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Fingerprint of rice paddies in spatial–temporal
dynamics of atmospheric methane concentration
in monsoon Asia
Geli Zhang 1, Xiangming Xiao 2*, Jinwei Dong 3*, Fengfei Xin 4, Yao Zhang 5, Yuanwei Qin 2,

Russell B. Doughty 2 & Berrien Moore III6

Agriculture (e.g., rice paddies) has been considered one of the main emission sources

responsible for the sudden rise of atmospheric methane concentration (XCH4) since 2007,

but remains debated. Here we use satellite-based rice paddy and XCH4 data to investigate

the spatial–temporal relationships between rice paddy area, rice plant growth, and XCH4 in

monsoon Asia, which accounts for ~87% of the global rice area. We find strong spatial

consistencies between rice paddy area and XCH4 and seasonal consistencies between rice

plant growth and XCH4. Our results also show a decreasing trend in rice paddy area in

monsoon Asia since 2007, which suggests that the change in rice paddy area could not be

one of the major drivers for the renewed XCH4 growth, thus other sources and sinks should

be further investigated. Our findings highlight the importance of satellite-based paddy rice

datasets in understanding the spatial–temporal dynamics of XCH4 in monsoon Asia.
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Atmospheric methane (CH4) concentration has increased
substantially since early 2007, after a hiatus during
1999–20061–5; however, there is no consensus on the

possible causes for this observed increase1–11. Recent studies
suggested that biogenic sources may have contributed most to the
ongoing increase of CH4 emission4,5,12, especially the expansion
of tropical agriculture4,5. Rice paddies are an important biogenic
and agricultural source of CH4 emission and have thus attracted
renewed attention4,5,12,13, especially in monsoon Asia with 87%
of the global paddy rice harvested area and 90% of the rice
production (according to FAOSTAT in 2017), and ~25–36% of
global CH4 emissions13,14. Rice paddy CH4 emissions are pre-
dicted to increase by the end of the 21st century due to the
enhancement of rice plant productivity from a warmer climate
and atmospheric carbon fertilization15, and increased rice paddy
area driven by an increasing market demand for rice as a food
staple16. Hence, it is critical to understand the role of rice paddies
in the observed spatial distribution, seasonal dynamics, and
interannual variation of atmospheric CH4 concentration.

Advanced satellite measurements of column-averaged con-
centration of CH4 (XCH4) provide large-scale constraints for CH4

emission estimates17–19 and are used to detect surface CH4

emission hotspots from space20,21. The Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) obtained from short-wavelength infrared
(SWIR) sensors can measure atmospheric CH4 concentration
from a lower altitude down to the surface, which are more
indicative of the emissions from the ground17,18. SCIAMACHY
allows us to uncover and identify the relationships between major
sources of surface CH4 emissions and atmospheric CH4 columns.
Satellite data sets for methane production-related variables (e.g.,
spatial distribution of methane emission sources) could be useful
to associate XCH4 observations to emission sources22. Bloom
et al.18 analyzed the roles of wetlands and rice paddies in deter-
mining the temporal dynamics and spatial distribution of atmo-
spheric CH4 concentration based on the correlations between
XCH4 data from SCIAMACHY and water table depth from the
Gravity Recovery and Climate Experiment (GRACE) satellite.
They found that the observed seasonal variability of XCH4 mat-
ched closely with the fluctuations in wetlands and rice CH4

emissions over wetland regions, thus explaining 70% of the
methane emissions from surface sources. However, the relative
contributions of natural wetlands and rice paddies to the seasonal
dynamics and spatial distribution of atmospheric CH4 con-
centration in different countries cannot be well quantified using
coarse-resolution paddy rice maps (1° × 1°)18,23 and water table
depth data from GRACE (3° × 3°)18. Hayashida et al.17 combined
XCH4 data from SCIAMACHY with satellite-derived land surface
water coverage (LSWC) and normalized difference vegetation
index (NDVI) to quantify the contributions of rice cultivation to
the spatial distribution and seasonality of XCH4 over rice paddy
areas derived from agricultural statistics in monsoon Asia.
Nevertheless, the relationship between rice cultivation and
atmospheric CH4 concentration in rice paddy regions based on
the statistical data of rice harvest areas cannot accurately char-
acterize the role of rice paddies in the seasonal fluctuations of
XCH4.

Although numerous measurements and analyses of CH4

emission from rice paddies at the site scale have been done24–27,
the influence of rice paddies on the spatial distribution and sea-
sonal dynamics of atmospheric CH4 concentration is still poorly
understood at the continental scale, in part due to the lack of
moderate to high-spatial resolution maps of paddy rice croplands.
The accurate spatial and temporal pattern of rice paddies is cri-
tical for understanding the contribution of rice paddies to
atmospheric CH4 concentration.

Here, we first generate annual maps of rice paddies in con-
tinental monsoon Asia at 500 -m spatial resolution over the
period of 2000–2015 through analyses of time series images from
Moderate Resolution Imaging Spectroradiometer (MODIS) sen-
sor, using the robust paddy rice mapping algorithms, which were
well documented in our previous studies28–31. The resultant
annual maps of rice paddies show the spatial–temporal changes
of rice paddy areas in monsoon Asia during 2000–2015, including
the hot spots and interannual trends. Second, we use the annual
MODIS-based paddy rice maps during 2000–2015, MODIS-based
vegetation indices, and the XCH4 data from SCIAMACHY on the
Environmental Satellite (ENVISAT) and the Thermal and Near
Infrared Sensor for Carbon Observation Fourier-Transform
Spectrometer (TANSO-FTS) onboard the Greenhouse Gases
Observing Satellite (GOSAT), to quantify the role of rice paddies
in determining the spatial distribution and seasonal dynamics of
atmospheric CH4 concentration in monsoon Asia. The results
show that geographically those regions with relatively larger
proportion of rice paddies have high XCH4. In those areas
dominated by single- or double-paddy rice cropping systems, the
seasonal dynamics of XCH4 also has one or two peaks in a year,
corresponding well with the seasonal dynamics of paddy rice
growth. Third, we assess the interannual dynamics of rice paddy
area and XCH4 in monsoon Asia. The results show a decreasing
trend of rice paddy area and a renewed growth of XCH4 in
monsoon Asia since 2007. Implications of this study include both
a broader perspective regarding satellite-based annual maps of
rice paddies at moderate-to-high spatial resolutions and the
potential and challenges in understanding the spatial–temporal
dynamics of XCH4 in monsoon Asia.

Results and discussion
Dynamics of rice paddies in monsoon Asia during 2000–2015.
We generated the annual paddy rice maps during 2000–2015 and
quantified the spatial–temporal changes in rice paddy area in
monsoon Asia. Figure 1a shows the spatial pattern of rice paddies
in 2015 over monsoon Asia at 500 -m spatial resolution. China
and India had the largest total area of rice paddies, and together
accounted for over half the total rice paddy area in monsoon Asia
(Supplementary Fig. 1). Rice paddies were mainly located in the
alluvial plains of major rivers in this region, including the Indo-
Gangetic Plain in eastern India, Yangtze Plain in southern China,
Ayeyarwady Delta in southern Myanmar, and Mekong Basin in
Southeast Asia. The rice paddies in monsoon Asia substantially
increased from 2000 to 2007, but then decreased from 2007 to
2015 (Supplementary Fig. 2). Geographically, those regions with
significant decreasing trends in rice paddy area during 2000–2015
included the Yangtze Plain of southern China and eastern
Thailand, while Northeast China and India had significantly
increasing trends in rice paddy area (Fig. 1b). These annual maps
provide improved data and knowledge of the spatial distribution
and interannual variation of rice paddy in monsoon Asia.

Spatial consistency between rice paddies and XCH4. We
investigated the relationships between the MODIS-based paddy
rice maps and satellite observed XCH4 in monsoon Asia at var-
ious spatial and temporal scales. The spatial distributions of rice
paddies were consistent with those of atmospheric CH4 con-
centration over six 3-year moving-window periods (2003–2005,
2005–2007, 2007–2009, 2009–2011, 2011–2013, and 2013–2015,
Fig. 2a–f; Supplementary Fig. 3a–f). Those regions with high
densities of rice paddies also had high XCH4. For example, the
high densities of rice paddies in Indo-Gangetic Plain in north
India, Bangladesh, and the Yangtze Plain and Sichuan Basin in
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China matched closely with those areas with high XCH4

(Fig. 2a–f; Supplementary Fig. 3a–f).
Different densities (% percentage) of rice paddies within

individual gridcells over each of the 3-year periods were divided
into seven intervals (a gradient), and the XCH4 within each
interval were analyzed. The 3-year mean XCH4 increased as the
density of rice paddies rose for all these 3-year periods (Fig. 2g–i;
Supplementary Fig. 3g–i). Similar relationships were also found in
different seasons in these periods (Supplementary Figs. 4–7). We
used the spatial error model (SEM) to quantify their spatial
relationships during the six 3-year periods, and the results
showed that the density of rice paddies had high spatial

correlation with the 3-year mean XCH4 (P-value of coefficients
< 0.001, and P-value of Moran’s I test of residuals > 0.3) for all
these periods (Supplementary Table 1). It should be noted that
clouds and shadows in the inter-tropical convergence zone (e.g.,
Indonesia and Malaysia) occur frequently (Supplementary Fig. 8),
which could affect satellite-based optical images used for paddy
rice mapping and XCH4 retrieval. In those areas with frequent
cloud cover and shadows, there is potentially a multicollinearity
issue in the rice paddy area and XCH4 data. We re-ran the SEM
analysis for the other monsoon Asia countries after excluding
Indonesia and Malaysia, and the results still showed strong spatial
consistency between rice paddy area and XCH4 (Supplementary
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Fig. 1 Spatial distributions of paddy rice croplands and its trend from 2000 to 2015 in monsoon Asia. a The paddy rice map was retrieved from MODIS
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Figs. 9–12 and Supplementary Table 2). These results suggested
that the spatial distribution of rice paddies was one of the major
factors that determine the spatial distributions of atmospheric
CH4 concentration in monsoon Asia.

Seasonal consistency of paddy rice growth and XCH4.
Enhanced vegetation index (EVI) is related to vegetation
canopy32 (Supplementary Fig. 13), and has been used to estimate
gross primary production of paddy rice33. We used MODIS-
based EVI as a proxy for rice plant growth to quantify the sea-
sonal relationship between the paddy rice growth and atmo-
spheric CH4 concentration in a year. We analyzed time series EVI
and XCH4 data at selected regions of interest (ROIs) with dif-
ferent rice cropping systems and rice paddy-dominated regions in
monsoon Asia.

First, we analyzed the seasonal dynamics of XCH4 and paddy
rice growth in four typical ROIs with a high density of rice
paddies and different cropping systems (single- and double-
cropping systems) (Fig. 3). We calculated mean EVI for all pixels
within 0.5° gridcells (EVIall-pixels), mean EVI for all rice paddy
pixels within 0.5° gridcells (EVIall-rice), and EVI for one rice paddy
pixel with 500 -m resolution (EVIrice). The seasonal dynamics of
XCH4 had one peak per year in three regions (Northeast China,
northern India, and northern Bangladesh, Fig. 3e–g), and two
peaks per year in one region (southern China, Fig. 3h). The
consistency in the peak timings of XCH4 and EVI clearly
increased from EVIall-pixels to EVIall-rice and EVIrice, suggesting the

contribution of rice growth to XCH4. The Sanjiang Plain of
Northeast China (Fig. 3a) had a single crop per year, mostly
paddy rice. Remarkably, both XCH4 (Fig. 3e) and EVI (Fig. 3i, m,
q) had a single peak around August in each year, and the seasonal
dynamics of XCH4 corresponded well with those of the three EVI
data sets (all of Pearson’s correlation coefficients between EVI
and XCH4 during the entire year Ryear ≥ 0.60, P < 0.001, Fig. 3i, m,
q). Northern India and northern Bangladesh (Fig. 3b, c) had a
double-cropping rotation with winter wheat/rainfed rice and
paddy rice in each year according to previous studies34,35. The
seasonality of XCH4 (Fig. 3f, g) had only one peak, which
corresponded well with the seasonality of paddy rice (the second
crop in these regions) in the EVIall-pixel, EVIall-rice, and EVIrice
data (Fig. 3 j, k, n, o, r, s, all of the Pearson’s correlation
coefficients between EVI and XCH4 during the summer-fall
season from May to November R5–11 larger than Ryear). The
Poyang Lake region of southern China (Fig. 3d) had a mixture of
single rice and rice–rice double-cropping rotations in one year36.
The annual XCH4 (Fig. 3h) in this region had two distinct
seasonal cycles, which corresponded well with the seasonal
dynamics of EVIrice (Fig. 3t). It should be noted that there were
no obvious double peaks for EVIall-pixel and EVIall-rice in one year
at a coarse spatial gridcell resolution of 0.5° resolution (Fig. 3l, p)
due to the mixture of single and double rice cropping rotations in
this region. These results suggested that the growth cycle of paddy
rice contributed significantly to the seasonality of XCH4.

It is well recognized that rice plants play a critical role in the
processes of methane production37,38. Several recent in situ

a

−10

10

30

50

b

0

20

40

60

80

100

A
re

a 
(%

)
c

−10

10

30

50

80 100 120 140

d

−10

10

30

50

1700

1740

1780

1820

e

1700

1740

1780

1820

1860

X
C

H
4[

pp
bv

]

f

−10

10

30

50

80 100 120 140

1700

1740

1780

1820

1860

g

1740

1780

1820

h

1740

1780

1820

i

1740

1780

1820

1 3 5 7

Fig. 2 Consistency of spatial distributions between paddy rice croplands and atmospheric methane concentration. The three periods (2003–2005,
2007–2009, and 2011–2013) were selected in the main text to illustrate the spatial relationships between rice paddies and XCH4. a–c Spatial distributions
of 3-year averaged area proportions of MODIS-based paddy rice croplands for 2003–2005 with 0.5° gridcells (a), 2007–2009 with 0.5° gridcells (b), and
2011–2013 with 2.0° gridcells (c). d–f Spatial distributions of 3-year averaged annual column-averaged concentration of CH4 (XCH4) from SCIAMACHY
for 2003–2005 with 0.5° resolution (d), 2007–2009 with 0.5° resolution (e), and from TANSO-FTS for 2011–2013 with 2.0° resolution (f). g–i 3-year
averaged annual XCH4 for different rice paddy area proportions for 2003–2005 (g), 2007–2009 (h), and 2011–2013 (i). The x-axis values in figures (g–i)
represent levels of rice paddy area proportions in monsoon Asia, and 1–7 correspond to <0.5%, 0.5–1%, 1–5%, 5–10%, 10–20%, 20–40%, and >40% rice
paddy area proportions, respectively. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14155-5

4 NATURE COMMUNICATIONS |          (2020) 11:554 | https://doi.org/10.1038/s41467-019-14155-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Southeast China

Double paddy rice

North India

Winter wheat and paddy rice

Location: Northeast China

Crop: single paddy rice

North Bangladesh

Rainfed rice and paddy rice

Site: 47.529N, 133.510E Site: 31.212N, 74.895E Site: 24.976N, 88.986E Site: 28.367N, 115.364E

1700

1800

1900

X
C

H
4 

[p
pb

v]

e

0

0.3

0.6

0

0.3

0.6

0

0.3

0.6

0

0.3

0.6

0

0.3

0.6

0

0.3

0.6

E
V

I al
l-p

ix
el

s
E

V
I al

l-r
ic

e
E

V
I ric

e

i Ryear = 0.63***

Ryear = 0.62***

Ryear = 0.60***

Ryear = 0.86***, R5–11 = 0.89***

Ryear = 0.73***, R5–11 = 0.88***

Ryear = 0.09, R5–11 = 0.89***

Ryear = 0.63***, R5–11 = 0.72***

Ryear = 0.40*, R5–11 = 0.56***

Ryear = 0.48***, R5–11 = 0.78***

Ryear = 0.59***, R5–11 = 0.44

Ryear = 0.62***, R5–11 = 0.48

Ryear = 0.75***, R5–11 = 0.69***

m

201120102009

q

1750

1790

1830

f

0

0.2

0.4

0

0.2

0.4

j

Winter wheat

Winter
wheat

Paddy rice

n

200520042003

r

1750 1750

1850

1950

g

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

k

o

200520042003

s

1790

1830

h

l

p

200520042003

t

Paddy rice

Paddy
rice

Paddy rice Paddy ricePaddy rice

135° E130° E

50° N

45° N

80° E75° E

35° N

30° N

90° E

25° N

a

Pakistan

b c d

India

China Bangladesh

120° E115° E

30° N

25° N

China

Paddy rice

Paddy rice

Paddy
rice

Paddy
rice

Rainfed
rice

Rainfed
rice

Fig. 3 Seasonal dynamics of atmospheric methane concentration and rice growth. The column-averaged methane concentration (XCH4) and the
enhanced vegetation index (EVI) were analyzed in four regions of interest (ROIs) with dense rice paddies and different cropping systems. a–d Spatial
distributions of rice paddies retrieved from MODIS data with 500 -m resolution in the Sanjiang Plain of Northeast China in 2010 with single cropping paddy
rice (a), North India in 2005 with winter wheat and paddy rice (b), North Bangladesh in 2005 with rainfed rice and paddy rice (c), and Poyang Lake of
China in 2005 with early and late paddy rice (d). The four ROIs are shown in Fig. 1a with small and red polygons. e–h Time series of monthly SCIAMACHY
CH4 column volume mixing ratios (VMRs, in parts per billion) over the corresponding four ROIs labeled in (a–d) with red polygons. i–l Time series of
monthly MODIS-based EVI for all pixels within 0.5° gridcells (EVIall-pixels) over the aforementioned four ROIs. m–p Time series of 8-day EVI values for all
500m rice paddy pixels within the 0.5° gridcells (EVIall-rice). q–t Time series of 8-day EVI values for one rice paddy pixel with 500m resolution (EVIrice).
The four bottom images are the corresponding landscapes for each rice paddy pixel (q–t) with the extent of 500m by 500m from Google Earth. Ryear and
R5–11 offer the Pearson’s correlation coefficients between XCH4 and EVI for the whole year and summer-fall season from May to November during the
corresponding period labeled in the x-axis of (q–t). ***P < 0.01; *P < 0.10. Correlation coefficients without asterisk are insignificant (P > 0.10). Source data
are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14155-5 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:554 | https://doi.org/10.1038/s41467-019-14155-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


studies found a strong correlation between daily CH4 flux and
rice plant biomass, which suggested that methane flux in rice
paddies is affected by rice growth and development37–44. Here,
we compared the observed CH4 emission and EVI at eight paddy
rice sites25–27,41,42,45–47, and the results confirmed their consis-
tency in terms of seasonality (Supplementary Fig. 14). The
synchrony of rice growth and CH4 emissions is due to the fact
that the rhizodeposition from current season photosynthesis and
plant growth controlled the organic matter of the flooded soils,
and subsequently determined the methanogenesis in paddy
soils38,48,49. Rice plants provide root exudates, which is the
important organic matter used by soil microbes for CH4

production in rice paddies37,44. The quantity of root exudates
varies during the rice plant growing season, which rises as the rice
plants grow, reaches a maximum during the flowering stage with
a peak in root biomass, and then decreases (Supplementary
Fig. 13, Supplementary Note 1)38.

Although this synchronized peak has been previously found at
field site, our results using satellite data show synchrony at large
scales for the first time with the aid of high-resolution paddy rice
maps. Moreover, the rice cropping systems affected the peaks in
XCH4, that is, the XCH4 variation was controlled by the paddy
rice growth cycle regardless of whether it was a single- or double-
cropping system (wheat–rice, rice–rice) (Fig. 3). The ROI-scale
analyses suggested the modeling of the seasonal dynamics of
atmospheric CH4 concentration need to consider the rice
cropping system (single rice, double rice, or rice plus other crop)
rather than general cropping intensity (single, double, or multiple
cropping).

Second, we further analyzed the spatial patterns of seasonal
consistency between paddy rice growth and XCH4 in monsoon
Asia using monthly EVIall-rice and XCH4 at 0.5° gridcells during
2003–2005 (Fig. 4). Figure 4a, b showed the spatial patterns of the
Pearson’s correlation coefficients between EVI and XCH4 during
the entire year (Ryear) and the summer-fall season from May to
November (R5–11) during 2003–2005, respectively. Regions with
the same or similar cropping system and planting schedule
demonstrated clear relationships between paddy rice growth and
XCH4. Most 0.5° gridcells in regions dominated by a single rice
crop in a year had statistically significant and positive Pearson’s
correlation coefficients between EVIall-rice and XCH4 at both
yearly and seasonal scales (Ryear and R5–11), as seen in the Liaohe
Plain in China31 (Region 1 in Fig. 4a) and eastern Thailand50,51

(Region 2 in Fig. 4a, Supplementary Fig. 15). Most 0.5° gridcells
in regions dominated by double rice cropping systems (rice–rice
rotation) also had statistically significant and positive Pearson’s
correlation coefficients between EVIall-rice and XCH4 data at both
annual and seasonal scales (Ryear and R5–11), as seen in southern
China36 (Region 3 in Fig. 4a); however, the area was small due to
the limited double-rice croplands52. The 0.5 gridcells in regions
with double cropping systems of rice and another crop (e.g., rice
and winter wheat) had positive Ryear and R5–11 values, but R5–11

values were obviously larger than Ryear. These results can be seen
in North India and Bangladesh34,35 (Region 4 in Fig. 4a,
Supplementary Fig. 15), as well as North China53 (Region 5 in
Fig. 4a).

The relationships between EVIall-rice and XCH4 data in regions
with heterogeneous annual cropping systems and rotation
schedules were more complicated and irregular, and the 0.5°
gridcells in these regions had non-significant or negative Ryear and
R5–11 values. Such complexities were observed in the Yangtze
Plain in southern China and western Thailand, which had a
mixture of single- and double-rice cropping systems36,50–52, and
in Cambodia and southern Vietnam, which had a mixture of
single-, double-, and triple-rice cropping systems50,54 (Regions 6
and 7 in Fig. 4a; Supplementary Fig. 15). The two measures most

likely failed to positively correlate because EVI and XCH4 at 0.5°
gridcells could be affected by the heterogeneity of cropping
systems, crop types, and rice planting schedules, as well as cloud
cover. For example, the Mekong Delta of Vietnam has single-,
double-, and triple-rice cropping systems that are either rain-fed
or irrigated54. The EVI and XCH4 profiles from this region with
mixed cropping systems had irregular seasonal patterns and
accordingly weak or negative correlations (Supplementary
Fig. 16), which could also be affected by the uncertainty of
observed EVI and XCH4 due to intensive cloud cover. A similar
result was found for the period of 2005–2007, 2007–2009, and
2009–2011 (Supplementary Figs. 17–19). The significant correla-
tions between EVI and XCH4 in rice paddy areas with the same or
similar cropping systems and planting schedules (Figs. 3, 4;
Supplementary Figs. 17–19) demonstrated the role of rice paddies
in determining the seasonal dynamics of atmospheric CH4

concentration in monsoon Asia.
Our analyses demonstrate that the satellite-observed XCH4 is

indicative of CH4 emissions from rice paddies, and paddy rice
cultivation dominates the spatial distribution and seasonal
dynamics of atmospheric CH4 concentration over those regions
with dense rice paddies. This study also shows the importance of
annual paddy rice maps for assessing the effects of rice paddies on
the spatial pattern and seasonal dynamics of atmospheric CH4

concentration by providing more details on the location and area
proportion within gridcells. On one hand, these maps could show
area fractional information within the 0.5° and 2° gridcells when
analyzing spatial relationship between rice paddy area and XCH4.
On the other hand, they allow us to capture the seasonal
dynamics of vegetation indices for individual rice paddies (pixels)
when analyzing seasonal relationship between them. The
temporal statistics of vegetation indices for all pixels within
individual gridcells often differ from those for the pure rice paddy
pixels (e.g., Fig. 3j, n). The pure rice paddy pixel-based analyses
had clear double peaks (EVIall-rice in Fig. 3n), while only one peak
was found for all the pixels (EVIall-pixels in Fig. 3j) due to
disturbances from other upland crops or natural vegetation types
in the gridcells. Although the 500 m paddy rice maps in this study
still had mixed pixel issues, this paddy rice product provided
unprecedented details on location and area proportion within
the 0.5° or 2° gridcells for the entirety of monsoon Asia, in
comparison with previous efforts that used county- or province-
level paddy rice data14,17,55,56. Therefore, it is necessary to use
accurate paddy rice maps at moderate spatial resolution as masks
to track seasonal fluctuations of atmospheric CH4 concentration.

In addition to the density of rice paddies within gridcells, our
results also demonstrate the importance of the information about
rice cropping intensity (single or double) and timing of rice crop
calendar within gridcells. The seasonal dynamics of XCH4, which
have one or two peaks in a year, mirror paddy rice growth in the
areas dominated by single- and double-rice cropping systems
(Fig. 3). Together, the accurate information on the locations of
rice paddies allow us to fingerprint the effects of rice paddies on
atmospheric CH4 concentration, which can reduce influence from
other land cover types in the gridcells. Furthermore, the spatial
distribution of rice paddies in monsoon Asia has changed
substantially since 2000, including a northward shift of rice
paddies in China30. Therefore, the methane emission simulations
should be conducted with annual maps of rice paddies to more
accurately estimate the effects of changing paddy rice distribution
on methane emissions since 2000.

Interannual dynamics of rice paddy area and XCH4. Recent
increases in atmospheric CH4 concentration since 2007 are not
well understood as evidenced by many hypotheses currently
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debated1–11. Some studies reported that biogenic sources, most
notably agriculture, may be the key contributor to renewed
growth in atmospheric CH4

4,5. Rice paddy is one of the main
agricultural sources of CH4 emission. In this study, we also
investigated whether interannual variations in rice paddy area
contributed to the renewed growth of atmospheric CH4 con-
centration since 2007 at the national and continental scales. We
analyzed the interannual variations of XCH4 during 2003–2015 in
monsoon Asia, especially China and India, the two countries with
the largest rice paddy areas.

The interannual variations in XCH4 in the rice paddy-
dominated areas of monsoon Asia, China, and India were
relatively stable during 2003–2006, but changed into an
increasing trend beginning in 2007 (Fig. 5), which agreed well
with the trends of global XCH4

1. The rice paddy area increased
during 2003–2006 in China, India, and monsoon Asia, but after
2007 rice paddy area decreased in China and monsoon Asia and
remained stable in India (Fig. 5). The total rice paddy area in
monsoon Asia has declined since 2007 over the time period of
renewed XCH4 growth. Similar results were also found for the
whole region (rice paddy and non-rice paddy areas) of
monsoon Asia, China, and India (Supplementary Fig. 20). In
theory, if the interannual trends of rice paddy area and the
atmospheric CH4 concentration are consistent, we cannot
conclude that rice paddy area is the main driver for the
regrowth of atmospheric CH4 concentration since 2007. If
their trends are opposite, we can conclude that the rice

paddy area is not the main driver for the regrowth of
atmospheric CH4 concentration. The decreasing trends of rice
paddy area and the increasing trends of atmospheric CH4

concentration in both the rice paddy-dominated areas and the
whole area since 2007 suggested that the change in rice paddy
area was not the main driver for the renewed increase of
atmospheric CH4 concentration. A study using atmospheric
methane observations and an atmospheric transport model
reported that the annual methane emission has not significantly
changed in India during 2010–2015 and the major CH4 sources
(ruminants, rice paddies, waste, and fossil fuels) did not much
change57, which is in line with the stable rice paddy areas in
India from this study during the same period (Fig. 5). Another
country-scale study showed that rice paddies did not contribute
to the increase of atmospheric CH4 concentration in China and
India during 2010–2015 using the emission estimates from the
inverse model and the spatial distribution of different source
sectors within the EDGAR emissions inventory58, which agrees
with our result from 2010–2015 (Fig. 5). Our study at monsoon
Asia scale suggests that the renewed growth of atmospheric
CH4 concentration was unlikely attributed to the dynamics of
rice paddy area.

What factors drove the interannual variations of atmospheric
CH4 concentration since 2007 is still a hotly debated issue1–11, as
CH4 emissions are controlled by multiple sources and sinks. At the
rice paddy fields, there are several factors which could affect its
methane emission, including paddy rice planting area, cropping
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system, yield, management (e.g., irrigation, fertilization), and rice
varieties14,59. For the first time, our study shows the fingerprint of
rice paddies in the spatial distribution and seasonal dynamics of
atmospheric methane concentration by using unprecedented
annual paddy rice maps. We are not in position to do a full-
scale (multivariate) attribution analysis on the question why
atmospheric XCH4 increased again after 2007, thus a thorough
explanation of the renewed growth in XCH4 since 2007 needs
further study.

Potential of annual paddy rice maps for CH4 models. To our
knowledge, our annual maps of rice paddies in monsoon Asia
during 2000–2015 are the first of its kind and are likely to
have significant implications for simulations of biogeochemical
models and atmospheric chemistry and transport models.
Several empirical and process-based biogeochemical models
have been used to predict CH4 emissions from rice
paddies13,14,55,56,60. However, most of the estimates of rice
paddy CH4 emission from those models were generally driven
by rice paddy data from agricultural statistical sources such as
province- or county-level administrative units13,14,59–61, which
led to a large spatial uncertainty in estimates of rice paddy CH4

emission. For example, Zhang et al.60 estimated CH4 emission
from rice paddies at the global scale based on inundation areas,
statistical data, and additional cropland masks. However, the
methane emission estimates in some regions with dense rice
paddies were missed due to inaccurate rice paddy distribution
information, such as the northwest of Indo-Gangetic Plain in
India and Pakistan. The annual maps of rice paddies at mod-
erate spatial resolution in this study offer new opportunities to
improve simulations of biogeochemical models for CH4 emis-
sion from rice paddies.

The improved estimates of CH4 emission fluxes with high-
accuracy annual paddy rice maps could then be used by
atmospheric chemistry and transport models to study the spatial
and seasonal consistency between atmospheric CH4 concentra-
tion and rice paddies, as well as the relative contribution of
rice paddies to the interannual dynamics of atmospheric CH4

concentration. These new paddy rice maps will likely shed new
light on the role of rice paddies in atmospheric CH4 concentra-
tion and represent a critical step for improving the understanding
of long-term dynamics of atmospheric CH4 concentration.

Agricultural emissions account for more than half of the total
CH4 emissions budget in monsoon Asia, of which one-third is
estimated to originate from rice paddies13. Using annual paddy
rice maps at 500-m spatial resolution and spaceborne XCH4 data
in monsoon Asia, this study clearly characterizes the fingerprints
of rice paddies in the spatial distribution and seasonal dynamics
of atmospheric CH4 concentration over the dense rice paddy
regions. It highlights an important impact of rice agriculture on
the spatial and seasonal patterns of regional atmospheric CH4.
The observed changes in the spatial distribution of rice paddies in
monsoon Asia during 2000–2015 do warrant urgent and further
use of the annual paddy rice maps in biogeochemical model
simulations. Considering the fertilization effect of global rising
atmospheric CO2, climate change, and projected increases in
demand for rice in the coming decades, CH4 emissions from rice
production is expected to rapidly increase15, possibly leading to
stronger effects on the variability of atmospheric CH4 at various
spatial and temporal scales. This study also provides new insight
to the debates on the driving factors for the renewed growth of
atmospheric CH4 concentration since 2007 from the perspective
of paddy rice planting area; and the results show the inconsistent
interannual variations of rice paddy area and XCH4. However,
considering the complexity in the CH4 emission and atmospheric
transport, more methane sources and sinks should be considered
for a thorough explanation of the renewed growth of atmospheric
CH4 concentration since 2007.

Methods
Atmospheric CH4 concentration data. We used the IMAP 7.1 product from
SCIAMACHY62 and the OCPR7.0 product from TANSO-FTS63, which were
downloaded from the data portal (http://www.esa-ghg-cci.org/sites/default/files/
documents/public/documents/GHG-CCI_DATA.html). The SCIAMACHY XCH4

data during 2003–2011 and the TANSO-FTS XCH4 data during 2010–2015 were
arranged into 0.5° × 0.5° and 2° × 2° grids in latitude and longitude, respectively,
and then composited it into monthly average XCH4.
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Fig. 5 Temporal dynamics of atmospheric methane concentration and rice paddy area. Temporal (seasonal and interannual) dynamics of atmospheric
column-averaged methane concentration (XCH4) over rice paddy-dominated regions and interannual variations in MODIS-based rice paddy areas during
2000–2015 in monsoon Asia (a), China (b), and India (c). The curves above are time series of monthly SCIAMACHY CH4 column volume mixing ratios
(VMRs, in parts per billion) during 2003–2009 and monthly TANSO-FTS CH4 column VMRs during 2010–2015. The XCH4 outliers in winter have been
removed. The blue and red dashed lines are average annual values of SCIAMACHY XCH4 and TANSO-FTS XCH4, respectively. The black lines and black
dashed lines below indicate trends of rice paddy area for different periods in monsoon Asia, China, and India. The rice paddy-dominated regions are shown
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paddy rice planting area, and the formula in red is for XCH4. Source data are provided as a Source Data file.
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MODIS data. We used MODIS Collection-6 surface reflectance, land surface tem-
perature (LST), and land cover type to extract rice paddies in monsoon Asia. The
8-day composite surface reflectance products from EOS-Terra-MODIS (MOD09A1)
at 500m spatial resolution during 2000–2015 were used to calculate three spectral
indices: EVI32, Land Surface Water Index (LSWI)64, and Normalized Difference Snow
Index (NDSI)65. The bad observations containing clouds or snow were excluded
before mapping rice paddies. We used the 8-day composite LST products from EOS-
Aqua-MODIS (MYD11A2) at 1 km spatial resolution during 2003–2015 to determine
the start and end of thermal growing season (Supplementary Fig. 21) and the time
window of rice transplanting. The EOS-Terra-MODIS (MOD12Q1) provided wetland
maps as a non-crop mask based on the land cover scheme of International
Geosphere-Biosphere Programme (IGBP) (Supplementary Fig. 22). More detailed
MODIS data processing is stated in Supplementary Note 2.

Paddy rice mapping. The annual maps of paddy rice in monsoon Asia at 500m
resolution from 2000–2015 were developed using time series MODIS data and a well-
documented phenology-based algorithm28–31. The flooding signal during the rice
transplanting phase is a critical feature used to identify rice paddies, as paddy rice is
the sole crop type to be transplanted and grown in water–soil mixture fields. Through
temporal profile analysis of remote sensing data, the mixture of rice plants and water
(open canopy) during the transplanting phase can be tracked by the relationship
between the vegetation greenness index (i.e., EVI) and the water index (i.e., LSWI)
simply using the equation: LSWI+ 0.05 ≥ EVI28,29. We recently improved the algo-
rithm by incorporating the temperature-based time window for rice transplanting,
which was derived from MODIS LST data31. We applied this method successfully in
China and India in our previous study30. Here, the algorithm was used for monsoon
Asia over the period of 2000–2015 (Supplementary Note 3).

In order to improve the accuracy of the MODIS-based paddy rice mapping,
several non-cropland masks were generated28–31, including evergreen vegetation,
forest, sparse vegetation, natural wetlands, topographic masks, and a temperate-
based mask (Supplementary Note 3, Supplementary Fig. 22). After excluding areas
using these masks, annual paddy rice maps were generated.

The resultant maps were then validated through comparing with existing products
in different countries (Supplementary Note 4 and Supplementary Figs. 23–26), as well
as the statistical data of FAO Statistical Databases (FAOSTAT) at national scale
during 2000–2015 (Supplementary Note 4 and Supplementary Fig. 27). We also
validated the maps based on pixel-level comparison using higher resolution Landsat-
based paddy rice maps in sample regions (Supplementary Note 4, Supplementary
Fig. 28, and Supplementary Table 3). The validation and comparison results showed
the continental-scale paddy rice maps were reliable. To analyze the spatial and
seasonal relationships between rice paddies and satellite-observed XCH4, the paddy
rice maps with 500m resolution (binary map with 0 or 1) were aggregated to 0.5° and
2° gridcells with rice paddy area proportions to match the resolutions of
SCIAMACHY and TANSO-FTS based XCH4, respectively (Supplementary Fig. 29).

Trend analysis of rice paddy area. We investigated the spatial pattern of changes
in rice paddy area in monsoon Asia using the least square method. We aggregated
binary paddy rice maps into fractional rice maps within 10 × 10 pixel gridcells
(~5 km spatial resolution) and calculated a spatially explicit map of the linear trend
of rice paddy area changes from 2000–2015 within the gridcells (Fig. 1b).

Analysis of spatial consistency between rice paddy and XCH4. We investigated
the spatial correlation between XCH4 from SCIAMACHY/TANSO-FTS and
MODIS-based rice paddy area percentage over six 3-year periods (2003–2005,
2005–2007, 2007–2009, 2009–2011, 2011–2013, and 2013–2015), forming a com-
plete coverage in all the 3-year moving windows from 2003 to 2015 (Supple-
mentary Fig. 30). The composites of six periods of observations were set
considering the available years of the observed atmospheric CH4 concentration
data and the effects of potential abnormal observations in some grids and certain
year. First, we analyzed variations in 3-year average yearly and seasonal XCH4

within different rice paddy density gradients to see whether the variations of XCH4

and rice paddy area were consistent. Then, the spatial error model (SEM)66 was
used to evaluate the correlation between XCH4 and rice paddy area percentage in
monsoon Asia, as these two variables spatially auto-correlate over geographical
distribution, which would affect correlation analyses between them. Taking the
data during 2003–2005 for example, we tested the spatial autocorrelation of our
dependent variable (XCH4) and found a significant autocorrelation, with Moran’s I
equal to 0.83 (P < 0.001) (Supplementary Table 1). When we used the ordinary
least-squares model (OLS) to analyze the spatial relationship between XCH4 and
paddy rice croplands, the Moran’s I of model residual was 0.80 with P < 0.001
(Supplementary Table 4), showing the relationship did not satisfy the hypothesis of
independent identical distribution and OLS was inapplicable. We then used the
SEM to analyze the spatial relationship between them, and Moran’s I of model
residual was −0.15 with P equal to 1 (Supplementary Table 1), indicating that the
SEM-based result was reliable. The SEM coefficients showed that there was a
significant positive correlation (all of P-value < 0.001) between spatial distributions
of XCH4 and rice paddy area percentage during the six 3-year periods (Supple-
mentary Table 1).

Analysis of seasonal dynamics of paddy rice growth and XCH4. The effects of
paddy rice growth on the seasonal variations of XCH4 were examined by time
series analysis of XCH4 and MODIS-based EVI (as a proxy of rice plant growth),
over four typical regions of interest (ROIs) with dense rice paddy areas and dif-
ferent rice cropping systems, and the rice paddy-distributed region in monsoon
Asia. We also compared landscape scale EVI data and CH4 emissions from eight
existing rice paddy eddy flux sites to verify the seasonal consistency between
observed CH4 emission and rice plant growth25–27,41,42,45–47 (Supplementary
Fig. 14). Given the small size of the study plots at these flux sites, the EVI with 250 -
m resolution derived from MOD13Q1 during the corresponding period was used
to characterize the paddy rice growth. At the regional scale, four ROIs (Fig. 3a–d)
with different rice phenology and cropping systems were extracted from dense rice
paddy gridcells with rice paddy proportions over 20% (Supplementary Fig. 31) to
analyze the seasonal relationships between the growth of paddy rice and XCH4. We
calculated mean EVI values from different statistical approaches: all pixels within
0.5° gridcells (EVIall-pixels), all rice paddy pixels within 0.5° gridcells (EVIall-rice), and
single rice paddy pixel with 500 m resolution (EVIrice). Then we analyzed the
seasonal dynamics of XCH4 and three EVI proxies in these four ROIs (Fig. 3), by
using correlation analysis for the entire year (Ryear) and summer-fall season (R5–11,
rice growing season in the wheat–rice or other cropping system). Monsoon Asia is
dominated by single- and double-cropping system52,54,67,68, and the triple-
cropping is very limited in some regions like Mekong Delta54,67 (Supplementary
Fig. 32). The main growing season of rice plants in monsoon Asia are mostly
during summer-fall season from May to November (Supplementary Figs. 33, 34)
based on statistics on the monthly distribution of rice paddy area for Asia69. In
order to reflect the seasonal controls of paddy rice growth on atmospheric CH4

concentration, the period of the major rice cycle (from May to November) is used
to analyze the seasonal relationships between them. At the continental scale, a wall-
to-wall correlation analysis was used to quantify the relationship between the
seasonal variations of XCH4 and EVI at 0.5° gridcells for the entire year (Ryear) and
summer-fall season (R5–11) during 2003–2005 (Fig. 4), 2005–2007, 2007–2009, and
2009–2011 (Supplementary Figs. 17–19). The periods after 2011 were not con-
sidered due to the coarse resolution of the TANSO-FTS XCH4 data. The region
with a 3-year averaged rice paddy gridcells with area proportion larger than 10%
during the corresponding period was considered here.

Analysis of interannual variations of rice paddy and XCH4. The interannual
variations and trends in MODIS-based rice paddy areas and XCH4 were ana-
lyzed to examine the potential contribution of rice paddy area dynamics to
atmospheric CH4 concentration in monsoon Asia, China, and India. The ana-
lyses were conducted from two levels: the rice paddy-dominated area (Fig. 5) and
the whole area of monsoon Asia, China, and India (Supplementary Fig. 20). The
rice paddy-dominated area here meant those gridcells (0.5° × 0.5°) with max-
imum rice paddy area proportion larger than 10% during 2000–2015 (Supple-
mentary Fig. 35).

Rice paddy CH4 emission reflected by estimates of EDGAR. We used the
independent bottom-up estimates of Emissions Database for Global Atmospheric
Research (EDGAR) data sets v4.3.270 to analyze the relative contribution of rice
agriculture to total CH4 emission. The result showed that the paddy rice cultivation
is the dominated sector for the CH4 emission in the paddy rice planting area of
monsoon Asia (Supplementary Fig. 36); specifically, the relative contribution of
paddy rice cultivation CH4 emission is >30% in the gridcells where the rice paddy
area proportion is >5%. This added analysis can help us to understand the fin-
gerprint of rice paddies in the spatial distribution and seasonal dynamics of
atmospheric methane concentration in monsoon Asia.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The atmospheric CH4 data were derived from the SCIAMACHY and TANSO-FTS data
sets, available from the data portal (http://www.esa-ghg-cci.org/sites/default/files/
documents/public/documents/GHG-CCI_DATA.html). The EDGAR CH4 emissions
inventory data are downloaded from http://edgar.jrc.ec.europa.eu/. The paddy rice maps
can be accessed by contacting Geli Zhang, Xiangming Xiao or Jinwei Dong. All the
relevant data from this study are also available from the corresponding authors upon
request.

Code availability
Codes were written in R and will be made available upon request by contacting the
corresponding authors.
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