s, China has carried out a series of national 

afforestation and reforestation projects, and meanwhile formulated a 
series of laws and regulations to promote forest restoration, conserva-
tion and afforestation. This led to an increase in forest coverage from 
8.6% in the 1950s to 16.55% in 2000 (Fang et al., 2001; Li et al., 2016). 
Since 2000, China has intensified its efforts in afforestation and 
launched 8 forest protection projects. 

We downloaded the map of forest projects from the Resource and 
Environment Data Cloud Platform (http://www.resdc.cn) created by the 
Institute of Geographic Sciences and Natural Resources Research (a part 
of the Chinese Academy of Sciences) (Fig. 1). 
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2.2. Methods 

In this study, we spatially downscaled the forest C stocks of China at a 
1 km × 1 km spatial resolution using 8 national inventory datasets 
combined with the calibrated forest cover proportion maps and the 
GIMMS NDVI3g data during the period 1977–2018 (Appendix S1). 

The whole process is divided into three phases: (1) the estimation of 
forest biomass C stocks from 1977 to 2018; (2) forest cover proportion 
calibration; and (3) the downscaling of forest biomass C density. The 
land use maps and GIMMS-NDVI3g datasets corresponding to the 8 
forest inventories are shown in Appendix S2. 

The 8-km GIMMS NDVI time series is first gap-filled and smoothed by 
the Savitzky-Golay filter (Chen et al., 2004; Yang et al., 2019), and the 
reconstructed data need to be resampled to the resolution of 1 km before 
downscaling. The annual maximum NDVI within one year is obtained 
and then all the annual maximum NDVI values in each inventory period 
are averaged to get the mean annual maximum (MAM) NDVI. 

2.2.1. Biomass C estimation of forest stands 
The biomass C stocks of forest stands were calculated using the 

refined Continuous Biomass Expansion Factor (CBEF) model with pa-
rameters for each forest type taken from Zhang et al. (2013) and Zhao 
et al. (2019). This method uses the allometric equation connecting 
biomass C stocks and timber volume prepared by Fang et al. (1998, 
2001). Zhang et al. (2013) collected biomass measurements from 3543 
forest plots and used these data with the published literature to improve 
the parameters of the model and Zhao et al. (2019) collected fractions of 
C (CF) from the published literature for each forest type, such that: 

B  =  (a⋅V  +  b)  ⋅  CF (1)  

where B is the total stand biomass C stocks (Mg ha− 1); V is the stand 
volume (m3 ha− 1); CF is the C fraction of each forest type, and a and b are 
coefficients for specific forest types. 

The canopy coverage threshold used to delineate forests stands was 
changed from >30% to >20% in China after 1994. In this study, we used 
the method developed by Fang et al. (2007) to correct the forest area and 
biomass C stocks that were calculated using the inventories before 1994 
at the provincial level for studying the temporal dynamics of forest 
biomass C stocks. 

2.2.2. Forest area calibration 
We used the method of Päivinen et al. (2009) to reduce the dis-

crepancies between the forest area estimates generated from forest in-
ventory and land use remote sensing data regionally (Fig. 2a). This 
method retains the accuracy of the forest inventory data and the spatial 
distribution information provided by remote sensing. We classified land 
use types in a pixel into two categories (i.e., forest and non-forest), and 
obtained forest cover maps for each inventory period with pixel values 
ranging from 0 to 100% (Fig. 2b). That is, two raster layers representing 
the forest and non-forest cover types, respectively, were prepared for 
each inventory period for which the values in the pixels in the two raster 
layers add up to 100%. All the proportion maps were transformed to the 
Albers Equal-Area projection for further forest area calibration. 

The main principle of the algorithm was to match the mean forest 
coverage estimated from the image within a region (e.g., province) to 

Fig. 1. Distribution map of the eight forest restoration programs.  
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that from the inventory statistics to the extent possible by adjusting the 
forest and non-forest cover proportion in each pixel (Päivinen et al., 
2009). Because the forest inventory takes the province as the unit of 
analysis, the procedure was conducted per province in all periods. The 
algorithm of the forest area calibration process was expressed by the 
following equation: 

xc
i = xi

X
x

(2)  

where i represents the pixel, xi is the proportion value for the forest in a 
pixel (i) in a province (from 0 to 100%), X is the accurate average forest 
cover proportion in the same province based on forest inventory data, x 
represents the image-estimated mean coverage for forest in the prov-
ince; and xc

i is the adjusted proportion for forest in pixel (i). 
To confirm the sum of calibrated forest and non-forest (1 − xi) is 

100% for each pixel, the sum value is scaled by deriving a ratio (wi) for 
each pixel: 

Wi =
1

(1 − xi)
c
+ xc

i
(3)  

xwc
i =Wi*xc

i (4)  

z=

⃒
⃒
⃒xwc

i − X
⃒
⃒
⃒

X
(5)  

where xwc
i is the adjusted proportion for the forest cover in a pixel (i) in 

one calculation; xwc
i is the adjusted mean proportion for the forest in the 

province; and z represents the forest cover threshold value from the 
forest inventory statistics and that estimated from the calibrated image. 
In this study, the threshold value z was set to 0.01 for all provinces in all 
periods. 

This algorithm is repeated until the value z is less than 0.01 in the 
province. For some provinces in which the forest cover proportion maps 
could not be calibrated or were not close to the value from the inventory 
statistics, we constrained the maximum calibration iterations to 100 to 

Fig. 2. Schematic diagram showing the maps used for downscaling forest biomass density (2014–2018, for example).  
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save time. Ultimately, we obtained the national calibrated forest cover 
proportion maps in sequence in all periods when the process was 
stopped for all provinces (Fig. 2c). The calibrated forest cover propor-
tion maps are consistent with the inventory statistics for the past 40 
years. 

2.2.3. Downscaling 
The downscaling of the forest C stocks based on the calibrated forest 

cover proportion maps was carried out next. Downscaling is used to 
transform large-scale, coarse resolution information into regional-scale, 
high-resolution information in many other related fields (e.g., Piao et al., 
2005, 2009; Kindermann et al., 2008; Jia et al., 2011; Su et al., 2016). In 
general, forest inventory statistics can provide coarse resolution infor-
mation, whereas remote sensing can reflect the spatially explicit infor-
mation of forests at a high spatial resolution (Piao et al., 2005, 2009). 
Forest biomass C density was proportional to the forest coverage area or 
the MAM NDVI value at national, provincial and county scales (Piao 
et al., 2005; Du et al., 2014). In this study, we found a good relationship 
between forest biomass C stocks and the product of the total (the sum of 
“forest coverage* MAM NDVI”) forest coverage area and MAM NDVI 
among all provinces through the corresponding statistics in all provinces 
and all inventory periods (Fig. 3). 

That is, the calibrated forest cover proportion maps and MAM NDVI 
can effectively reflect the spatial distribution of biomass C stocks, and 
therefore these combined datasets allow downscaling forest biomass C 
stocks from regional-based statistics to pixel-based estimates with a 1 
km spatial resolution (Fig. 2g). In this study, the downscaling process 
was also conducted per province by the following equation: 

Bi =
B

∑i=n
i=1[Ai*Gi]S

Ai*Gi (6)  

where Bi is the forest biomass C in pixel (i) (Mg C ha− 1); n is the number 
of pixels in a province from the calibrated map; B is the total forest 
biomass C of a province from the forestry inventory (Mg C); Ai is the 
forest area proportion of a province estimated from the calibrated map 
in a pixel (i)(0–1), which also matched the inventory statistics; Gi is the 
mean annual maximum NDVI value in a pixel (i) (− 1–1); and s is the area 
of a pixel (100 ha). 

3. Results 

3.1. Forest biomass C sinks over the past 4 decades 

The forest area increased from 11,660.47 × 104 ha during the period 
1977–1981 to 17,988.85 × 104 ha during the period 2014–2018, 
growing by 1.47% per year on average (Table 1). Meanwhile, the forest 
biomass C stocks of forest stands increased with some fluctuations from 
4128.50 to 7906.23 Tg C from 1977 to 1981 to 2014–2018, indicating 
an average rate of biomass C sequestration of 102.10 Tg C year− 1 

(Table 1). From 1977 to 2018, the C density of forest stands decreased 
slightly during the first four periods but later increased, leading to an 
average rate of change of 0.65% per year, and an overall change in 
density from 35.41 to 43.95 Mg C ha− 1 from 1977 to 1981 to 
2014–2018. 

There are some substantial regional discrepancies in both the forest 
area and stocks of forest stands over time in China (see Appendices S3, 
S4, S5). The largest increases in forest area (415%) occurred in Hebei 
province from 1977 to 2018. The largest increases in forest biomass C 
density occurred in Shanghai province (266%) during the study period 
while Tibet has the largest biomass C density with 94.67 Mg C ha− 1 

during the period 2004–2008 (Appendix S4). The largest increases in 
forest biomass C stocks (975%) occurred in Hebei province from 1977 to 
2018. Heilongjiang has the largest biomass C stocks with 966.18 Tg C 
during the period 2009–2013 (Appendix S5). In the recent period 
2014–2018, Heilongjiang has the largest forest area with 198,440 km2 

and Fujian has the highest forest coverage of 51% (Appendix S3). 

3.2. Calibration of forest area 

To illustrate the impact of the calibration method, we compared the 
calibrated forest cover against the initial forest cover which had not 
been processed by the forest area calibration, as shown in Fig. 4. The 
forest areas from the forest inventory and forest cover map differed 
tremendously at the provincial level. After the calibration process, the 
regional discrepancies between the forest inventory statistics and raster 
representation were generally reduced. The calibration results were 
satisfactory and the absolute forest area estimates between them were 
nearly the same at both the provincial and national levels (Fig. 4). All of 
the provinces were calibrated successfully in the eight inventory periods 
except for the provinces with red numbers in Appendix S7, where the 
number of iterations reached 100. 

We show the change of forest cover proportion before and after the 
forest area was calibrated, taking four provinces in different periods as 
an example (Fig. 5). In Guangxi province during period 1984–1988, the 
forest coverage rate using land use remote sensing data was 65.67%, 
while the coverage rate using the national forest inventory was 21.83%, 
and the final corrected rate was 22.05%. In Shaanxi province during the 
period 2014–2018, the forest coverage rate using land use remote 
sensing data was 23.2%, while the coverage rate using the national 
forest inventory was 34.4%, and the final corrected rate was 34.07% 
(Fig. 5, Appendix S3, S6, S7). 

In addition to the above two cases of successful correction, there are 
also two cases with poor results. In Jiangsu province during the period 
2014–2018, there were too few forest pixels to match the forest area 
estimated with the statistics, and all of the forest pixel values were 
adjusted to 100% (Fig. 5c1, c2). However, there is still a 17% gap be-
tween the forest inventory and the corrected forest cover map. The same 
situation applies to Hainan (15%, 2014–2018), Hebei (6%, 2014–2018), 
Shanghai (37%, 1989–1993) and Tianjin (6%, 1977–1981) provinces in 
one or more periods (Appendices S3, S7). The other scenario is there 
were more forest pixels than the forest area statistics for some periods in 

Fig. 3. Relationship between the sum of the product of the forest coverage and 
MAM NDVI and forest biomass C stocks at the provincial scale for all periods. 

Table 1 
Summary of forest variables in eight inventory periods.   

Area 
(104ha) 

C stock (Tg 
C) 

Density (Mg C 
ha− 1) 

Sink (Tg C 
yr− 1) 

1977–1981 11660.47 4128.50 35.41 – 
1984–1988 12452.83 4161.49 33.42 4.71 
1989–1993 13216.01 4510.46 34.13 69.79 
1994–1998 12919.94 4478.91 34.67 − 6.31 
1999–2003 14278.67 5375.01 37.64 179.22 
2004–2008 15558.99 6629.81 42.61 250.96 
2009–2013 16460.35 7375.14 44.81 149.06 
2014–2018 17988.85 7906.23 43.95 106.22 
1977–2018 – – – 102.10  
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Tibet province during the period 1994–1998 (Fig. 5d1, d2). The forest 
pixel values were adjusted to 0 to match the statistics in these instances 
but this still left a 22–55% difference in Tibet province between the 
forest inventory and corrected forest cover map estimates. The same 
situation occurred in Beijing during the period 1999–2003, and there 
was still a gap of 16% difference. 

3.3. Spatial distribution of forest biomass C density 

Combining the calibrated forest cover proportion map, NDVI data 
and inventory statistics, we estimated the distribution of forest biomass 
C at the pixel level for the eight periods (Fig. 6). 

On the whole, forest biomass C was mainly distributed in the 
northeastern, southern and southwestern regions of China, and high 
biomass density occurred in the Da Hinggan, XiaoHingganLing, 

Changbai and Hengduan mountains (Fig. 6). The maximum forest 
biomass C densities in the aforementioned maps were 129.53, 82.53, 
99.79, 102.67, 121.56, 118.17, 121.32, 118.49 Mg C ha− 1 from 1977 to 
2018 (Fig. 6). 

From Fig. 6, we can observe that the forest C density gradually 
increased in southern Tibet owing to forest development. However, 
forest biomass C density has gradually decreased since the 1980s in the 
northeastern region, and especially in the XiaoHingganLing and 
Changbai mountain areas before rising again from 2000 onwards. The C 
density of forests has also increased in the Wuyishan, Taihang and 
Qinling mountains during this later period. 

In the past 40 years, the forest biomass C density of China has 
gradually increased (Fig. 7). Due to the growth of forests, the frequency 
of the high forest biomass C density showed a significant increase after 
2000; forest C densities ＞60 Mg C ha− 1 increased from 1.9% in 

Fig. 4. Comparison of before and after calibrated forest cover proportion map. For each set of graphs, the left and right figures are initial and calibrated forest cover 
proportion maps, respectively. Hong Kong, Macao and Taiwan were not included in this study due to the lack of data. 

M. Zhao et al.                                                                                                                                                                                                                                   



Journal of Cleaner Production 316 (2021) 128274

7

1999–2003 to 3.3% in 2014–2018. Correspondingly, the low forest 
biomass C density decreased gradually and the frequency of forest 
biomass C densities＜ 20 Mg C ha− 1 decreased from 72.3% in 
1999–2003 to 55.1% in 2014–2018 (Fig. 7). 

3.4. Spatial distribution of forest C sinks 

In order to more intuitively see the change of forest biomass over 
time, we generated the distribution map of forest biomass C sinks in the 
three periods of 1977–1998, 1999–2018 and 1977–2018, based on the 
forest biomass C density distribution map (Fig. 8). 

These maps show that forest biomass C stocks decreased by ≥ 5.54 
Mg ha− 1 yr− 1 during 1977–1998 in the northeastern, most of the 
northern and a small part of the southern regions of China, which 
contain 29.4% of all forest. The forest biomass C stocks increased by 
4.90 Mg ha− 1 yr− 1 in the south and part of the Qinghai-Tibet Plateau of 
China during the first four forest inventory periods (Fig. 8). In the forest- 
covered areas of China, 30.2% of the forest C sinks showed negative 
growth during 1977–1998, while in the areas with increasing forest C 
sinks, the majority of the areas (59.5%) showed slow growth, less than 
0.25 Mg ha− 1 yr− 1 (Fig. 9). 

Since 2000, forest biomass C stocks have increased in most of China 
with a maximum of 4.27 Mg ha− 1 yr− 1, There are two exception: Hubei 
province where the forest biomass C stocks declined by two-thirds in this 
last period and the Tibetan Plateau with forest C density losses starting 
at − 3.82 Mg ha− 1 yr− 1 (Appendix S5). In the forest-covered areas of 
China during the period 1999–2018, 41.3% of the forest C sinks grew 
more than 0.5 Mg ha− 1 yr− 1 (Fig. 9). 

On the whole, forest biomass C stocks increased in the whole county 
from 1977 to 2018 with the exception of Hubei province (with losses of 
− 2.32 Mg ha− 1 yr− 1 or more) and the highest rate of increase of forest C 
stocks occurring on the south Tibetan Plateau (with a maximum of 3.13 
Mg ha− 1 yr− 1). In the forest-covered areas of China, 93.8% of the forest 
has functioned as a C sink, and 50% of the forest C sinks have seques-
tered between 0 and 0.25 Mg ha− 1 yr− 1 during the past 40 years (Fig. 9). 

4. Discussion 

4.1. Calibration of forest area under different situations 

The forest area calibration method overcomes the systematic un-
derestimation of sparse forests and overestimation of dense forests. The 
benefits of this iterative method are that it minimizes the deviations 
between the remote sensing- and ground-based values, and guarantees 
the calibrated forest cover proportions in all pixels fall within the range 
of 0–100%, and that the sums of forest and non-forest cover proportions 
always equal 100%. To display the process of forest cover proportion 
calibration more intuitively, we constructed two comparison charts 
(Fig. 10a and b). 

Radians represent the discrepancies between the land use remote 
sensing data and calibrated forest cover proportions. The smaller the 
radians, the smaller the discrepancies and at the same time, the fewer 
the iterations. 

4.2. Spatiotemporal changes in forest biomass C stocks 

Forest biomass C stocks increased from 4128.50 in 1977–1981 to 
7906.23 Tg C in 2014–2018, indicating China’s forests functioned as C 
sinks in the past 4 decades (Table 1, Appendix S5). The increase in forest 
C stocks could be attributed to the expansion of forest areas due to the 
implementation of afforestation and ecological restoration programs in 
China (Fang et al., 2001, 2007; FAO, 2005). Planted forests contributed 
a great deal to forest C stocks (Fang et al., 2014; Li et al., 2016). How-
ever, in these studies the distribution of forest biomass C stocks was only 
estimated at the provincial level, and the exact distribution was not 
known (Fang et al., 2001, 2007; Guo et al., 2010; Zhang et al., 2013, 
2015). For example, the forest C stocks in Tibet in this study are mainly 
distributed in a small southern part of the Qinghai-Tibet Plateau (Sun 
et al., 2016). The spatiotemporal patterns of forest C stocks can be more 
clearly detected using the forest distribution ratio maps combined with 
NDVI data and forest inventory data to obtain the distribution of forest C 
stocks at the pixel level. 

The highest biomass C stocks of China’s forest are mainly distributed 
in the DaHingganLing, XiaoHingganLing, and Changbai mountains in 
the northeast, the Taihang and Qinling mountains in the north, the 
Hengduan mountains (Yungui plateau) in the southwest, and the Wuyi 

Fig. 5. Histogram of frequency distribution of forest cover proportion before (a1, b1, c1, d1) and after (a2, b2, c2, d2) calibration in Guangxi, Shaanxi, Jiangsu, and 
Tibet provinces. 
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mountains in the south (Fig. 6). China has carried out a series of 
ecological protection programs since 1998, thus taking 1998 as a pivot, 
the changes of forest biomass C storage in China can be divided into two 
stages (Li et al., 2016). In the 1980s, due to the harvest of mature forests 
and deforestation in the northeast and rapid urbanization in the south-
east, forest C stocks in these two areas significantly declined. But on the 
Tibet Plateau, which was less affected by human disturbance, forest C 
stocks increased due to forest development (Fang et al., 2001; Du et al., 
2014; He et al., 2017). During the second stage, China implemented a 
series of forest restoration and protection projects, including six major 
forestry projects: (1) the Three-North Protection Forest System (2000); 
(2) the Natural Forest Conservation Projects (2000); (3) the Wildlife and 
Nature Reserve Construction Projects (2001); (4) the Fast-growing 
Forests in Key Areas Projects (2002); (5) the Grain for Green Project 
(2002); and (6) the Beijing–Tianjin–Hebei Sandstorm Source Treatment 
Project (Lei, 2005; Wang et al., 2007; Li et al., 2016). Forest biomass C 
began to increase due to rapid and concentrated afforestation projects, 
especially in the northeast, followed by the northern and southern re-
gions. However, forest C density gradually reached saturation in the 
south of the Qinghai-Tibet Plateau owing to forest growth and the forest 

biomass C has not changed much in the past few years (Keith et al., 
2009; Liu et al., 2014b; He et al., 2017). 

In general, forest biomass C in the southern and northern regions is 
lower than in the northeastern and southwestern regions. The main 
reason is that there are more planted forests in the southern and 
northern regions than in the northeastern and southwestern regions, and 
most of the trees are still at young and middle-ages with low C density 
(Li et al., 2016; Qiu et al., 2020). 

4.3. The effects of forest project to C sinks 

Forest protection projects have been implemented since 1998, and 
China is credited with having made a significant contribution to regional 
and global C sinks in recent decades (Li et al., 2016; Wang et al., 2018; 
Huang et al., 2019; Chen et al., 2019). Therefore, in order to correctly 
assess the effects of relevant forestry policies and programs on forest 
biomass C sequestration, we analyzed the change of forest C storage in 
the areas covered by the eight major forest programs during all eight 
forest inventory periods. 

Forests programs covered 68.64% of the country, and accounted for 

Fig. 6. Changes in biomass C stocks of China’s forest from 1977 to 2018.  
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44.08%–50.93% of C stocks in China from 1977 to 2018. From Fig. 11, 
we can see that the forest C sequestration rate was tiny in the areas 
where the eight major forest programs were implemented during the 
first four periods. Since 1998, the forest C stocks of the forest program 
areas began to increase linearly, especially in the Shelterbelt program 
implementation in the upper and middle reaches of the Yangtze River. 
This particular project added 952.19 Tg C and the Shelterbelt program 
for the Huaihe River and Taihu Lake increased the C stocks four-fold 
(417%) in these areas from 1998 to 2018 (Fig. 11). The overall rate of 
increase of forest C storage in the eight major forests programs area 
(95%) is higher than that for the country as a whole (77%) since 1998 
(Fig. 11, Appendix S2). All ecological projects lead to the increased 
forest area and forest biomass carbon density, which caused forest 
biomass carbon changes. Specifically, the largest increase in forest area 
happens in the “Shelterbelt program for upper and middle reaches of 
Yangtze river” project, with an increased area of 2078*104 ha. In the 
“Shelterbelt program for Huaihe river and Taihu lake” project, the forest 
area and forest biomass carbon density increased by 165% and 116%, 
respectively (Appendix S11, S12). 

The implementation of these forest projects can also improve the 
environments in fragile ecological areas and the provision of ecosystem 
services. These projects could reduce soil erosion and water losses, in-
crease soil fertility, strengthen forest C sequestration, help the forest to 
accumulate nutrients and purify the atmosphere (Wang et al., 2018; 
Huang et al., 2019). China’s forest coverage will be 24% in 2030 because 
of the medium- and long-term state forestry development plans (Xu 
et al., 2010), and the potential for further forest biomass C sequestration 
in the future is high as well (Fang et al., 2018; Lu et al., 2018; Zhao et al., 
2019). 

4.4. Uncertainty 

The method for downscaling forest C density using forest biomass C 
stocks and forest coverage proportion multiplied by NDVI was validated 
using 8 forest inventory datasets for 31 provinces. Overall, the forest C 
density and spatial pattern of forest C stocks in this study were consistent 
with previous studies (Zhang et al., 2013, 2015; Du et al., 2014; Su et al., 
2016; Huang et al., 2019). However, there were some estimates 

Fig. 7. The frequency distribution histogram of biomass C density of China’s forest from 1977 to 2018.  

Fig. 8. Spatial distribution of forest C sinks in China for three periods.  
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uncertainties due to the complexity of forest types, stand age, density, 
and other ecosystem variability. 

Specifically, although it is recognized that forest inventory data is 
one of the most reliable data sources for calculating forest C stocks 
(Smith et al., 2002), there were some uncertainties resulting from the 
changes in the definitions of forests (the canopy cover threshold from 
0.3 to 0.2) (Fang et al., 2007), the variations in inventory methods, and 
the paucity of sample data (Pan et al., 2004). Besides, the empirical 
relationships embedded in the CBEF methods also gloss over some of the 
variability, which may affect the biomass estimates (Zhang et al., 2013; 
Zhao et al., 2019). Moreover, the forest cover proportion maps from 
land-use datasets are based on visual interpretation of satellite imagery, 
which may not be completely consistent with the national forest in-
ventories (Liu et al., 2010, 2018). In addition, the resampling of GIMMS 
NDVI data from 8 km to 1 km, may also introduce more or less esti-
mation uncertainties. The R value between forest biomass C stocks and 
the product of forest coverage and MAM NDVI provincially is 0.92, 
meanwhile, the non-linear relationship between NDVI and leaf area 
index (LAI) at high LAI values leads to imprecise estimation of forest C 
stocks (Chang et al., 2019). Therefore, using forest area and biomass C 
stocks from the statistics of the national forest inventories within each 

province individually as constraints to calibrate the satellite-based forest 
cover map and downscale the forest biomass C distribution map may 
gloss over potential system deviation. Meanwhile, the forest C stocks 
might indicate abrupt changes along provincial boundaries where 
continuous forests may exist. 

During the forest area calibration process, there are still some 
provinces that could not be corrected despite choosing a threshold value 
z set to 0.01. In Hainan province, for example, the area of forest in the 
satellite-based map was too small to match the statistics of forest na-
tional inventories. Owing to the spatial heterogeneity of the geographic 
regions, the system deviations among different provinces are somewhat 
different and the scaling transformations of forest area from some 
provinces (i.e., those with sparsely distributed forest) were not 
completely applicable to the others (i.e., those with widely distributed 
forest). 

Notwithstanding these uncertainties, the result n of forest C stocks 
distribution in this study shows relatively high precision. This study 
provides a basis for comprehensive investigations of the forest C budget 
and the forest area’s contributions to forest C sinks. These attributes 
mean that the results of this work can be used to help develop sustain-
able forest management policies in the face of climate change across 

Fig. 9. The frequency distribution histogram of forest C sinks in China for three periods.  

Fig. 10. Calibration of forest coverage grid values in two different scenarios: a and b represent the cases where the initial forest cover proportion is too large or too 
small, and the x and y axes represent the initial and calibrated forest cover proportions. The gradient of color represents the difference between the initial and 
calibrated forest cover proportions, the darker the color, the larger the difference. The grey line represents the 1:1 line. 
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China. 

5. Conclusions 

In this research, we used a method to downscaling the forest biomass 
C density and sinks that matched the forest inventory data, based on 
multi-source dataset (e.g. forest inventory datasets, NDVI data, and 
land-use remote sensing mapping system data). The area and biomass C 
stocks of China’s forest increased from 11,660.47*104 ha and 4128.50 
Tg C to 17,988.85*104 ha and 7906.23 Tg C with C sinks of 102.10 Tg C 
yr− 1 in 2018, respectively. The study improved spatiotemporal speci-
ficity and the ability to document the locations and magnitudes of the C 
sinks, which were mainly distributed in the northeast, southwest and 
southeast of China. Meanwhile, the study describe the spatiotemporal 
dynamics of C sinks, with increased C sequestration rates after 2000. 
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