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• Annual paddy rice maps in China and
India were generated for first time
using MODIS data.

• Spatiotemporal patterns of paddy rice
fields were analyzed in China and India
during 2000–2015.

• Paddy rice area decreased by 18% in
China but increased by 19% in India.

• Paddy rice area shifted northeastward
in China while widespread expansion
detected in India.
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Paddy rice croplands underwent a significant decrease in South China and increase in Northeast China from 2000

to 2015,while paddy rice fields expansion is remarkable in northern India. The paddy ricefields centroid in China
moved northward due to the substantial rice planting area shrink in Yangtze River Basin and rice area expansion
in high latitude regions (e.g., Sanjiang Plain).
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Due to rapid population growth and urbanization, paddy rice agriculture is experiencing substantial changes in
the spatiotemporal pattern of planting areas in the two most populous countries—China and India—where
food security is always the primary concern. However, there is no spatially explicit and continuous rice-planting
information in either country. This knowledge gap clearly hinders our ability to understand the effects of spatial
paddy rice area dynamics on the environment, such as food and water security, climate change, and zoonotic in-
fectious disease transmission. To resolve this problem, we first generated annual maps of paddy rice planting
areas for both countries from 2000 to 2015, which are derived from time series Moderate Resolution Imaging
Spectroradiometer (MODIS) data and the phenology- and pixel-based rice mapping platform (RICE-MODIS),
and analyzed the spatiotemporal pattern of paddy rice dynamics in the two countries. We found that China
Keywords:
Paddy rice agriculture
orman, OK 73019, USA.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2016.10.223&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2016.10.223
mailto:xiangming.xiao@ou.edu
http://dx.doi.org/10.1016/j.scitotenv.2016.10.223
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


83G. Zhang et al. / Science of the Total Environment 579 (2017) 82–92
experienced a general decrease in paddy rice planting area with a rate of 0.72 million (m) ha/yr from 2000 to
2015, while a significant increase at a rate of 0.27m ha/yr for the same time period happened in India. The spatial
pattern of paddy rice agriculture in China shifted northeastward significantly, due to simultaneous expansions in
paddy rice planting areas in northeastern China and contractions in southern China. India showed an expansion
of paddy rice areas across the entire country, particularly in the northwestern region of the Indo-Gangetic Plain
located in north India and the central and south plateau of India. In general, there has been a northwesterly shift
in the spatial pattern of paddy rice agriculture in India. These changes in the spatiotemporal patterns of paddy
rice planting areahave raised newconcerns onhow the shiftmay affect national food security and environmental
issues relevant to water, climate, and biodiversity.

© 2016 Elsevier B.V. All rights reserved.
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India
MODIS
Food security
Phenology-based algorithm
1. Introduction

Rice feeds more than half of the human population in the world
(Kuenzer and Knauer, 2013). N90% of rice production is from Asia
(Maclean and Hettel, 2002). China and India have the largest rice plant-
ing areas, the most grain production, and the highest amount of rice
consumption in theworld. Paddy rice agriculture in these two countries
plays a pivotal role for both national and global food security. In addition
to food security, rice paddy is related to a number of environmental and
human health issues. For example, paddy rice field management re-
gimes affect greenhouse gas (methane) emission and climatic warming
(Chen et al., 2013; Li et al., 2003; Sass and Cicerone, 2002; van
Groenigen et al., 2013), aswell aswater use andwater resource security
(Kuenzer and Knauer, 2013; Samad et al., 1992). Paddy rice agriculture
was also found to be related to zoonotic infectious disease transmission,
as rice paddies are an important habitat for wild birds and domestic
poultry (Gilbert et al., 2014; Gilbert et al., 2008). Therefore, it is impor-
tant to track the spatiotemporal changes in land use of paddy rice agri-
cultural areas in these two countries.

Several efforts have been taken to document the spatial extent of
paddy rice agriculture in China and India (Frolking et al., 2006;
Gumma et al., 2015; Liu et al., 2014b; Xiao et al., 2005). In China, previ-
ous efforts to map paddy rice fields include: 1) combining a remote
sensing-based land cover map for croplands type and agricultural
census data (rice area and management) (Frolking et al., 2002); 2)
land cover datasets in circa 5-year epochs including paddy rice category
by using Landsat imagery and a visual interpretation approach (Liu et
al., 2005; Liu et al., 2010); 3) simulation of paddy rice area based on
the Spatial Production Allocation Model (SPAM), land distribution, ad-
ministrative unit census of crop data, agricultural irrigation data, and
crop suitability data (Liu et al., 2013; Liu et al., 2014b); and 4) paddy
rice mapping through temporal profile analysis of time series MODIS
data (Sun et al., 2009; Xiao et al., 2005). In India, the studies about
paddy rice field mapping include the district-level rice cropping maps
by combining a series of census data sets of rice cropping (Frolking et
al., 2006), and MODIS-based paddy rice mapping (Gumma et al., 2011;
Xiao et al., 2006). None of the aforementioned projects have generated
annual maps of paddy rice agriculture in these two countries, and com-
parative analyses of spatiotemporal patterns of paddy rice fields be-
tween these two countries have not yet been conducted.

Considering the fact that no spatially explicit maps are available for
understanding the spatiotemporal dynamics of paddy rice agriculture
in these two largest rice-production countries, it is a priority to apply
a robust method for national scale monitoring of paddy rice fields. Ear-
lier studies used traditional classifiers such as supervised (e.g., Maxi-
mum Likelihood Classification) or unsupervised classifiers and single/
multiple images for paddy rice mapping. However, these approaches
are dependent on image statistics, training sample collection, and/or
human visual interpretation, and may produce more uncertainties
when transferring these methods to other regions or periods. Recent
studies increasingly use the phenological characteristics of paddy rice
in the flooding and transplanting phase to extract the location of
paddy rice fields (Sakamoto et al., 2009; Shi et al., 2013; Sun et al.,
2009; Xiao et al., 2006; Xiao et al., 2005), which is based on the discov-
ery that the flooding/transplanting signals can be detected by using the
relationship between the Land Surface Water Index (LSWI) and Nor-
malized Difference Vegetation Index (NDVI), or Enhanced Vegetation
Index (EVI) (Xiao et al., 2002b). This algorithm has recently been used
for paddy rice mapping at regional or national scales, including in China
(Sun et al., 2009; Xiao et al., 2005; Zhang et al., 2015), the Mekong
Basin (Kontgis et al., 2015; Sakamoto et al., 2009), South Asia (Xiao et
al., 2006), and the major rice growing countries of Asia (Nelson and
Gumma, 2015). In these efforts, some improvements over the original al-
gorithm have been made, including pre-determining the temporal win-
dow of transplanting phase by using land surface temperature (Zhang
et al., 2015) or agricultural phenology observation (Sun et al., 2009),
and modified threshold values in the formula (LSWI + 0.05 ≥ EVI or
NDVI) when detecting flooding and transplanting signals for paddy rice
fields (Sakamoto et al., 2009).

Although this phenology-based classification strategy has been
widely used for paddy rice mapping, previous studies have not utilized
the method to continuously monitor paddy rice fields at the national
scale, because bad observation (clouds, cloud shadows, snow, aerosols,
etc.) ratios and data availability to capture vegetation phenology are
variable across large regions. The ability to continuously monitor
paddy rice fields is particularly important for the tropical regions in
China and India where a cyclic, monsoonal climate causes persistent
cloud cover during rainy season (Kontgis et al., 2015). Although
Synthetic Aperture Radar (SAR) imaging has advantages, such as not
being affected by clouds or solar illumination, the SAR-based approach
has not been used for large-scale paddy ricemapping due to the limited
availability of SAR data (Bouvet et al., 2009; Dong et al., 2006; Miyaoka
et al., 2013; Nelson et al., 2014; Wu et al., 2011; Yang et al., 2008).

In order to better understand the recent paddy rice agriculture
dynamics in China and India, the objective of this study is two-fold:
1) to map annual paddy rice planting area for China and India from
2000 to 2015 using time series MODIS data and a phenology-based
rice algorithm, and 2) to investigate the spatiotemporal changes in
paddy rice fields in both countries from the perspectives of location,
climate, and elevation. To our limited knowledge, this study provides
the first picture of spatiotemporal changes in paddy rice fields for the
two most populous countries. The resultant paddy rice maps are ex-
pected to serve land use management and planning, food security
policy making, climate change monitoring, water resource usage,
and other applications.

2. Data and methods

2.1. Study area

Paddy rice is generally distributed within the monsoon areas of
China and India. In China, the continental monsoon climate can be clas-
sified as subtropical in the south and temperate in the north. Precipita-
tion mostly falls in summer season, but with significant moisture
gradients from southeast to northwest. Due to the temperature differ-
ence in northern and southern China, paddy rice monoculture occurs



Fig. 1. The location of the study area (China and India) and its digital elevationmodel (DEM). The inset in the figure is the ratios of sowing areas of paddy rice in China and India to that in
Monsoon Asia in 2013. The data of sowing area of paddy rice in different countries is from FAOSTAT (http://faostat.fao.org/). The administrative boundaries in China and India are acquired
from the GADM (http://www.gadm.org/). The DEM is from Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation Database, obtained from https://lta.cr.usgs.gov/SRTM.
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in northern China and paddy rice polyculture occurs in southern China.
Both climate and complex topography affect the vertical and horizontal
distributions of paddy rice, which is mainly distributed in the alluvial
plains and river basins along China's major rivers and coastal areas in
eastern China (Fig. 1).

In India, climate ranges from tropical in the south to temperate
and alpine (Himalayas) in the north, and includes four climatic
types: tropical wet, tropical dry, subtropical humid, and montane.
The tropical monsoon dominates India's annual climate, which can
be divided into rainy season (June–October), dry season (March–
May), and cool season (November–February). The annual monsoon
plays a critical role in planting paddy rice as a polyculture across
the country. In terms of topography, the terrain in most parts of
India is low and smooth, which is suitable for planting paddy rice.
Paddy rice is widely distributed in the Indo-Gangetic alluvial plain,
especially in northern India (Fig. 1).

2.2. Data and preprocessing

2.2.1. MODIS data and processing
Time series vegetation index (VI) data and land surface temperature

(LST) data were used in this study. The VIs were calculated using the 8-
day composite surface reflectance products (MOD09A1) (Vermote and
Vermeulen, 1999), acquired from the Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/). StandardMODIS products are
organized in a tile system using a sinusoidal projection, and each tile
covers an area of 1200 km × 1200 km (approximately 10 latitude by
10 longitude at the equator). A total of 24 tiles (H25-26V03, H23-
27V04, H23-28V05, H24-29V06, H24-26V07, H28V07, and H25V08)
from 2000 to 2015, including 17,496 images, were used for China and
India. The MODIS data was used to calculate four VIs, including NDVI,
EVI (Huete et al., 2002), LSWI (Xiao et al., 2002a; Xiao et al., 2002b),
and Normalized Difference Snow Index (NDSI) (Hall et al., 1995; Hall
et al., 2002) (Eq. (1)–(4)). Then we identified clouds by using both the
data quality layer in the MOD09A1 products and an additional restric-
tionwith a blue reflectance of≥0.2 (Xiao et al., 2005). Snow is identified
by a widely used approach (NDSI N0.40 and NIR N 0.11) (Hall et al.,
1995; Hall et al., 2002). The observations identified as cloud or snow
were excluded from analyses of land cover types and transplanting/
flooding signals of paddy rice fields.

NDVI ¼ ρnir−ρred

ρnir þ ρred
ð1Þ

EVI ¼ 2:5� ρnir−ρred

ρnir þ 6� ρred−7:5� ρblue þ 1
ð2Þ

LSWI ¼ ρnir−ρswir

ρnir þ ρswir
ð3Þ

NDSI ¼ ρgreen−ρnir

ρgreen þ ρnir
ð4Þ

where ρblue, ρgreen, ρred, ρnir, and ρswir are the surface reflectance for the
blue, green, red, near-infrared, and shortwave-infrared bands,
respectively.

Minimum daily temperature was used to determine the thermal
growing season in this study. MODIS has two Land Surface Temperature
(LST) products available at 1-km resolution, MOD11A2 from the Terra
satellite (local time ∼10:30 AM and ∼22:30 PM) and MYD11A2 from
the Aqua satellite (∼13:30 PM and ∼01:30 AM). The observations at
~01:30 AM (from the Aqua satellite) have the lowest temperatures,
and are close to the minimum daily temperature (Zhang et al., 2015).
Thus, we used the Aqua-derived MYD11A2 data in this study. The
gaps in time series LST data due to bad-quality observations were also
gap-filled by using the linear interpolation approach. Then the first
and last dates of stable temperatures larger than 5 °C in continuous
three 8-day intervals were extracted as the start and end dates of the
thermal growing season. The resultant maps of the start and end dates
of thermal growing season were resampled to 500 m using the nearest
neighbor method to match the vegetation index maps. The resultant
maps of thermal growing season in 2003 were used to identify paddy
rice fields from 2000 to 2002, due to the unavailability of MYD11A2
data in 2000–2002.

Land cover information from the MODIS Land Cover product
(MCD12Q1) with 500 m resolution was also used as non-rice masks.
Specifically, permanent wetland derived from MCD12Q1 (according to

https://lpdaac.usgs.gov
http://faostat.fao.org
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85G. Zhang et al. / Science of the Total Environment 579 (2017) 82–92
IGBP classification system) was used as the wetland mask. The
MCD12Q1 data were only available from 2001 to 2012, so we used
2001 data to fill the gaps in 2000, and 2012 data to fill the gaps in
2013–2015.

2.2.2. Other datasets
The National Land Cover Dataset (NLCD) of China at a 1-km

spatial resolution, obtained from the Data Center for Resource and
Environmental Sciences of the Chinese Academy of Sciences (http://
www.resdc.cn/), was generated through visual interpretation and digi-
tization of Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper (ETM+) images acquired over multiple periods (1980s, 1995,
2000, 2005, 2008, and 2010) (Liu et al., 2014a; Liu et al., 2005). It in-
cludes six primary land cover categories and 25 subtypes. The overall
accuracy of the 25 subclasses was above 91.2% (Liu et al., 2014a). The
paddy rice layers of 2000, 2005, 2008, and 2010 NLCD datasets were
used for comparison in this study. The wetland map derived from
NLCD of China in 2010 was used as a supplementary wetland mask for
2000–2015 to exclude natural wetlands in China, whichwas resampled
to 500mbasedon thenearest neighbormethod tomatch the vegetation
index data fromMOD09A1.

The International Rice Research Institute (IRRI) recently released a
rice map of six countries in South Asia during 2000–2001 (http://irri.
org/our-work/research/policy-and-markets/mapping/remote-sensing-
derived-rice-maps-and-related-publications). This map was also de-
rived from MOD09A1 product between June 2000 and May 2001,
which are based on the spectral matching techniques, decision trees,
and ideal temporal profile data banks. Here it is referred to as IRRI-
Rice map, which has 12 rice classes, including the irrigated and rain-
fed rice (Gumma et al., 2011). The overall accuracy of IRRI-Rice map
was 80% for all classes. The irrigated rice layer in the IRRI-Ricemap dur-
ing 2000–2001 in India was used for comparison in this study.

The agricultural census data, whichwere derived from 2000 to 2014
statistical yearbooks of China (http://www.stats.gov.cn/tjsj/) and 2000–
2006 statistical reports of India (http://indiastat.com), were used to
compare and evaluate theMODIS-based paddy ricemaps at the provin-
cial level. The sowing area of rice in India from 2000 to 2014, derived
from FAOSTAT (http://faostat.fao.org/), was used to evaluate the chang-
es in MODIS-based paddy rice fields in India.

2.3. Methods

2.3.1. Improved algorithm to identify flooding and transplanting of paddy
rice fields

The flooding signals in rice transplanting phase are critical features
to identify paddy rice fields, as paddy rice is the sole crop type to be
transplanted and to grow in water-soil mixture fields. Through tempo-
ral profile analysis of remote sensing data, Xiao et al. (2002b) found that
the mixture of rice plants and water (open canopy) during
transplanting phases can be tracked by the relationship between the
vegetation greenness index (NDVI or EVI) and the water index
(LSWI), simply by using the equation: LSWI + 0.05 ≥ EVI or
LSWI + 0.05 ≥ NDVI. This simple algorithm was first applied to map
paddy rice in South Asia, Southeast Asia and southern China (Xiao et
al., 2006; Xiao et al., 2005), and then extended to national scale rice
mapping efforts in China and Bangladesh (Gumma et al., 2014; Sun et
al., 2009). The application of the algorithm in temperate regions was
also proven to be effective by using MODIS or Landsat images (Dong
et al., 2015; Jin et al., 2015; Qin et al., 2015; Wang et al., 2015; Zhang
et al., 2015).

We recently improved the implementation of the algorithm by in-
corporating the temperature-based timewindow for rice transplanting,
which was derived from MODIS LST data (Dong et al., 2016; Qin et al.,
2015; Zhang et al., 2015; Zhou et al., 2016). Rice plants are not
transplanted until air temperature reaches a threshold, so that plants
will not suffer damages from low temperatures. In our previous study,
we determined that the likely start and end dates of flooding and
transplanting (SOF and EOF for short) for paddy rice is the start and
enddates of nighttime LST remaining above 5 °C (LST 5 °C, for short), re-
spectively (Zhang et al., 2015). In this study, for the region with mono-
culture in the northern part of study area (Fig. S1), including
Heilongjiang, Jilin, Liaoning, and Inner Mongolia provinces in China,
we redefined the EOF as the date of start date of LST 5 °C (Fig. S2a)
plus 80 days in order to explicitly extract suitable period for flooding
and transplanting in this region. The determination of EOF in northern
part of study area will help to identify paddy rice area and remove
some disturbances and noises, e.g., summer flooding in August. For
the southern part of study area, the end date of LST 5 °Cwas considered
as EOF (Fig. S2b). The temperature-based time window of flooding and
transplanting also helps remove the false flooding signals from snow or
snowmelt in temperate regions and themountainous regions (Zhang et
al., 2015). The improved algorithm was applied to identify paddy rice
fields in temperate and cold temperate zones such as northeastern
China (Zhang et al., 2015).

In this study, we applied the improved algorithm to China and India
over the period of 2000–2015 for the flooded paddy rice. Note that the
rain-fed paddy ricewas not included in this specific study due to the un-
availability of flooding signals. The EVI and LSWI within the time win-
dow of flooding and transplanting were used to identify the
observations with signals of flooding and transplanting considering
that EVI is more sensitive than NDVI to show the flooding signals of
paddy rice (Zhang et al., 2015), and a pixel is assumed to be a “potential
or likely” paddy rice field if one or more observations were identified in
that manner (Eq. (5)–(8)).

FTi ¼ 1 LSWITi þ 0:05≥EVITið Þ
0 LSWITi þ 0:05bEVITið Þ

�
ð5Þ

Ricep ¼ Max FT1; FT2;…; FTnð Þ SOF≤T≤EOFð Þ ð6Þ

SOF ¼ DOY start date of LSTnight≥5 °C
� � ð7Þ

EOF ¼ DOY start date of LSTnight≥5 °C
� �þ 80 north regionð Þ

DOY end date of LSTnight≥5 °C
� �

south regionð Þ
�

ð8Þ

where Ti is the 8-day composite period in the order of i between SOF and
EOF, FT is the flooding area in the 8-day composite at T between the SOF
and EOF, and Ricep is the potential paddy rice area before masking non-
rice land cover layers.

2.3.2. Regional implementation of the paddy rice mapping algorithm
In order to take advantage of recent progress in land cover mapping

and to reduce commission errors in paddy rice maps, we used several
non-cropland data products as mask layers (Xiao et al., 2005, 2006;
Zhang et al., 2015). First, we generated maps of evergreen vegetation
from analysis of LSWI time series data (Xiao et al., 2009; Xiao et al.,
2002c; Xiao et al., 2005). If LSWI value of a pixel is larger or equal to
0.15 in all good observations in one year, it is labeled as evergreen veg-
etation. We generated annual evergreen vegetation maps, and then a
15-year evergreen vegetation frequency map. In order to reduce the
error due to effects of data quality on evergreen vegetationmapping, ev-
ergreen vegetation can be identified if it had at least seven detections in
15 years (2000–2014, ~50% detection rate). Second, we used the
PALSAR-based forest map in 2010 at 50 m spatial resolution (Qin et
al., 2016), which was resampled to 500 m using the nearest neighbor
method to be spatially consistent with the vegetation index maps
fromMOD09A1. Third,we generatedmaps of sparse vegetation (e.g., sa-
line and alkaline land, build-up) using the annual maximum EVI b0.4
(Zhang et al., 2015). Fourth, we used available maps of natural wet-
lands: NLCD-based wetland in 2010 in China (Liu et al., 2005) and
IGBP-based wetland from MOD12Q1 from 2001 to 2012. Fifth, we
used Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation

http://www.resdc.cn
http://www.resdc.cn
http://irri.org/our-work/research/policy-and-markets/mapping/remote-sensing-derived-rice-maps-and-related-publications
http://irri.org/our-work/research/policy-and-markets/mapping/remote-sensing-derived-rice-maps-and-related-publications
http://irri.org/our-work/research/policy-and-markets/mapping/remote-sensing-derived-rice-maps-and-related-publications
http://www.stats.gov.cn/tjsj/
http://indiastat.com
http://faostat.fao.org
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Database to generate a digital elevation model (DEM) mask in order to
remove the disturbance from low lying area flooding located in moun-
tain region, which is the region above 2600 m above sea level (asl.)
(Nelson and Gumma, 2015) or with a slope N4°. Last, the length of LST
5 °C (Fig. S2c) b100 dayswas used as a temperate-basedmask through-
out the study area,which can help to remove the noise occurring in cold
region or montane areas. After excluding land cover by using these
masks, annual paddy rice maps were generated (Fig. S3).

Accuracy assessment of land cover maps is a critical component in
the production of land covermaps. In order to assess the accuracy of an-
nual paddy ricemaps in both countries from 2000 to 2015, we conduct-
ed an inter-comparisonwith existing national/regional paddy ricemaps
and agricultural census data. The existing paddy rice data we have col-
lected include: 1) NLCD in China in ca. 2000, 2005, 2008, and 2010
(Liu et al., 2005; Liu et al., 2010; Liu et al., 2013); and 2) the IRRI-
based paddy rice map during 2000–2001 in India (Gumma et al.,
2011). Abundant ground-based survey validations have been conduct-
ed in our previous regional studies, including northern China (Zhang
et al., 2015), southern China (Xiao et al., 2005), central China (Wang
et al., 2015), and India (Biradar and Xiao, 2011). These validations gen-
erally covered most paddy rice fields in these two countries in certain
years. Given the huge land areas in both China and India and limited re-
sources (financial and human), it is challenging and beyond our capac-
ity to collect national level ground survey data for both countries.
Therefore, in this paper, we focus on the inter-comparison among the
data products available to the public. Furthermore, we will release the
data and conduct a crowd-sourcing validation approach in an online
data portal in the future.
2.3.3. Characterizing spatial pattern of paddy rice planting area trends
To investigate the spatial and temporal pattern changes of paddy

rice in China and India, we aggregated binary paddy ricemaps into frac-
tional rice mapswithin a block (window) of 10 × 10 pixels (~5-km spa-
tial resolution) and calculated a spatially explicit map of the linear trend
of paddy rice fields expansion. Based on the resultant map of paddy rice
area change rates from 2000 to 2015 at ~5-km spatial resolution, we in-
vestigated where significant changes in paddy rice area took place in
China and India. The slope of linear trend was calculated with the fol-
lowing formula:

Slope ¼ n�∑n
i¼1 i� Aið Þ−∑n

i¼1i∑
n
i¼1Ai

n�∑n
i¼1i

2− ∑n
i¼1i

� �2 ð9Þ

where slope is the change rate of paddy rice area; i is the order of year
from 1 to n, and n is the number of years; Ai is the area percentage of
paddy rice fields of year i. If slope N 0, then paddy rice area increased.
If slope b 0, then paddy rice area decreased, and if slope = 0, there was
no change.

In addition,we employed the centroidmovementmodel by identify-
ing the centroids and shifts of paddy rice fields in these two countries to
analyze the spatial and temporal changes in paddy rice area (Zuo et al.,
2014). The location of centroids for a given time t could be calculated
using the equations below:

X tð Þ ¼ ∑m
i¼1 Ai tð Þ � Xi tð Þð Þ

A tð Þ ;Y tð Þ ¼ ∑m
i¼1 Ai tð Þ � Yi tð Þð Þ

A tð Þ ð10Þ

where X(t) and Y(t) are the longitude and latitude coordinates of cen-
troid of paddy rice in year t. Ai(t) is the area of paddy rice in province
i;m is the total number of provinces in each country; Xi(t) and Yi(t) rep-
resent the longitude and latitude coordinates of paddy rice in province i.
3. Results

3.1. Inter-comparison of paddy rice maps from multiple sources

Comparisons with existing land use maps showed the reliability of
the paddy rice maps in this study. In China, the Landsat-based NLCD
datasets agreed well with the MODIS-based paddy rice maps in 2000,
2005, 2008, and 2010. The spatial distribution of MODIS-based paddy
rice fields were consistent with those of the NLCD-based paddy rice
fractional layers in each of the four time periods, particularly for the
pixels with paddy rice area percentage ≥ 40% (Fig. 2a, b, Fig. S4). The
comparison of provincial and prefectural area estimates between
MODIS-based and NLCD-based maps was significantly correlated at
both provincial (R2 ranging from 0.84–0.89) and prefectural levels (R2

ranging from 0.72–0.77) (Fig. 2e, f, Fig. S4). The slopes were close to 1,
and the RMSE ranged from4.7 × 103 km2 to 6.2 × 103 km2 at the provin-
cial level and from 0.84 × 103 km2 to 0.98 × 103 km2 at the prefectural
level (Fig. 2e, f, Fig. S4).

In India, the spatial pattern of MODIS-based paddy rice fields in
2000–2001 was closely consistent with that of IRRI-based product
(Fig. 2c, d), withR2 equal to 0.92 and 0.69 at the provincial level andpre-
fectural level, respectively, and with RMSE equal to 4.80 × 103 km2 and
0.47 × 103 km2 at the provincial level and prefectural level, respectively
(Fig. 2g, h). Both slopes were close to 1 (Fig. 2g, h).

Furthermore, we also compared MODIS-based paddy rice area with
agricultural census data of China and India at provincial level (Fig. S5).
These comparisons showed high consistency between them; R2 ranged
from 0.77–0.92 in China and 0.79–0.81 in India. Finally, we also com-
pared the variations in paddy rice area between MODIS-based results
and FAOSTAT in India.We found high consistency of variations between
them in India (correlation coefficient equal to 0.83 during 2002–2014,
P b 0.001, Fig. S6). The higher area estimate of FAOSTAT could be related
to the data set's inclusion of rain-fed rice area in India.

Generally, theMODIS-based products had high consistency with the
existing local and periodic paddy rice maps in both spatial patterns and
magnitudes. Also, the comparisons between MODIS-based paddy rice
area and agricultural census data showed high consistency between
them. Therefore, the new paddy rice products were reliable for tracking
paddy rice agriculture dynamics in both countries. We included the
MODIS-based paddy rice area estimates at the province level for India
and China. For more information, please refer to the Table S1 in SI.
3.2. Geographical characteristics of paddy rice distribution in China and
India

The paddy rice planting area in 2015 in China and India is 33.04 and
29.02m ha, respectively (Fig. 3). Paddy rice fields in China is mostly dis-
tributed in the alluvial plains in the east of Chinawith an average eleva-
tion b400m, including northeast China and southeast China (Fig. 4, Figs.
S7, S8). In northeast China, paddy rice is located in the Northeast Plain
with a latitude range of 45–48°N and a longitude range of 130–134°E
(Fig. 4, Figs. S7, S8). The distribution of paddy rice fields show a
dendritic shape alongside the rivers. In the southeast China, paddy
rice is mainly concentrated in the south of North Plain, Yangtze
Plain, and Sichuan Basin, with a latitude range of 25–33°N and a lon-
gitude range of 103–122°E (Fig. 4, Figs. S7, S8). There is also some
paddy rice fields sporadically distributed in the terraced fields of
the southeast hills and Yunnan–Guizhou Plateau. Paddy rice of
India is widely spread all over the country, except for the Thar Desert
in the northwestern part of India (Fig. 4, Fig. S7). Areas with the high
density of paddy rice fields are located in the Indo-Gangetic Plain in
the north of India, with a latitude range of 20–32°N and a longitude
range of 74–88°E, and the Eastern Coastal Plain in the east coast of
India, with a latitude range of 8–20°N (Fig. 4, Figs. S7, S8). In central
India, paddy rice fields are sporadically distributed (Fig. 4, Fig. S7).



Fig. 2. The comparison of MODIS-based paddy ricemapswith the existing paddy ricemaps. (a) and (c) are theMODIS-based paddy ricemaps in China of 2010 and in India of 2000–2001,
respectively. (b) is the National Land Cover Dataset (NLCD)-based paddy ricemap in China of 2010. (d) is the International Rice Research Institute (IRRI)-based paddy ricemap (Gummaet
al., 2011) in India of 2000–2001. (e) and (f) are the scatter plots for the comparisons betweenMODIS-based andNLCD-based paddy rice at provincial and prefectural level in China of 2010,
respectively. (g) and (h) are the scatter plots for the comparison betweenMODIS-based and IRRI-based paddy rice at provincial and prefectural level in India of 2000–2001, respectively.
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In termsof climate zones (Figs. S8, S9), paddy rice in China is concen-
trated in the temperate region, including Cfa climate (Temperate, with-
out dry season and hot summer), Cwa climate (Temperate, dry winter
and hot summer), and Dwa climate (Cold, dry winter and hot summer).
Paddy rice in India is mainly distributed in the temperate and tropical
regions, including Cwa climate, Aw climate (Tropical and savannah),
and Bsh climate (Arid, steppe and hot) (Figs. S8, S9). In terms of eleva-
tion zones, paddy rice fields in China and India are mainly concentrated
in the region with elevation b400 m (Fig. S8).
3.3. Characterizing spatial pattern of paddy rice planting area trends in Chi-
na and India

The inter-annual distribution of paddy rice fields differed between
China and India from 2000 to 2015. China had a decreased paddy rice
planting area with a rate of 0.72m ha/yr, while planting area increased
significantly at a rate of 0.27mha/yr in India (Fig. 3). Paddy rice planting
area in China had a substantial decrease of ~18% from 40.1 × 106 ha in
2000, to 33.0 × 106 ha in 2015. The paddy rice area increased first,
reached themaximum(about 45.9 × 106 ha) in 2006, then gradually de-
clined from 2006 to 2015. India had a stable and moderate increase in
Fig. 3. Variations of MODIS-based paddy rice croplands in China and India from 2000 to
2015.
planting area of 19%, from 24.5 × 106 ha in 2000 to 29.0 × 106 ha in
2015. It is important to point out that the difference in paddy rice plant-
ing area between China and India became smaller, from 15.6 × 106 ha in
2000 to 4.0 × 106 ha in 2015 (Fig. 3).

In China, the areas with significant changes in paddy rice area
(P b 0.05 and |r | N1%) accounted for 50.2% of all the rice gridcells
(Fig. 5), approximately an 11.1% increase (r N 1%) and a 39.1% decrease
(r b−1%) in paddy rice area (Table S2). The change in the spatial distri-
bution of paddy rice fields showed an evident increase in northern
China and a decrease in southern China. Significant loss of paddy rice
area (P b 0.05 and r ≤−1%) occurred in the Yangtze Plain in southeast
China along a latitude range of 25–33°N and a longitude range of 100–
120°E (Figs. 5, 6a, b), including Hunan, Sichuan, Jiangxi, Anhui,
Chongqing, Jiangsu, Zhejiang, and Hubei provinces. These regions
accounted for 86% of the total significant decrease in paddy rice area
in China. Significant expansion of paddy rice areas (P b 0.05 and
r ≥ 1%) occurred in northeast China along a latitude range of 45–48°N
and a longitude range of 120–134°E (Figs. 5, 6a, b), and was mainly lo-
cated in Sanjiang Plain in Heilongjiang province. These regions
accounted for ~66% of significant increase in paddy rice area in China,
followed by Inner Mongolia, Jilin, and Jiangsu. The increase in paddy
rice area in the high-latitude regions led to a northeastward shift of
the national paddy rice area centroid in China (Fig. 5). In terms of cli-
mate zones, the region with significant increase in paddy rice area are
located in the cold zones (Dwa andDwb), and thosewith significant de-
crease in paddy rice area are mainly distributed in the temperate zones
(Cfa, Cfb, Cwa, and Cwb) (Fig. 6d, Fig. S9), which further illustrated the
northward shift of the national rice area centroid in China. In terms of
elevation zones, the regions with a significant decrease in paddy rice
area were dominated in the region with the elevation range of 300–
500m, due to the low-lying hills in southeast China where the main re-
gionswith significant decrease in paddy rice areawere located (Fig. 6c).

In India, expansion of paddy rice fields occurred all over the country
(Fig. 5), and the regions with statistically significant changes in paddy
rice area (P b 0.05 and |r | N1%) accounted for 39.3% of all the rice
gridcells; approximately 30.7% of the area increased and 8.6% decreased
(Table S2). Significant expansion of paddy rice fields occurred in the
northwest of Indo-Gangetic Plain in north India with a latitude range
of 28–32°N (Figs. 5, 6a), followed in the central and south plateau of
India, including Punjab, Haryana, Karnataka, and Andhra Pradesh (larg-
er than 8% of the significant increasing region (P b 0.05 and r ≥ 1%)).



Fig. 4. Spatial distribution of paddy rice croplands in China and India in 2015. The figures in the right and bottom are the zoom-in figures.
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Significant loss of paddy rice area occurred sporadically over small re-
gions, for example, on the east of Indo-Gangetic Plain of north India
with a longitude range of 91–96°E (Figs. 5, 6b), including Bihar,
Assam, and West Bengal (larger than 10% of the significant decreasing
region (P b 0.05 and r ≤ −1%)). The changes in spatial pattern of
paddy rice planting areas resulted in the centroid shift from east to
west and north in India (Fig. 5). In terms of climate zones, paddy rice
fields in arid (BWh and BSh) and temperate (Csa, Csb, Cwa) zones in-
creased (Fig. 6d, Fig. S9). In terms of elevation zones, paddy rice fields
showed significant increase in all the elevation zones, especially with
the elevation range of 200–300 m (Fig. 6c).
Fig. 5. Geographical pattern of the paddy rice change rates. a) Spatial distribution of the signifi
different paddy rice change rate levels in China and India. The trajectory of paddy rice centro
trajectories of paddy rice centroid in China and India, respectively.
4. Discussion

4.1. From cropland mapping to paddy rice mapping at moderate spatial
resolution

Over the past few decades, land cover mapping at the global scale
has aggregated all cropland types into a single category, for example,
in cropland of the MCD12Q1 products from MODIS images (Friedl et
al., 2010), cropland of the GlobCover product from the MEdium
Resolution Imaging Spectrometer (MERIS) (Arino et al., 2008), and
the Landsat-based global cropland extent from the FROM-GC datasets
cant paddy rice trend (P b 0.05) at 5 × 5 km gridcells, the insets show the distributions of
id from 2000 to 2015 is shown in the map a. (b) and (c) are the zoom-in figures for the



Fig. 6. Distribution of paddy rice change rates along different geographical gradients: (a) latitude gradients, (b) longitude gradients, (c) elevation gradients, and (d) climate zones. The
climate zones are derived from the Köppen-Geiger climate classification (Peel et al., 2007). The meanings of codes in (d) can be found in Table S3. The distributions of different climate
zones can be found in Fig. S6.
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(Yu et al., 2013). In addition, some studies also integrated these existing
cropland products to generate a new one with higher accuracy (e.g.,
IIASA-IFPRI) (Fritz et al., 2015). The aforementioned land cover data
products treat cropland as one category, and therefore cannot support
studies that seek to use crop specific data for food security, water re-
sources use, greenhouse gas (GHG) emissions and climate. Currently,
there are no global scale paddy rice maps derived from analyses of re-
mote sensing images, let alone the temporal monitoring of the distribu-
tion of paddy rice fields.

Paddy rice mapping has been conducted at regional scales. For ex-
ample, in USA, the CroplandData Layer (CDL) is based on intensive sam-
ple data and supervised classification approach (Johnson and Mueller,
2010). In China, National Land Cover Datasets is based on labor inten-
sive visual interpretation (Liu et al., 2005). However, these data prod-
ucts are not temporally continuous and cannot provide satellite
evidence for the paddy rice variations in China, nor in India. A consis-
tent, continuous, and robust paddy rice mapping strategy is needed to
track spatiotemporal shifts in paddy rice fields in China and India.
Using the RICE-MODIS platform, which combines time series MODIS-
derived vegetation indices data and a phenology-based approach, we
generated annual paddy rice maps for the two global leaders in paddy
rice production. To our limited knowledge, these are the first annual na-
tional-scale products for either China or India over the previous
16 years. The maps produced by this study will be available in the
Earth Observation and Modeling Facility (EOMF) data portal (http://
www.eomf.ou.edu/) of the University of Oklahoma, and are expected
to provide valuable information regarding a number of food security
and environmental issues.

4.2. Annual maps of paddy rice planting area at 500-m spatial resolution in
China and India

Through spatiotemporal analyses of these annualmaps of paddy rice
planting area, we found that China experienced a significant northward

http://www.eomf.ou.edu/
http://www.eomf.ou.edu/
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shift in the paddy rice field distribution characterized as a decrease in
southern China and an increase in northern China, while India had an
increase in the whole paddy rice planting area. Our results in China
were consistent with the findings from previous studies about the
shift in spatiotemporal distribution of paddy rice fields (Li et al., 2015;
Liu et al., 2013; Piao et al., 2010), that is, a significant expansion of
paddy ricefields in northern China and decrease in southern China. Sev-
eral studies at regional scales also reported regional changes in paddy
rice field distribution in China. For example, paddy rice fields have ex-
panded in the wetlands of northeastern China, especially the Sanjiang
Plain of Heilongjiang Province (Liu et al., 2004; Shi et al., 2013; Wang
et al., 2011; Yang et al., 2007; Zhang et al., 2009).

Our conclusions are also supported by the studies based on different
approaches. For example, Liu et al. (2013) generated spatial distribu-
tions of rice area and production results by using the Spatial Production
Allocation Model (SPAM) and a series of datasets including cropland
distribution, agricultural census data, agricultural irrigation data, and
crop suitability data. The results showed a northeast shift of the paddy
rice centroid in China. Through analyses of cropland census data,
Cheng et al. (2012) also found a northward shift in the paddy rice pat-
tern. In India, there were few works on changes in the distribution of
paddy rice fields at regional or subnational scales (Gumma et al.,
2015; Rao and Rao, 1987).

Although agricultural census data can track the annual variations of
paddy rice area at regional or national scales (Tong et al., 2003), it can-
not show where the paddy rice changes occurred. Moreover, the offi-
cially agricultural census data of China cannot effectively track the
variations of paddy rice area;many studies havementioned that census
data in China could be biaseddue to political andpolicy factors (Frolking
et al., 1999; Seto et al., 2000; Xiao et al., 2003). In addition, the planting
areas of paddy rice derived from MODIS data in this study were not
comparable to the sown areas from the agricultural census data. The an-
nual maps of paddy rice planting area from this study provides spatio-
temporally explicit information compared to the existing results from
model simulations and agricultural census data.

4.3. Drivers of paddy rice agriculture shifts in China and India and implica-
tions on food security

What is driving the shifts in paddy rice distribution for each country?
The answer is complex. In China, previous studies revealed that the
market and technical advances were two major factors influencing the
paddy rice planting area dynamics (Cheng et al., 2012). For example,
in southern China, previous studies showed that the economic develop-
ment, smaller size of paddy rice fields, and the low agriculture compar-
ative benefit have accelerated the decrease of paddy rice planting area
(Cheng et al., 2012; Xu et al., 2013). Our results showed an evident de-
crease in paddy rice fields in southern China from 2000 to 2015 (Fig. 5).
One possible reason for the decrease is that urbanization, industrializa-
tion, and infrastructure development have replaced a lot of croplands.
Another possible explanation is the lack of labor force for paddy rice
planting as young farmers migrate to cities to pursue higher payment
jobs. Conversely, in Northeast China, rice agriculture expanded largely
due to the large-scale agricultural operations, especially the state-
owned farms have better agricultural infrastructure. Our previous
study also demonstrated that the market price of rice is one of the im-
portant drivers in Northeast China, which directly motivated the
farmers' decisions of paddy rice planting (Dong et al., 2016). In India,
rapid economic growth and improvement of infrastructure, including
the increased capacity of irrigation across the country, may be one im-
portant reason for the increase in paddy rice fields (Hazell and Wood,
2008). Loss in paddy rice field area is expected to increase in the future
as urban population growth continues (Pandey and Seto, 2015), espe-
cially in the two most populous countries—India and China.

In addition, climate change and variability will always be a critical
concern and constraint factor for agriculture and food security in the
future (Lobell et al., 2008). For example, the increase in climate-change
driven drought events may further threaten paddy rice agriculture in
southern China (Huang et al., 2014) and the whole India (admin,
2015; GALLUCCI, 2015). Li et al. (2015) found that climate change is
one of the major driving forces for the rice relocation in China. In
India, our results showed a slightly decreasing trend from 2013 to
2015, and the recent climate-change driven drought events have been
widely considered as an important driver (admin, 2015; GALLUCCI,
2015).

Although the paddy rice planting area has decreased, rice production
in China showed an increasing trend generally (Liu et al., 2013). In India,
annual rice production is highly variable despite the increased rice
planting area. One of the reasons could be that the irrigated rice domi-
nates China's rice production while rain-fed rice accounts for a large
proportion in India, which is vulnerable to climate variability.

4.4. Uncertainty analysis and future development in paddy rice mapping

Although our annual maps of paddy rice planting areas are consis-
tent with existing products and have reasonably high accuracy, map-
ping paddy rice in tropical humid areas could still be a difficult task
due to a few reasons.

First, the lack of cloud-free observations over the year prohibits anal-
yses. Fig. S10 demonstrates the cloud frequency among all observations
within a year. The tropical regions havemore dense cloud coverage than
in the mid-latitude areas. Moreover, due to the monsoonal climate,
flooding signals of paddy rice fields are obscured from detection from
early June to August (Fig. S11). As a result, analysis of optical images
in tropical regions results in a higher omission error.

Second, the uncertainty of the paddy rice maps could be from the
coarse spatial resolution of MODIS (Jain et al., 2013), as 500-m MODIS
pixels could contain several land cover types or different crops within
a pixel. The mixed pixels occur widely in mountainous areas, such as
the montane regions of southern China (Fig. S12). Likewise, small-
scale fieldswith different crops in close proximity to each other contrib-
ute to the mixed pixel issue, which will also weaken the flooding signal
of paddy rice. Mixed pixel issues are expected to be solved in the future
through application of images with finer spatial resolutions, such as
Landsat. Several recent studies have reported that the time series
Landsat images can be used to detect changes in paddy rice fields in
temperate climate regions (Dong et al., 2015; Qin et al., 2015; Zhou et
al., 2016). However, Landsat's utility in tropical regions is still unknown
due to more clouds, longer revisit period, and multiple crops in a year.
The recently launched Sentinel-2A is expected to provide higher tempo-
ral resolution images with 10-m resolution (Drusch et al., 2012). The
improved Sentinel-2A data, in combination with Landsat data, may en-
able the algorithm to be feasible for monitoring paddy rice fields at a
spatial resolution of 30-m in the future. Another promising method is
the analysis of cloud-free SAR data. For example, SAR satellite images
have been used for paddy rice mapping at demonstration sites across
Asia in the RIICE project (Nelson et al., 2014); integrated SAR with opti-
cal satellite images have also been used for rice area monitoring in
Mekong Delta, Vietnam (Karila et al., 2014). However, continuousmon-
itoring at larger scales is still challenging due to the SARdata availability.
Due to poor observations for MODIS data in tropical regions of study
area, cropping intensity (e.g., single, double cropping) was not exam-
ined in this study but will be considered in our future study.

5. Conclusions

This study provides an analysis of inter-annual variations and chang-
es in paddy rice cultivation at large, landscape scales for the two most
populous countries, China and India. We showed a remarkable expan-
sion in northeastern China and decrease in southern China, along with
expansion across almost the whole country in India from 2000 to
2015. To our limited knowledge, this study provides the first annual
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paddy rice maps for China and India based upon the hyper-temporal
MODIS imagery and a phenology-based algorithm (RICE-MODIS). The
potential to apply our novel algorithm to Landsat data is still unclear, es-
pecially in the humid tropical region where useful observations are
scarce. However, the increasing data availability through coupling
Sentinel-2A/Bwith Landsat 8 data will definitely contribute to finer res-
olution paddy rice mapping.

These annual paddy ricemaps produced by this study provide an op-
portunity to study in greater detail methane emission estimation, food
security, water resource use, and other relevant issues that are critical
for the global food security and human wellbeing. While this study fo-
cused on changes in paddy rice agriculture at the national level, more
studies are needed to understand the mechanisms and their regional
differences in both China and India. Further research is encouraged; of
particular interest are the drivers of paddy rice field expansion in high
latitude areas and the abandonment of fields in tropical regions.
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