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Abstract Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for
photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we
use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active
radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl)
from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different
scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by
canopy chlorophyll (εchlmax), unlike other expressions of LUE, tends to converge across biome types. The
photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the
corresponding εchlmax to have less seasonal variation. This spatio-temporal convergence of LUE derived from
fPARchl can be used to build simple but robust gross primary production models and to better constrain
process-based models.

Plain Language Summary Plants absorb light to fix carbon dioxide; the efficiency of this process is
termed as light-use efficiency and can be calculated based on different light absorption definitions. Among
the light being absorbed by plants, only a fraction is captured by chlorophyll and can be further used for
photosynthesis. In this study, we used satellite data and derived an estimation of the fraction of light that is
absorbed by chlorophyll. We found that different plants have a similar efficiency using chlorophyll-absorbed
light to fix carbon dioxide; this efficiency is also found to be stable throughout the season in tropical
forest. The results of this study can be used to improve models’ capability to estimate the total carbon fixed
by plants at global scale.

1. Introduction

Plants fix carbon through photosynthesis, sequestering carbon dioxide from the atmosphere and substan-
tially mitigating the negative impact of anthropogenic CO2 emissions on climate. Carbon cycle studies often
quantify photosynthesis at local, regional, and global scales as gross primary productivity (GPP), the quantity
of carbon fixed prior to losses from respiration. Many approaches are available to estimate GPP at different
temporal and spatial scales, including in situ observations from leaf-level chamber measurements of gas
exchange and ecosystem-level eddy covariance (EC) technique (Baldocchi et al., 2001), and model

ZHANG ET AL. 1

Geophysical Research Letters

RESEARCH LETTER
10.1029/2017GL076354

Key Points:
• EVI and MTCI can be better proxies of
fraction of photosynthetically active
radiation absorbed by canopy
chlorophyll

• Maximum daily light-use efficiency for
chlorophyll-absorbed
photosynthetically active radiation
exhibits less variation across biome
types

• Maximum daily light-use efficiency for
chlorophyll-absorbed
photosynthetically active radiation
exhibits less variation across season

Supporting Information:
• Supporting Information S1

Correspondence to:
Y. Zhang and X. Xiao,
yaozhang@ou.edu;
xiangming.xiao@ou.edu

Citation:
Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X.,
Gioli, B., et al. (2018). Spatio-temporal
convergence of maximum daily light-
use efficiency based on radiation
absorption by canopy chlorophyll.
Geophysical Research Letters, 45. https://
doi.org/10.1029/2017GL076354

Received 8 NOV 2017
Accepted 3 APR 2018
Accepted article online 15 APR 2018

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0002-7468-2409
http://orcid.org/0000-0003-0956-7428
http://orcid.org/0000-0001-7717-6993
http://orcid.org/0000-0001-8991-3970
http://orcid.org/0000-0001-7447-0257
http://orcid.org/0000-0003-3080-6702
http://orcid.org/0000-0002-2769-2591
http://orcid.org/0000-0001-7161-5959
http://orcid.org/0000-0002-1227-7731
http://orcid.org/0000-0002-0845-8345
http://orcid.org/0000-0001-8286-300X
http://orcid.org/0000-0002-9318-0973
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1029/2017GL076354
http://dx.doi.org/10.1029/2017GL076354
http://dx.doi.org/10.1029/2017GL076354
http://dx.doi.org/10.1029/2017GL076354
http://dx.doi.org/10.1029/2017GL076354
mailto:yaozhang@ou.edu
mailto:xiangming.xiao@ou.edu
https://doi.org/10.1029/2017GL076354
https://doi.org/10.1029/2017GL076354


estimation using indirect remote sensing observations or ecological models at regional and global scales
(Alemohammad et al., 2017; Anav et al., 2015; Running et al., 2004).

The production efficiency model (PEM) or light-use efficiency (LUE) model offers a very simple and broadly
applied conceptual framework to estimate GPP at different spatial scales (Monteith, 1972). This class of
models calculates GPP using the product of the photosynthetically active radiation (PAR), the fraction of
absorbed PAR (fPAR), and a LUE factor, which converts energy absorbed into the amount of carbon fixed:

GPP ¼ PAR�fPAR�LUE (1)

LUE is often calculated as a function of the maximum daily LUE (εmax) regulated by environmental controls
(temperature, soil water, vapor pressure deficit, etc.). The variation of LUE can be large, while εmax is often
regarded as a constant parameter for each biome type in most LUEmodels. The product of the first two terms
on the right-hand side in equation (1) is absorbed PAR (APAR = PAR × fPAR), which can be expressed variously
as incident PAR (fPAR = 1), PAR absorbed by the entire (nonphotosynthetic and photosynthetic) canopy
(fPARcanopy) or by chlorophyll in all leaves of the canopy (fPARchl, photosynthetic-only; Figure S1). Because
of the different definitions of APAR, the LUE factor in equation (1), which corresponds to different εmax values,
can differ substantially. In most studies, εmax is an empirical parameter estimated from equation (1) that varies
greatly because of the different LUE definitions (Song et al., 2013). Therefore, εmax values cannot be
used/compared when they are derived from different fPAR bases.

Most PEMs employ the PAR absorbed by vegetation canopy (APARcanopy) to estimate GPP
(GPP = LUEcanopy × APARcanopy), for example, the Carnegie-Ames-Stanford Approach model (Potter et al.,
1993) and the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP algorithm (Running et al.,
2004), where the fPAR is typically calculated as a function of satellite-derived normalized difference vegeta-
tion indices (NDVIs) or leaf area index (LAI). However, not all light absorbed by the canopy is used in the
photosynthetic process (Figure S1). A substantial fraction of PAR will be absorbed by the nonphotosynthetic
vegetation (NPV, e.g., branch, stem, dry leaf, nonphotosynthetic pigments, and materials; Xiao et al., 2004).
Importantly, the fraction of NPV is different across different biomes (Li & Guo, 2016). As a result, in those
PEM models, εmax may be biome-specific as APARcanopy is not corrected for the fraction of PAR absorbed
by NPV (McCallum et al., 2009; Potter et al., 1993). However, the variation of NPV ratio within biomes is not
considered in these models. In addition, the NPV composition also varies with vegetation phenology and
growth over seasons and years (Guerschman et al., 2009). Thus, there is a need to account for the temporal
variability of biotic factors such as changes in the fraction of chlorophyll/NPV with phenological cycles.

One fundamental theoretical assumption is that with more precise representation of fPAR absorbed by chlor-
ophyll, estimates of ecosystem GPP are significantly improved by reducing bias and variability associated
with unaccounted differences among biomes or across time in the ratio of chlorophyll to NPV. If GPP is more
tightly coupled with chlorophyll-absorbed PAR as hypothesized, the range of εmax variations across space
and time will be smaller when estimated from the absorbed energy by chlorophyll, which is used to drive
photosynthesis. Previous studies have shown that the LUE is more stable across the seasonal cycle in a
cropland when using radiation absorption by chlorophyll than by leaf or canopy (Gitelson & Gamon, 2015;
Peng et al., 2011). However, these studies focused on a single vegetation type and used data at a single site.
Whether this phenomenon can be extrapolated to other biome types at seasonal scale or across different
biome types remains unclear.

Successful retrievals of solar-induced chlorophyll fluorescence (SIF) from satellites (Frankenberg et al., 2011;
Joiner et al., 2013) provide a new probe of vegetation photosynthesis at regional to global scales (Porcar-
Castell et al., 2014). SIF is a very small fraction (~1–2%) of energy reemitted during the light reactions of
photosynthesis. Photons absorbed by excited chlorophyll have three pathways: photochemical quenching
(used for photosynthesis), nonphotochemical quenching (heat dissipation), and fluorescence (Genty et al.,
1989; Figure S1). Because SIF is only emitted from photosystems and can be interpreted as the photosyn-
thetic electron transport rate under unstressed condition (Zhang et al., 2014), it can be a good proxy of
PAR absorbed by the chlorophyll (APARchl) that is more precisely focused on photosynthetic pigments than
traditional measures of ecosystem or canopy APAR (Zhang, Xiao, Jin, et al., 2016). However, current long-term
SIF observations have relatively high uncertainties and low spatial resolution (Joiner et al., 2014), which
complicates direct comparisons with EC flux tower observations of LUE and GPP. Most PEMs still use
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satellite-based optical vegetation activity indicators (OVAIs; Table S1; Elsobky, 2015; Yan et al., 2016) to
estimate as fPARcanopy or fPARchl, which allow GPP simulation at spatial resolutions comparable to the
footprint of EC flux tower sites.

In this study, we try to test our hypothesis that the maximum daily LUE based on radiation absorbed by chlor-

ophyll (εchlmax , corresponding to LUEchl and APARchl) is more stable than other εmax definitions in space and
time. This hypothesis, if verified, would help us to build new PEM without biome-specific parameterizations
of εmax. To test this hypothesis, we followed these three steps:

1. We first derive proxies of fPARchl and fPARcanopy from OVAIs so that they can be directly compared with
GPP and PAR from flux towers. To do this, we explore the relationship between SIF and OVAIs upscaled
to SIF spatial resolution and estimate fPARchl from OVAIs (Figure S2). The OVAIs used in this study are
satellite-retrieved vegetation indicators such as NDVI, enhanced vegetation index (EVI; Huete et al.,
2002), and an fPAR product (fPARmod15; Myneni et al., 2002) from the MODIS as well as the Medium
Resolution Imaging Spectrometer terrestrial chlorophyll index (MTCI) from the Medium Resolution
Imaging Spectrometer (Dash & Curran, 2004). Through this comparison, we would like to (a) identify which
OVAI can serve as better proxies of fPARchl and (b) build linear relationships between OVAIs and fPARchl.

2. After we obtain the proxies of fPARchl, fPARcanopy, and GPP estimated from the FLUXNET data set
(Baldocchi et al., 2001), we then calculate εmax for different biomes using different APAR definitions. A
spatial convergence of εchlmax would be represented as a more stable relationship between GPP/PAR
(LUEeco) and linear proxies of fPARchl across different biomes over space.

3. To test the temporal convergence, we obtained the reference LUE (LUEref) from two tropical rainforest
sites where LUE under a fixed environment condition can be derived for each month to represent the
seasonal variation of εmax. In this way, we can compare the ecosystem LUE without considering the envir-
onmental limitations (Figure S2). A temporal convergence of εchlmax would be represented as fPARchl fully
tracking the monthly variations in LUEref.

2. Materials and Methods
2.1. Solar-Induced Chlorophyll Fluorescence as a Proxy of APARchl

The SIF product for the period from 2007 to 2015 was retrieved from the Global Ozone Monitoring
Experiment 2 (GOME-2) instrument onboard the MetOp-A satellite (Joiner et al., 2013). The GOME-2 V27
SIF product used in this study has a spatial resolution of 0.5° × 0.5° and monthly temporal resolution. SIF
can be expressed using a similar form to the LUE models (Guanter et al., 2014; Joiner et al., 2014):

SIF ¼ PAR�fPARchl�FE (2)

where FE is the fluorescence efficiency observed at top of canopy. Because SIF retrieved from GOME-2 is a
snapshot of vegetation activity in space and time, we use the cosine of the Sun zenith angle (SZA) to approx-
imate the instantaneous PAR when the satellite observation is made:

PAR ¼ β� cos SZAð Þ (3)

where β is the solar constant, representing sea-surface clear-sky solar radiation when the Sun is at the zenith,
that is, cos(SZA) = 1. Thus, equation (2) can be written in a different form:

fPARchl ¼ SIF
β� cos SZAð Þ�FE

(4)

Previous studies also showed that SIF is mostly driven by the amount of radiation absorbed by chlorophyll
under unstressed conditions (Liu et al., 2017; Yang et al., 2015). Simulations using the Soil Canopy
Observation of Photochemistry and Energy fluxes (SCOPE) model suggest that FE is relatively stable using
various parameter combinations. A detailed description of this analysis can be found in the supporting
information Text S1 and Figures S3 and S4 (van der Tol, Verhoef, & Rosema, 2009; van der Tol, Verhoef,
Timmermans, et al., 2009; Verhoef, 1984, 2011; Verrelst et al., 2015; Zhang et al., 2014). Although drought
and other environmental stresses also affect FE, this effect is limited because of the averaging of the SIF signal
in the spatial and temporal domain. In addition, the energy partitioning through heat dissipation for light-
adapted conditions (ϕN) is limited and has less effect on FE at 9:30 a.m. (GOME-2 overpass time) than midday
(Amoros-Lopez et al., 2008). Only prolonged and severe drought that directly affect the heat dissipation for
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dark-adapted conditions (ϕD) will decrease FE (Adams & Demmig-Adams, 2004; Baker, 2008). Therefore, we
regard FE as a constant in this study and the uncertainties are considered in the error propagation analysis
(Text S3). With this approximation, we define fPARSIF as SIF/cos(SZA); considering a constant β and FE in
equation (4), fPARSIF is proportionate to fPARchl:

fPARchl∝fPARSIF ¼ SIF
cos SZAð Þ (5)

where fPARSIF does not follow the conventional range of 0 to 1, but that of an empirical parameter that can be
calculated from SIF data. We use this relationship to evaluate proxies for fPARchl using OVAIs both temporally
for each pixel and spatially for each month.

Because of the linear form of PEMs (equation (1)), we use a linear transformation of OVAIs to approximate
fPARchl as follows:

fPARchl ¼ a� OVAIs� cð Þ∝fPARSIF (6)

The slope (a) can be regarded as a part of LUE and ideally, should be a fixed number for all biome types. The
intercept (c) can be estimated from the intercept of the regression. A relatively stable regression slope and
intercept between OVAIs and fPARSIF both spatially and temporally indicates that the approximation in equa-
tion (6) is plausible. The values (OVAIs�c) are considered as a proxy of (or proportional to) fPARchl and are
denoted with a subscripts m (e.g., EVIm = EVI � c). Prior to these regression analysis, OVAIs were subject to
a quality check and only good observations were used (supporting information, Text S2; Myneni et al.,
2015; Vermote, 2015; Viovy et al., 1992).

2.2. FLUXNET Data Processing and Light-Use Efficiency Calculation

The GPP estimation used in this study is derived from EC data available from the FLUXNET2015 Tier 2 data set
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/; 2015 December Release; Table S2) processed accord-
ing to standardized protocols (Pastorello et al., 2017). Out of the 136 available sites we chose 127 sites (or spe-
cific site-years for rotated cropland) where C3 species are dominant. These flux sites cover a variety of
ecosystem types, and there are altogether 626 site-years (Table S2 and Figure S5). The daily FLUXNET2015
data sets were aggregated into 8-day intervals (and 10-day intervals for 2008–2012 to compare with MTCI;
see section 2.3) after a rigorous data quality check (Text S2).

Limitations of water, temperature, and other climate factors will down-regulate the LUE from its maximum
value (εmax). These limitations are complex and vary across ecosystems so that we cannot directly estimate
εmax based on GPP and APAR measurements (Zhang, Xiao, Zhou, et al., 2016). In this study, we simplify this
issue by assuming (1) that plants in all ecosystems reach their maximum LUE during the peak growing season
because of their long-term acclimation of the photosynthetic apparatus given that no severe disturbances
occur. This allows us to calculate the maximum ecosystem LUE (εecomax, corresponds to LUEeco and fPAR = 1)
for each site; (2) for tropical rainforest ecosystems, where photosynthesis is active all year round, we followed
previous studies (Wu et al., 2016) and used the reference LUE (LUEref) as the seasonal variation ofεecomax. LUEref is
calculated as ecosystem LUE (LUEeco = GPP/PAR) under a small range of climate conditions (e.g., cloudiness,
PAR, air temperature, and vapor pressure deficit) within each month throughout the year, so that the effect of
environmental limitations on photosynthesis is constant and can be eliminated.

For each site-year, we identified the five 8-day (four 10-day) period with the highest GPP values as the peak
growing season. For each 8-day (10-day) period during the peak growing season, εecomax was then calculated as
the average of daily GPP from EC measurements (GPPEC) divided by the average of daily PAR. However, as
disturbances may occur in some years and climate may limit LUE during the peak growing season, we only
retained the upper 50th percentile of εecomax from all available years for each site for further analysis.

As several studies have shown that εmax varies between clear and cloudy days (Mercado et al., 2009), we sepa-
rate the sunny and cloudy period for each 8-day (10-day) period during the peak growing season using a
clearness index (actual shortwave radiation/top of atmosphere shortwave radiation) of 0.55 (which is ~80%
of its maximum actual value because of atmospheric scattering). Corresponding to the different definitions
of fPAR (Figure S1), εmax can also be calculated at different levels, using incoming PAR (εecomax = GPPEC/PAR),

canopy-absorbed PAR (εcanopymax = GPPEC/APARcanopy), and chlorophyll-absorbed PAR (εchlmax = GPPEC/APARchl)
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during the peak growing season when there is no environmental limitation (Gitelson & Gamon, 2015; Zhang

et al., 2009). For εcanopymax and εchlmax, they can also be calculated from εecomax=fPARcanopy and εecomax=fPARchl, respec-

tively. Therefore, a convergence of εmax from canopy to chlorophyll level across biome types will be repre-
sented as a convergence of regression slopes in the linear regression (with 0 intercept) between LUEeco
and fPARchl compared to LUEeco and fPARcanopy.

2.3. Remote Sensing Observations at Flux Tower Sites

We used two vegetation indices (NDVI and EVI), one fPAR product (fPARmod15) from MODIS and one chloro-
phyll index (MTCI) to represent the fPARcanopy and their transformations (OVAIs�c) as proxies of fPARchl
(Table S3). Due to the sensitivity of remote sensing retrievals to atmospheric contaminations, when compar-
ing the remotely sensed OVAIs with eddy fluxmeasurements, we used a similar procedure reported in Zhang,
Xiao, Zhou, et al. (2016) to screen and gap-fill the remotely sensed OVAI observations of poor quality (see
details in supporting information, Text S2). Considering the multiple approximations in the previous steps
and the uncertainty in each data set, an error propagation analysis, described in supporting information
Text S3 (Deming, 1943), was performed.

To reduce artifacts caused by Sun-sensor geometry or bi-directional reflectance distribution function (BRDF),
we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm reflectance data set
(Lyapustin et al., 2012) to calculate NDVI and EVI for the Amazon K67 (2.85°S, 54.97°W) and K34 (2.61°S,
60.21°W) sites. The MAIAC algorithm implements rigorous BRDF and atmospheric corrections and is therefore
more robust than EVI calculated from MOD09A1 C6 when detecting changes in tropical forests (Hilker et al.,
2014). We retrieved the reflectance for the nine surrounding pixels (3 km by 3 km) for sites K67 and K34 from
2000 to 2012 and then calculated the NDVI and EVI using the BRDF corrected reflectance.

3. Results
3.1. Relationship Between fPARSIF and OVAIs

We calculated the averages of OVAIs for all pixels within each vegetation type for each month and compared
themwith fPARSIF for the period 2007 to 2015 (2007 to 2012 for MTCI). For fPARmod15 and NDVI, their relation-
ships with fPARSIF for different biome types were scattered, and the R2 of the regression within each biome
type was relatively lower compared to those for EVI and MTCI (Figure 1). EVI and MTCI also showed a stronger
linear correlation with fPARSIF when all the biome types were combined together. The relationship between
fPARSIF and MTCI was also consistent across biomes.

The intercepts of these linear regressions (c in equation (6)) are important to establish and assess variations in
the relationship between OVAIs and fPARchl. We compared the intercept estimates from both the spatially
averaged regressions (Figure 1) and the regressions of individual gridcells (Figure S6). MTCI and EVI showed
less variable intercepts than fPARmod15 and NDVI across four biome types. The fPARmod15 and NDVI exhibited
a larger variation of intercepts than that of EVI and MTCI when different biome types were considered.

We also used simple linear regression to determine the relationship between monthly fPARSIF and OVAIs
for individual gridcell. Figure 2 shows the spatial pattern and the frequency statistics of the regression
slopes between fPARSIF and the four OVAIs with fixed intercepts from the previous steps. The spatial
variations of the regression slopes using fPARmod15 and NDVI were relatively larger than those using EVI
and MTCI, as represented by larger coefficients of variation. The frequency statistics of these regression
slopes showed biome-specific characteristics for fPARmod15, NDVI, and EVI, where the lowest values were
found for forests, followed by shrublands, grasslands, and croplands. The MTCI, on the other hand, showed
a relatively stable slope across the different biome types. In addition, EVI also showed slightly higher
coefficients of determination (R2) for the regression models (Figure S7). Based on these analyses, EVI
and MTCI were considered stronger proxies of fPARchl than either fPARmod15 or NDVI. The average inter-
cepts on the x axis were ~0.1 for EVI and ~1.0 for MTCI. We used these intercepts to build the relationship
between OVAIs and the fPARchl.

3.2. Different LUE Estimation Across Biomes Based on Flux Tower GPP

To compare with GPP estimated from flux towers (GPPEC), we used the EVIm (EVIm = EVI � 0.1), MTCIm
(MTCIm = MTCI � 1), as approximations of fPARchl, and the original fPARmod15 and NDVI with different
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intercept values as fPARcanopy (Figure S1). For clear days, the regressions between εecomax and EVIm or MTCIm,
which are considered better fPARchl approximations, showed a smaller variation of regression slopes
within each biome types than those using the other two canopy indicators (fPARmod15 and NDVI;
Figures 3a–3d). EVIm and MTCIm were also characterized by a smaller root-mean-square errors and higher
coefficients of determination (R2) than fPAR and NDVI when all biome types were combined together
(Tables S4 and S5). Similar results were also found for cloudy days (Figures 3e–3h) and when using NDVI
with different intercepts as fPARcanopy proxies (Figure S8). From the ecosystem (top of canopy) PAR
absorption to canopy or chlorophyll PAR absorption, the corresponding maximum daily LUE converges as
shown by smaller coefficients of variation across biomes using fPAR = 1, fPARcanopy, and fPARchl
approximations (Figures 3i and 3j).

3.3. Using fPARchl Approximations to Track Seasonal Dynamic of Reference LUE

We also tested whether this convergence can be found across time, that is, whether the seasonal changes of
LUEref can be explained by the change of the canopy chlorophyll. We chose two tropical rainforest sites in the
Amazon forest where multiyear eddy flux observations were available (Wu et al., 2016). For both sites, MTCIm
showed a similar seasonal pattern of LUEref, while NDVI was not sensitive to seasonal changes (Figure 4). This
represents that the seasonal variation of εecomax can be better explained by fPARchl than fPARcanopy (NDVI); there-

fore, the εchlmax (ε
eco
max/fPARchl) has a smaller variation at seasonal scale compared to εcanopymax .

Figure 1. Relationships between fPARSIF and four optical vegetation activity indicators. Each point represents the average value of all the gridcells within a specific
land cover type for either the northern or southern hemisphere for each month. Land cover types were aggregated from Moderate Resolution Imaging
Spectroradiometer land cover map (Text S4 and Figure S10). Two hemispheres were calculated separately because of different phenological cycles. The solid lines
represent regressions for the northern hemisphere, and the dashed lines represent regressions for the southern hemisphere. The coefficients of determination
for each regression are given in the lower-right corner. The four horizontal lines with dots below fPARSIF = 0 (lower left corner) represent the mean value and
standard deviation of the regression intercepts between the fPARSIF and optical vegetation activity indicators in the temporal domain for individual pixel grouped by
different land cover types (Figure S6; Friedl et al., 2010).
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4. Discussion
4.1. Advantages and Biophysical Interpretation of fPARchl

In this study, we show that EVI and MTCI are robust proxies of fPARchl with the possible uncertainties being

taken into consideration; the maximum daily LUE for PAR absorption by chlorophyll (εchlmax ) exhibited less

variation in space and time than εcanopymax and εecomax: One implication is that a fixed εchlmax can be usable for GPP
estimation for C3 plant-dominated ecosystems across space and time. Although NDVI and fPAR were also
considered to capture the greenness of the canopy when first employed in PEMs, they did not perform as
well as other chlorophyll-related indices in estimating canopy photosynthesis (Rossini et al., 2012; Xiao
et al., 2004). Using the SIF retrieval from satellite and flux sites across the globe, our study further demon-
strated the advantage of these approaches as a more directed proxy of fPARchl. Our study also supports
the long-proposed convergence of LUE theory based on the optimization of resource allocation (Field,

Figure 2. Spatial distribution and frequency distribution of the regression slopes between fPARSIF and four optical vegetation activity indicators with fixed intercepts
(c in equation (6)) for the period 2007 to 2015 (2007–2012 for MTCI). The left column (a–d) shows the spatial distribution of regression slopes where the regression
is significant at 0.05 level. The white areas in tropical and boreal region are caused by very limited valid observations after quality check. The right column
(e–h) shows the frequency distribution of four major land cover types. Points with error bars at the top of each plot represent the mean ± 1 standard deviation of
the slopes within each land cover type.
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1991; Goetz & Prince, 1999). However, the possible explanation for better proxies of fPARchl using EVI and
MTCI may be different. EVI is known to be less prone to saturation under high biomass or LAI conditions
(Huete et al., 2002). When leaf quantity keeps increasing under moderate to high LAI, the APARchl also
increases because of the increases in total chlorophyll content in the canopy. EVI, compared to NDVI or
fPARmod15, suffers less from saturation and thus shows a higher correlation with fPARchl. MTCI, on the

Figure 3. (a–h) Relationship between different OVAIs and LUEeco for peak growing season using GPPEC from clear days (upper panel) and cloudy days (lower panel).
Each open circle represents one week from a site year. The solid lines represent the regression between LUEeco and fPARchl proxies (EVIm, MTCIm), which are forced
to pass [c,0] (c for the fixed intercept in equation (6)); the dashed lines represent the regression between LUEeco and fPARcanopy proxies (fPARmod15 and NDVI),
which are forced to pass [0,0]. The numbers in the top left corner of each subplot are the regression slopes representing the εcanopymax (a, b, e, and f) and εchlmax (c, d, g, and
h) for each land cover type (see section 2.2). Regressions lines and slope values (εmax) in black represent all biome types combined together. Summary of ε for
different APAR definitions based on regression slopes in (a–h) for clear days (i) and cloudy days (j). The error bar on each bar is calculated from error propagation
considering all the uncertainties in both input data sets and each approximation step (supporting information Text S3).

Figure 4. Comparing fPARcanopy (NDVI) and approximation of fPARchl (EVIm, MTCIm) with LUEref at (a–c) K67 and (d–f) K34 sites in Amazon forest. EVI and NDVI data
are calculated from MAIAC reflectance. Each circle in (a, b, d, and e) represents the average of all valid observations of vegetation indices for each year each month.
The size of the circles represents the numbers of valid observations used. Some obvious outliers were colored in red and eliminated from further analysis. The
blue and green lines in (a, b, d, and e) represent the observation numbers weighted averages of EVI or NDVI. The error bars for LUEref represent the standard error of
mean. The error bars for MTCIm in (c and f) represent the standard deviation for the period 2002 to 2012. The shades in light yellow represent dry season. Root-mean-
square errors (RMSEs) are calculated based on regressions with zero intercept.
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other hand, is a good indicator for canopy chlorophyll content (Dash & Curran, 2004). Therefore, it can be
directly linked to fPARchl although a saturation effect may exist as well when total chlorophyll content is high
(Peng et al., 2011).

Chlorophyll content has been successfully retrieved at canopy scale as the interaction between these
pigments and light affects the canopy reflectance spectrum (Asner & Martin, 2008; Curran, 1989).
Compared with PEMs which only focus on the LAI or fPARcanopy, the use of fPARchl can better estimate both
leaf quantity (LAI) and leaf physiological quality (chlorophyll concentration and nitrogen content), the latter is
often regarded as the secondary factor responsible for LUEcanopy (Wu et al., 2016). The possible explanation
for this spatio-temporal convergencemay be that all the C3 plants share the same electron transport mechan-
ism and chemical reactions to fix carbon. And all plants under different environmental conditions tend to
maximize their photosynthetical capacity during the peak growing season to increase their competitiveness.
The variation of fPARchl in both space and time may also be related to the variation of maximum carboxyla-
tion rate (Vcmax), quantum efficiency (αq), and LAI (Croft et al., 2016), but still need additional studies.

4.2. Potential of Using SIF and fPARchl for GPP Estimation and Data Assimilation

As SIF is closely related to the APARchl, both theoretically frommodel simulations and experimentally using in
situ observations (Frankenberg et al., 2011; van der Tol et al., 2014), this relationship, conserved across
biomes, can be used to build simple models to directly estimate GPP from SIF and to improve PEMs (Sun
et al., 2017). Guanter et al. (2014) explored the feasibility of estimating GPP using SIF for croplands. Many
studies suggest that SIF contains not only the information of light absorption but also the LUE information
(Yang et al., 2015). However, these studies all used SIFyield (SIFyield = SIF/APARcanopy) defined at the canopy
scale. At present, we still do not knowwhether the good relationship between SIFyield and LUEcanopy is caused
by the variation of canopy chlorophyll content, which is embedded in both SIFyield and LUEcanopy (Figure S1),
or to what extent satellite-derived SIFyield actually captures environmental stress on plant physiology. Current
GOME-2 data set may not be suitable for the detection of this quick response because of its early morning
overpass time and the spatial and temporal aggregation required to reduce SIF data uncertainty. However,
understanding this underlying mechanism will pave the way to better estimate GPP from SIF.

The estimates of fPARchl using vegetation indices also provide an alternative opportunity to benchmark state-
of-the-art land surface models. Currently, many dynamic global vegetation models use data assimilation
techniques, which employ remote sensing-retrieved LAI or fPAR products to improve performance
(Demarty et al., 2007). Other studies try to use SIF or MTCI to constrain model output or inversely estimate
some key parameters of the photosynthesis processes (Alton, 2017; Zhang et al., 2014). As we have shown

that EVI and MTCI can be used as a proxy of fPARchl and that εchlmax appears to converge across different biome

types, fPARchl estimated from EVI and MTCI is more directly related to GPP and can be used for data assimila-
tion to improve model performance.

4.3. Implications for PEMs

Due to their simple form, PEMs play an important role in estimating GPP at regional to global scales. However,
the parameterization is a critical issue, especially for εmax, which determines the efficiency of plants convert-
ing the daily solar energy to biochemical energy, thus directly affecting the magnitude of the GPP estimation.
Previous studies have made efforts to correctly estimate the biome-based εmax (Zhao et al., 2005). Some
studies even suggest site-level εmax is necessary to improve model accuracy (Kross et al., 2016). However, it
is unlikely that outside of flux tower’s footprint, we can obtain spatially continuous in situ GPP measurement

to estimate εmax. The spatial convergence of εchlmax across biomes justifies that a constant εmax can be applied
for simple but robust parameterization of PEMs. This approach could simplify themodel parameterizations by
avoiding the need of vegetation maps (e.g., forest, shrub, and grass) and vegetation-specific parameters,
ultimately reducing the uncertainty and improving the robustness of the GPP estimates. A new global GPP
product from the Vegetation Photosynthesis Model has been developed based on this theory and showed
good performance (Zhang et al., 2017). The seasonal dynamics of fPARchl are closely related to that of
LUEref; however, these biotic changes (LAI and chlorophyll content) are not well represented in fPARcanopy-
based PEMs. Using fPARchl could improve the prediction of biotic regulation of GPP at seasonal scale.
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Although the cross-biome variation in εchlmax diminishes when using EVIm and MTCIm as an approximation of

fPARchl, we show that the within-biome εchlmax variation does not decrease much compared to the

fPARcanopy-based indicators. This may be caused by several reasons: (1) εchlmax is still constrained by environ-
mental conditions and may change from one year to the other year for a given site, even during the peak

growing season; (2) site-specific characteristics (soil type, fertilization, etc.) still affect the εchlmax to some extent;
(3) the direct and diffuse radiation composition and canopy structure, for example, clumping index, affect

εchlmax ; (4) flux and satellite measurement uncertainties still exist; and (5) the inconsistency of flux tower
footprint and OVAI pixels may introduce noise in the relationship.

5. Conclusions

In this study, we find that based on light absorption by chlorophyll of the canopy, which directly reflects light

harvesting of the photosynthesis process, εchlmax tends to converge across space and time, which can greatly
simplify the structure and parameterization of PEMs. However, to improve model accuracy, more studies
are needed to investigate the environmental limitations on εmax and photosynthesis. Different forms of tem-
perature and water limitations have been widely used, but recent studies also suggest the need to employ
mixed forms of the limitations for forests and nonforested sites, especially during drought periods. With more
data accumulated from global flux networks and Earth observation data from different satellites, PEMs will
provide more accurate estimates of GPP to support a better understanding of the global carbon cycle.
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