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A B S T R A C T

Plant water use strategy is one of the key factors to predict drought impact on vegetation and land-atmosphere
fluxes. Vegetation optical depth (VOD) based on microwave radiative transfer inversion has recently been used
to assess plant water use strategy. However, VOD is sensitive to both total aboveground biomass (AGB) and leaf
water content, with only the latter being a proxy of leaf water potential whose diurnal variation can be used to
characterize vegetation iso/anisohydricity. In this study, by using a network of soil water measurements (used as
a proxy for predawn leaf water potential), satellite retrieved normalized difference vegetation index (NDVI, as a
proxy for AGB), and two satellite VOD products from the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) sensor, we compare three linear models and one machine learning model to in-
vestigate to what extent can VOD be used to represent leaf water potential changes during soil moisture dry-
down periods. Linear models with both NDVI and leaf water potential, on average, can explain 33% and 51% of
VOD variations of each product respectively. Models using only NDVI explain 27% and 46% of the VOD var-
iance, compared to less than 10% by models using leaf water potential only. With the NDVI and leaf water
potential (full) model, leaf water potential contributes around 17% of the VOD variance, which is smaller than
NDVI (33%). The machine learning model has overall better performance than the linear models, and also
highlight the dominant contribution of AGB to VOD signals. After the AGB contribution to VOD is eliminated by
normalizing daytime VOD with nighttime VOD, the residuals carry the information of diurnal variations of leaf
water potential and calculations from both VOD datasets are consistent with each other (r=0.42±0.17,
P < 0.01 for 88 out of 94 sites). The response of

VODdaytime
VODnighttime

to soil water potential can also be used as a new

metric for ecosystem iso/anisohydricity. Our study demonstrates that a large proportion of variations in VOD are
caused by AGB for temperate ecosystems, and higher accuracy VOD products with additional root-zone soil
water potential are needed for ecosystem iso/anisohydricity estimations.

1. Introduction

Microwave remote sensing has increasingly been used to obtain
land-surface properties including surface soil moisture, surface rough-
ness, snow and flood status, etc. (Njoku and Chan, 2006; Njoku and
Entekhabi, 1996; Zhang and Armstrong, 2001). During the retrieval of
surface soil moisture, vegetation is often treated as a semi-transparent
layer that attenuates the microwave signal which can be quantitatively
assessed by vegetation optical depth (VOD) (Owe et al., 2001). Previous
studies have suggested that VOD can be interpreted as the total water
content in all aboveground biomass (Liu et al., 2013). At higher fre-
quencies, microwaves have less penetration into the vegetation and

VOD is most sensitive to the upper part of the canopy, i.e., leaves and
upper branches. Therefore, VOD retrieved at high frequencies (e.g., X-
band, 10.7 GHz) is a good indicator for total water content in the upper
canopy, and can be effectively used to monitoring canopy water content
responses to drought (Anderegg et al., 2018). Due to the close linkage
between leaf water content and leaf water potential, obtaining leaf
water potential from microwave remote sensing is also promising.

Leaf water potential is an important variable in plant hydraulic and
plant physiology research. The difference in water potential values
between leaf and root provides the driving force of water movements in
plants. Variation in leaf water potential is mostly caused by an im-
balance between water consumption (transpiration) and supply (xylem
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transportation), while other processes, including the osmotic effect,
might also contribute to the changes but to a lesser extent (Vesala et al.,
2017). The dynamic changes of leaf water potential can be used to
characterize plant water use strategy as a continuum from isohydry to
anisohydry: more isohydric species tend to maintain a relatively steady
daytime leaf water potential to prevent xylem embolism during drought
while more anisohydric species tend to exhibit larger variations in
terms of daytime leaf water potential (Tardieu and Simonneau, 1998).
Although recent studies suggest that this definition is also affected by
the environment and does not directly link to stomatal sensitivity to
drought (Hochberg et al., 2018; Martínez-Vilalta and Garcia-Forner,
2017), it can still be used to characterize the leaf water dynamic to
different drought stresses (atmospheric water deficit or soil water def-
icit) or as a constraint to benchmark plant hydraulic models (Kennedy
et al., 2019). For example, Konings et al. (2017) demonstrates that in
western US, more anisohydric grassland have higher sensitivity to at-
mospheric dryness than to soil dryness. Another study by Giardina et al.
(2018) finds that in Amazon, tall trees are generally more isohydric and
their photosynthesis are less sensitive to precipitation variability. Both
studies avoid directly linking isohydricity metrics with plant species,
and instead, focus on plant responses at ecosystem scale. Therefore,
obtaining a global dataset of iso/anisohydricity can greatly benefit our
understanding of plant physiological responses to drought and heat.

Based on the definition of iso/anisohydricity, Martínez-Vilalta et al.
(2014) uses the regression slope (σ) between the midday leaf water
potential (ΨL

midday) and predawn leaf water potential (ΨL
predawn) to re-

present plant iso/anisohydricity:

= +σΨ Ψ ΛL
midday

L
predawn (1)

This slope (σ) describes the capability of plants to maintain a rela-
tively stable leaf water potential in response to declining soil water
potential, and the intercept (Λ) indicates the ΨL

midday value when soil is
fully saturated. It should be noted that other definitions of the iso/an-
isohydricity exist (e.g., difference of ΨL

predawn and ΨL
midday within day

(Klein, 2014), variations of ΨL
midday), which may not agree with each

other (Martínez-Vilalta and Garcia-Forner, 2017). We here adopt the
definition by Tardieu and Simonneau (1998). In practice, this method
typically requires laborious field measurements and only works for
individual plant or species, which limits its application at the ecosystem
scale.

Konings and Gentine (2017) first implement this definition at eco-
system scale by assuming that satellite VOD can be used as a proxy of
leaf water content, and further leaf water potential, so that the re-
gression slope between daytime VOD and nighttime VOD can serve as a
measurement of ecosystem iso/anisohydricity. Li et al. (2017) uses si-
milar theory with multiple microwave remote sensing products (both
active and passive), improving the isohydricity estimates at higher la-
titudes (Li et al., 2017). These studies provide estimates of global
ecosystem iso/anisohydricity that can be used for ecosystem drought
response analysis or model development (Konings et al., 2017).

However, questions arise with regards to the usage of VOD data.
VOD is related to the total water content, which can be further de-
composed into the aboveground biomass (AGB) and water content per
biomass, with the latter regarded as a proxy of the leaf water potential.
As a result, both the midday and midnight VOD are driven by seasonal
changes of AGB and may not represent the difference between daytime
and predawn leaf water potential (Guan et al., 2014; Jones et al., 2011).
This directly affects the use of VOD to estimate ecosystem iso/aniso-
hydricity as illustrated by Fig. 1 using an arbitrarily generated dataset.
Although the changes in water content and AGB may affect each other,
they respond to water deficit at different time scales. With high tem-
poral resolution VOD data, their exclusive effects on VOD can be se-
parated. Momen et al. (2017) build a model to separate the contribution
of VOD using in situ measured leaf water potential and leaf area index
(LAI, as a proxy of biomass). Based on ground observations at three

forest sites, they find that including leaf water potential improved the
prediction of VOD compared to using LAI alone, although these im-
provements are site-dependent. Whether and to what extent VOD is
sensitive to leaf water potential needs to be further evaluated over more
ecosystems with ground measurements. One obvious limitation is the
uncertainties in VOD and AGB retrievals: even if we were able to re-
move the contribution from AGB, whether the leaf water potential es-
timated from VOD is sufficiently accurate to characterize ecosystem
iso/anisohydricity is still unknown.

In this study, we aim to answer two questions that are critical to the
usage of VOD to represent canopy water content (or leaf water poten-
tial) and to further estimate ecosystem iso/anisohydricity: (1) How
much variation of VOD in the temporal domain can be explained by leaf
water potential compared to AGB? (2) Is there an effective way to
quantify leaf water potential dynamics using VOD without being con-
taminated by AGB? We used two independent VOD datasets from the
Japan Aerospace Exploration Agency (JAXA) Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) together with
the Oklahoma Mesonet climatological dataset to investigate VOD re-
sponses during soil moisture dry-down events.

2. Materials and methods

2.1. VOD relationship with NDVI and leaf water potential

When the frequency of electron magnetic wave increases, its pene-
tration capability decreases. Microwave at X-band (10.7 GHz) can
barely get through dense vegetation canopy layers and VOD retrieved at
X-band is a proxy for total water in the vegetation canopy (or columnar
vegetation water content, VWC, in kg m−2) (Jackson and Schmugge,
1991; Jones et al., 2011). Although canopy structure and dielectric
property may also affect the relationship between VOD and VWC, their
effects are generally considered site-specific and time invariant
(Jackson and Schmugge, 1991). In this study, we only focus on the
seasonal dynamic of leaf water for each individual site, and the tem-
poral variations of site-specific parameters are ignored. VWC is mostly
affected by two factors:

(1) the aboveground biomass (AGB) or mostly leaf biomass. The sea-
sonal dynamic of AGB is largely driven by leaf growth and senes-
cence while contributions from stem and branch are relatively small
(Dong et al., 2003; Liu et al., 2017). Leaf biomass or leaf area can be
approximated using an exponential function or linear function of
normalized difference vegetation index (NDVI) (Schino et al., 2003;
Shippert et al., 1995; Wang et al., 2005). Previous studies suggest
similar performances of these two models in deciduous and semi-
arid ecosystems (Fan et al., 2009; Potithepa et al., 2010). For sim-
plicity, we used a linear model to estimate AGB from NDVI:= +q uAGB NDVI (2)

It should be noted that we aim to predict the seasonal variation of
AGB for each site instead of obtaining a universal relationship to
predict the spatial pattern, this allows us to fit the q and u for each
site individually.

(2) the average water content per unit of biomass (WC). WC is usually
measured at leaf level and can be related to leaf water potential.
The relationship between WC and leaf water potential can be
complicated, since the latter is a combination of solute, pressure
and gravity potential. Both solute potential and pressure potential
are affected by the relative water content in the leaves (Nobel,
2009). Although solute potential can also be controlled by solute
concentration adjustment, this effect is smaller and is ignored here
(Wilson, 1967). Previous studies suggest either linear or non-linear
relationship between leaf water content and leaf water potential,
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depending on plant species (Jones and Higgs, 1979; Kalapos, 1994;
Luo and Strain, 1992; Maxwell and Redmann, 1978; Sade, 2012;
Zweifel et al., 2000). In our study, since we only used data with a
narrow range of water potential variations, the linear approxima-
tion is adopted for simplicity (Pearcy, 1989):= +m nWC ΨL (3)

q, u, m, n are empirical parameters that change in space but not
over time, assuming they are still in the elastic part.
Following previous studies, VOD can be expressed as a combination
of AGB and WC (Momen et al., 2017):= + + = + + +q u m n ηVOD b( NDVI )( Ψ ) α βNDVI γΨ Ψ NDVIL L L

(4)

The coefficients α, β, γ, η are assumed to only vary across sites and
remain constant in time. We used a least square method to solve these
coefficients for each site. In comparison, we also built two other models
to investigate the VOD sensitivity to NDVI and ΨL respectively:= +VOD κ NDVI µ (5)

= +VOD ιΨ νL (6)

where κ, µ, ι, ν are also site level parameters that do not vary in the time
domain.

Considering non-linear relationship between leaf water content and
leaf water potential is also suggested in the literature, as well as the
relationship between AGB and NDVI, it is necessary to test a model that
is not restrained to these linearity assumptions. Here we also used the
“boosted regression tree” (BRT) (Elith et al., 2008), a powerful machine

learning tool to explore how much variance in VOD can be explained by
NDVI and ΨL, and what is the contribution of each predictor variable.
The BRT method combines the strength of “regression tree”method and
“boosting ensembling” method. It can be regarded as an additive re-
gression model in which each member (“a regression tree”) are fitted in
a forward, stepwise way. This machine learning approach does not
require the linear assumption for both processes, and can handle
complex interactive effects between leaf water potential and NDVI. By
analyzing the tree complexity, it can also estimate the relative con-
tribution of each predictor to the response variable from the fitted
model. It should be noted that the contributions estimated from BRT are
normalized and may not be directly comparable with that from the
linear model, it is the relative relationship between the NDVI and ΨL
contributions that we are interested in. The models were fitted at each
site, using the R package “gbm” under R 3.6.1 environment.

2.2. Attributing the variation of VOD to NDVI and ΨL during soil moisture
dry-down

We also used a variance decomposition method to separate the
variance of VOD into contributions from NDVI, ΨL and ×NDVI ΨL for
the linear model (Eq. (4)). This method decomposes the variance of an
aggregate variable into contributions of each component variable ac-
cording to the covariance allocation principle (Zhou et al., 2017). In
this study, the aggregate variable (VOD) consists of three component
variables (α is constant) on the right-hand side in Eq. (4), and the
variance of VOD is decomposed to its covariance with each component
variable as follows:

= + ++VAR cov cov cov
η cov ε

(VOD) (VOD, βNDVI) (VOD, γΨ ) (VOD,
Ψ NDVI) (VOD, )

L

L (7)

Fig. 1. Conceptualized representation of using satellite retrieved vegetation optical depth (VOD) to estimate ecosystem isohydricity with three different assumptions.
(a,d) Assuming VOD variations are only affected by the seasonal changes of aboveground biomass (AGB); (b,e) Assuming VOD variation are only affected by the
diurnal changes of the leaf water content (and therefore, leaf water potential); (c,f) Assuming VOD variations are affected by both AGB and leaf water content. The
regression slope (σ) indicates whether the plants are more isohydric (close to 0) or anisohydric (close or great than 1). Data were arbitrarily generated with random
noise embedded. Only the middle column correctly represents the conceptual framework proposed by Martínez-Vilalta et al. (2014), showing a more isohydric
behavior, while under a real-world situation (right column), if the AGB contribution is not considered, regression slope close to one would indicate an anisohydric
behavior.
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where ε is the random error in the regression of Eq. (4). The explanatory
power of NDVI, ΨL and the cross term ×NDVI ΨL to variations in VOD
(RX ) is given by:

=R cov
VAR

(VOD, X)
(VOD)X

(8)

where X represents either βNDVI, γΨL or ηΨ NDVIL .

2.3. Ratio between daytime and nighttime VOD to eliminate the effect of
aboveground biomass

Since the aboveground biomass does not change much over a short
time period (e.g., within a few days) (Konings et al., 2016), the ratio
between daytime VOD (VODday) and nighttime VOD (VODnight) ob-
servations within one day (12 h apart) can eliminate the contribution
from the aboveground biomass. Therefore, the ratio (R) between
VODday and VODnight can be regarded as the ratio between linear
proxies of ΨL at midday and at midnight using Eq. (4):

= = ++R m n
m n

VOD
VOD

Ψ
Ψ

day

night

L
daytime

L
nighttime (9)

where m and n are site specific parameters as described in Eq. (3).
Theoretically, by investigating the response of R to changing soil water
conditions (ΨL

nighttime), we can estimate vegetation iso/anisohydric be-
havior. Here we present a simple sensitivity analysis. Replace ΨL

daytime in
Eq. (9) with Eq. (1) and we can get:

= = ++ = + + − +R m n
m n

σ σ
n m

VOD
VOD

Ψ
Ψ

Λ (1 )n/m
Ψ /

day

night

L
daytime

L
nighttime

L
nighttime (10)

where σ is the regression slope between ΨL
daytime and ΨL

nighttime and is a
metric of iso/anisohydricity (see introduction and Fig. 1). The first
order derivative of R with respect to ΨL

nighttime represents the change of
VOD

VOD
day

night
to ΨL

nighttime:

= − + − +( )
dR

d
σ

Ψ
Λ (1 )

Ψ

n
m
n
mL

nighttime
L
nighttime 2

(11)

Considering +( )Ψ n
mL

nighttime is always much greater than zero (m is

positive, and VOD= +m nΨL
nighttime is always much greater than zero),

and n
m

is much greater than Λ . The variation of dR
dΨL

nighttime is dominated

by the variation of numerator on the right-hand side of Eq. (11). When
σ is close to or greater than 1 (more anisohydric), the numerator is
negative, and dR

dΨL
nighttime is positive. When σ is close to 0 (more isohydric),

the numerator is positive, and dR
dΨL

nighttime is negative. These mathematical

derivations provide linkage between this new isohydricity metric and
the widely used leaf level metric “σ”.

2.4. Study area and Mesonet climate data

Oklahoma is in a transition zone from humid to arid climate and has
a large variety of land cover types including forest, cropland, grassland,
shrubland, etc. (Wang et al., 2018). A dry summer can often be ex-
pected due to the asynchronicity between temperature and precipita-
tion (Flanagan et al., 2017). Oklahoma has experienced frequently
drying conditions during the past decades (Ford et al., 2015), making it
a suitable place to investigate the response of VOD to soil moisture dry-
down.

Oklahoma Mesonet is a network of environmental monitoring sta-
tions, consisting of 141 sites quasi-evenly distributed over the state of
Oklahoma (Fig. 2, Table S1). The Mesonet stations measure a variety of
climate and environmental variables including temperature, precipita-
tion, radiation, humidity, and soil water conditions (Brock et al., 1994;
McPherson et al., 2007). For most sites, soil water conditions were

measured at four soil depths (5 cm, 25 cm, 60 cm, 75 cm) using
Campbell Scientific (CS) 229-L sensors (Campbell Scientific Inc. Logan,
UT, USA) (Basara and Crawford, 2000). The CS 229-L sensor measures
the temperature difference before and after a heat pulse is introduced,
since the soil water content will affect the specific heat capacity,
thermal conductivity and density of the porous median (ceramic ma-
trix) where the sensor is housed, larger temperature difference is ex-
pected when soil is dry. Based on site calibrated coefficients, different
soil water indicators can be calculated (see (Basara and Crawford,
2000)).

Soil water potential (Ψw) is not directly measured at Mesonet sta-
tions. However, as Ψw is a combination of both matric potential and
solute potential, both of which decrease (become more negative)
monotonically with soil drying, soil matric potential was used as a
proxy of Ψw in this study (Or and Wraith, 2002). The soil matric po-
tential was further used to represent predawn leaf water potential
(ΨL

predawn) when an equilibrium between soil water potential and leaf
water potential is reached at predawn, and compared with VOD ob-
servations for descending overpass (1:30 a.m. local time, VODnight). It
should be noted that there is a time difference between the satellite
observation and predawn xylem refilling, and a disequilibrium is
common for many species (Donovan et al., 2001, 2003). As long as a
linear relationship exists between soil water potential and leaf water
potential at 1:30 a.m. during a dry-down event (Bucci et al., 2004;
Skelton et al., 2017; Williams and Araujo, 2002), soil matric potential
can be linked to water content in a similar form as Eq. (3), and soil
matric potential measurements can be used to test whether VOD is
sensitive to leaf water potential changes during soil moisture dry-down.

In this study, soil matric potential depths at 25 cm were used to
represent the root-zone soil water potential for non-forest sites, and
averaged soil matric potential at 25 cm and 60 cm were used for forest
sites. For each site, we calculated the land cover/use types from the
National Land Cover Database (NLCD) for the ° × °0.25 0.25 gridcells
corresponding to the Mesonet stations (Boryan et al., 2011). Only forest
or shrubland that occupy more than 50% of the gridcell for all three
years (2001, 2006, 2011, so that the study period is covered) were
considered as fully forested. Other land cover types (cropland, grass-
land) were considered as non-forested ecosystems. Sites with more than
10% of water body in the ° × °0.25 0.25 gridcell were excluded using the
NLCD dataset, since large water bodies affect VOD retrievals (Konings
et al., 2016; Owe et al., 2008).

2.5. Soil moisture dry-down detection

We used the fractional water index (FWI) as an indicator of drought
development. FWI can be directly calculated using the CS 229-L sen-
sors:

= −−∆ ∆
∆ ∆

FWI T T
T T

d ref

d w (12)

where ∆Td, ∆Tw, and ∆Tref represent the normalized sensor response (in°C) under dry, wet and reference (measurement) conditions (Illston
et al., 2008). With this normalization, FWI indicates the soil moisture
between a range from 0 (dry soil) to 1 (saturated soil) (Sutherland and
Illston, 2013; Schneider et al., 2003). We identified dry-down periods
when FWI monotonically decreased over time: the initial FWI should be
above 0.7, indicating a relatively abundant water supply; and the end
FWI should be below 0.4, indicating water scarcity could have limited
vegetation growth (Sutherland and Illston, 2013). FWI at 60 cm and
25 cm were used for forest and non-forest sites, respectively. Since the
CS 229-L does not capture the matric potential during very dry condi-
tions, we excluded the prolonged hyper arid condition when FWI is
below 0.15 and the daily decrease of FWI is smaller than 0.002. Only
dry-down periods longer than 15 days were used so that vegetation
could have enough time to respond to the dryness. Altogether 1378 dry-
down events were identified. 94 sites (7 forested, 87 non-forested) that
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experienced at least one period of dry-down during 2003–2011 were
used for the analysis (Table S1).

2.6. VOD data from LPRM and LPDR v2

Two VOD estimates from Advanced Microwave Scanning
Radiometer-E (AMSR-E) sensor onboard Aqua Earth-observing satellite
(EOS) were used in this study. The first VOD product is based on the
Land Parameter Retrieval Model (LPRM) (Owe et al., 2008, 2001).
Another VOD dataset is developed by the University of Montana (UMT)
known as the Land Parameter Data Record version 2 (LPDR, hereafter)
(Du et al., 2017). Compared to LPRM, the LPDR dataset uses a bright-
ness temperature (Tb) calibrated against AMSR2 and a fractional water
correction was implemented. The LPDR method also uses a temporal
smoothing filter to remove the high frequency fluctuations. Both da-
tasets cover the period 2003–2011 and were reprojected to latitude/
longitude projection with a spatial resolution of ° × °0.25 0.25 . Since X-
band (10.7GHz) VOD is sensitive to the total water in the canopy, it is
necessary to eliminate the contamination caused by precipitation in-
terception by canopy. Days with precipitation from Mesonet greater
than 1mm in the previous 24-h were excluded. The quality-checked
VOD was smoothed using a moving average filter with a window size of
5-days to remove the high frequency noises associated with measure-
ment and retrieval algorithm uncertainties.

The Aqua satellite is on a sun-synchronous orbit and has two local
overpass times within one day (1:30 a.m. local time for the descending
node and 1:30 p.m. local time for the ascending node). In this study,
both VOD retrievals were used and denoted as VODday (ascending node)
and VODnight (descending node), respectively.

2.7. Vegetation indices from MODIS

We used the 0.05° 16-day MODIS NDVI product (MOD13C1 C6)
from 2002 to 2011 to represent vegetation cover conditions (Huete
et al., 2002). The data quality was checked first, only pixels with good
quality (MODLAND_QA= ”00″), low aerosol load (Aerosol
quality= ”01″ or “10”), and good spatial coverage (Geospatial qual-
ity≠”00″) were used. Pixels that passed the quality check were averaged
to the ° × °0.25 0.25 gridcell to match the resolution of the VOD dataset.
For each site, the 16-day NDVI values were interpolated into daily
values with a spline interpolation to match the temporal resolution of
VOD and soil water potential measurements from Mesonet.

3. Results

3.1. Linear model performance comparison

Fig. 3 shows the time series of meteorological and vegetation

variables using one forested and one non-forested sites as examples. The
light-yellow shades highlight the dry-down events that were identified
by our algorithm. Compared to LPRM, LPDR VOD exhibits smaller high
frequency fluctuations, which is likely caused by the temporal
smoothing applied. However, the correlation between the two VOD
datasets is still strong for both sites (Pearson's r= 0.75 and 0.65, re-
spectively). The VODday/VODnight ratio from the two datasets also
shows similar time-series patterns for the entire growing season
(Pearson's r= 0.50 and 0.55, respectively). All moisture dry-down
events occur during the mid-growing season. For the forested site, the
canopy biomass slightly decreases during the dry-down window; while
for the non-forested site, the AGB exhibits larger variations, which may
be caused by fire management or grazing. The rest of the study only
uses the data during these dry-down windows to maximize the variation
in soil water potential.

We then evaluated the performance of the three models proposed in
section 2.1 for each Mesonet site. We used the midnight overpass ob-
servations from two VOD datasets as the response variables and NDVI
and ΨL as predictor variables. The models that include both NDVI and
leaf water potential (ΨL, approximated using soil matric potential) have
the best performance with highest R2 (0.33 and 0.51 for LPRM and
LPDR, respectively), followed by the models that only use NDVI (0.27
and 0.46, respectively) (Fig. 4a). The models that only include ΨL ex-
hibit very limited predictive power for most sites (< 0.10 on average).
The R2 is lower compared to Momen et al. (2017) mostly because the
short study periods (only dry-down events) that also correspond to
limited variations in AGB and VOD.

We also compared the NDVI and ΨL coefficients across these three
models (Fig. 4b and c). The coefficients of NDVI for ΨL&NDVI model (β
in Eq. (4)) are around 0.32 and 0.78 for LPRM and LPDR, respectively,
slightly lower than that for the NDVI model (κ in Eq. (5)). The coeffi-
cient of ΨL is 0.39 (LPRM) and 0.52 (LPDR) for ΨL&NDVI model (γ in
Eq. (4)), and close to zero for the ΨL model (ι in Eq. (6)). The LPDR
dataset generally shows higher R2 and NDVI coefficient compared to
LPRM dataset. Model performance (R2) and coefficients also show very
large variances across different sites, with an average coefficient of
variation 0.45 (R2), 0.71 (NDVI coefficients), and 1.82 (ΨL coefficients),
respectively. Momen et al. (2017) suggest that the intercept (α) in Eq.
(4) maybe related to the biomass for the woody components, we also
show higher α in forest than non-forest, but the difference is not sig-
nificant (P=0.07 for LPRM and P=0.24 for LPDR using unpaired
student's t-test). One possible explanation might be the different AGB
indicators used (leaf area index or NDVI).

3.2. Contribution of NDVI, ΨL to VOD using the NDVI& ΨL model during
soil moisture dry-down

Based on the variance decomposition method, we evaluated the

Fig. 2. Spatial distribution of the Mesonet stations in
Oklahoma. The inset shows the location of Oklahoma
in US. Symbols in different colors represent forest
and non-forest ecosystem types. Two red boxes in-
dicate the locations of two sites (Wister and
Blackwell) that are used as examples as forested and
non-forested in Fig. 3. (For interpretation of the re-
ferences to color in this figure legend, the reader is
referred to the Web version of this article.)
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contribution of each variable (NDVI, ΨL, ×Ψ NDVIL ) on VOD in the ΨL
&NDVI model for each site (Fig. 5). For most sites (61 out of 94 for
LPRM and 76 out of 94 for LPDR), NDVI contributes most to the var-
iance in the ΨL&NDVI model (0.24 on average for LPRM and 0.42 for
LPDR). ΨL on average has smaller contribution than NDVI (0.18 for
LPRM and 0.16 for LPDR), with contributions varying greatly across
sites. The cross factor ( ×Ψ NDVIL ) contribution is negative in most
sites. The ΨL contribution is greater in LPRM than the LPDR datasets,
but the NDVI contribution is much higher in LPDR than LPRM. This
difference may be related to the smoothing algorithm used in LPDR,
which reduce the high frequency fluctuations caused by changes in leaf
water content.

We further compared the contributions between forested and non-
forested sites (Fig. 5). NDVI and ΨL contributions are generally higher
for forested than non-forested sites for both VOD datasets. There are
two possible explanations for this biome difference: (1) the soil
moisture dry-down events in our study are mostly short-term and may
not necessarily represent strong drought stress that may induce changes
in AGB for grassland or forest, meaning that most of the AGB changes
are caused by vegetation growth and senescence; (2) the X-band VOD
used in this study is sensitive to total water in the upper canopy. Both
forest and grassland have strong seasonal canopy dynamics, but con-
sidering the low biomass of the grassland, the signal to noise ratio may
be higher in forest than grassland. This also leads to a generally higher
model performance of the forest (R2= 0.62±0.14 for LPDR and
R2=0.40±0.27 for LPRM) than for non-forest (R2= 0.50±0.18 for
LPDR and R2=0.33±0.17 for LPRM) and higher contributions from the
seasonal changes of AGB.

3.3. Relative contribution of NDVI and ΨL from machine learning models

The BRT model generally exhibits higher performance than the
linear model (Fig. 6a and b). There is also a strong correlation between
both model performances (R2), suggesting that the major drivers for the
model performance can be similar. We also compared the contribution
of NDVI and ΨL between two models. Both models show higher con-
tribution of NDVI than ΨL, which is also consistent across VOD datasets
(Fig. 6c and d). The contributions of NDVI from both models are also
strongly correlated (r=0.71 and 0.69 for LPRM and LPDR, respec-
tively), while the correlation between the ΨL contributions are not
significant (P=0.46 and 0.09 for LPRM and LPDR, respectively). This
indicates the ΨL effects on VOD can be complicated, further high-
lighting the importance of our study.

3.4. Response of daytime leaf water potential vs. nighttime leaf water
potential as soil dries

We have shown that VOD variations during the soil dry-downs are
dominated by changes in AGB represented by NDVI. We calculate the
ratio between VODday and VODnight to eliminate the AGB contribution
(Eq. (9), Fig. 3 e,j). This ratio is further evaluated against soil matric
potential to explore its response to decreases in soil water potential.
Here we use two sites as examples where dominant species are known
(Fig. 7). VODday/VODnight calculated from two VOD datasets shows
strong correlation (r=0.30, P < 0.001 for Wister, and r=0.69,
P < 0.001 for Blackwell). VODday/VODnight and soil matric potential
shows positive correlation for Wister but negative correlation for
Blackwell. Although the two VOD datasets yield different regression
slopes, the general patterns (decrease or increase) are consistent. These
results suggest that after AGB information is removed by calculating the

Fig. 3. Time series of precipitation (a, f), fractional
water index (FWI) (b,g), LPRM VOD (c,h), LPDR
VOD (d,i) and VODday/VODnight for one forested site
(Wister (longitude: 94.68778, latitude: 34.98426),
64% forest coverage) and one non-forested site
(Blackwell (longitude: 97.25452, latitude:
36.75443), 0.3% forest coverage) for the year 2005.
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ratio between VODday and VODnight, the residuals still contain leaf
water potential information. Results from both VOD datasets are con-
sistent with each other.

When we extend this analysis to all Mesonet sites, VODday/VODnight

estimates from two datasets shows strong correlations for most of sites
(r=0.4 ±2 0.17, P < 0.01 for 88 out of 94 sites). Around two thirds of
the sites (64 out of 94 for LPRM and 52 out of 94 for LPDR) show
negative correlations between VODday/VODnight and soil matric

potential (Fig. 8). When comparing these two datasets against each
other, VODday/VODnight from both datasets have similar correlation
coefficients (Fig. 8c). However, the regression slopes are slightly greater
for LPRM than for LPDR, consistent with our two-site analyses shown in
Fig. 7. Forested and non-forested sites do not exhibit a significant dif-
ference in terms of both correlation coefficients and regression slopes.

4. Discussion and conclusions

Both leaf water potential and aboveground biomass change over
time, and their variations are not fully independent from each other,
making it difficult to interpret the information embedded in VOD var-
iations during soil moisture dry-down events. By investigating the
midnight VOD variations during the dry-down periods, which corre-
spond to a relatively larger change in ΨL (from close to 0 to very ne-
gative), NDVI shows higher correlation with VOD than ΨL, and exhibits
a larger contribution to the variation of VOD for most sites. Our results
are consistent with a recent study using the direct measurements of pre-
dawn leaf water potential (Momen et al., 2017).

Since AGB contributes a large proportion of temporal variation in
VOD even during the dry-down periods when the soil water potential
changes enormously, failing to account for AGB variations directly af-
fects the retrieval of the ecosystem iso/anisohydricity (Fig. 1). For
temperate ecosystems or ecosystems with strong seasonality, the VOD
variation is thus dominated by the phenology of the vegetation. Pre-
vious methods (e.g., Konings and Gentine (2017) and Li et al. (2017))
that use the regression between midday and midnight VOD observa-
tions would exert stronger linear correlation in these regions, resulting
in a prediction of more anisohydric ecosystem (regression slope ≈ 1)
(Fig. 1c). While for evergreen ecosystems, the VOD variations in time
are less affected by the change of AGB; the uncertainty of VOD as well

Fig. 4. Comparison between (a) the model coefficient of determination (R2), (b)
NDVI coefficient (β or κ) and (c) ΨL coefficient (γ or ι) for ΨL&NDVI model,
NDVI model and ΨL model for both LPRM VOD and LPDR VOD. Since both VOD
and NDVI are unitless, the unit for NDVI coefficient is also unitless and the unit
for ΨL coefficient is (MPa−1).

Fig. 5. Comparison between the contribution from NDVI, ΨL and the combined
effect of NDVI and ΨL ( ×Ψ NDVIL ) for the ΨL&NDVI model for forested
(green), non-forested (brown) and all sites (white). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 6. Comparison of model performance (upper panel) and predictor con-
tribution (bottom panel) between BRT model and linear model. Each point in
(a) and (b) represents the model fitted based on all dry-down events for one site.
Each point in (c) and (d) represents the contribution of either ΨL (blue) or NDVI
(green) for one site. The blue and green dots with horizontal and vertical bars
indicate the average and standard deviation of contribution from all sites. Left
column uses VOD from LPRM and right column uses VOD from LPDR. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the Web version of this article.)
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as the change in ΨL may contribute to a larger proportion of the VOD
variation, leading to a prediction of more isohydric ecosystem. Recent
studies suggested that at the species level, the iso/anisohydricity may
be unrelated to vegetation seasonality (Braga et al., 2016; Cardoso
et al., 2015). Therefore, the contribution of AGB to VOD should be
eliminated when estimating ecosystem iso/anisohydricity. We suggest
that using the ratio of VODday/VODnight and its response to soil water
potential is a better indicator of iso/anisohydricity as it is unaffected by
changes in biomass.

For isohydric species, plants tend to maintain a constant daytime
leaf water potentials against decreasing soil water potential (Martínez-
Vilalta and Garcia-Forner, 2017; Martínez-Vilalta et al., 2014). There-
fore, the VODday/VODnight ratio increases when soil dries down
(Fig. 9a). For anisohydric species, the daytime leaf water potential
decreases along with the decreasing soil water potential, and we expect
to see the ratio to be constant or slightly decreasing with soil dry-down
(Fig. 9c). Subsequently, the regression slope between VODday/VODnight

vs. root zone soil water content can be used as a new metric for eco-
system iso/anisohydricity. Our mathematical derivation also demon-
strates the direct linkage between this new metric and the widely used
“σ”. The metric derived for 94 Mesonet stations is also highly consistent
using both VOD datasets (Fig. 8d). This indicator has the advantage
over previous ones by taking the dynamic change in AGB into con-
sideration. Using two Mesonet sites as examples, Blackwell shows a
negative regression slope and can be regarded being more isohydric,
while Wister exhibits a positive regression slope corresponding to a
more anisohydric behavior (Fig. 7). These estimates are also consistent
with the species composition of the two sites. Oak in Wister is more
anisohydric while maize in Blackwell tend to be more isohydric
(Tardieu et al., 1993; Yi et al., 2017).

However, as has been shown in our results section, a proportion of
variations in VOD cannot be explained by either the AGB or the WC.
These unexplained variations may be related to the uncertainty of the
VOD retrieval or the linearity assumptions used (see detailed descrip-
tion in Method Section 2.1 and 2.4). Considering the natural spatial
heterogeneity of soil moisture (due to landscape and rainfall hetero-
geneity), the Mesonet measured soil matric potential may not accu-
rately represent the average conditions for the VOD pixel. This mis-
match of measurement footprint also contributes to the uncertainties in
our analysis. Different VOD retrieval methods (LPRM or LPDR) does not
show significant improvements in reducing these uncertainties. These
uncertainties directly affect the calculation of the VODday/VODnight

ratio, and further the regression slopes. It should be noted that similar
to previous studies, the metric proposed in this study is also affected by
the microwave band used for VOD retrieval. The higher frequency
microwaves penetrate less in the vegetation canopy and can reflect the
changes of water mostly in the upper canopy (Jones et al., 2011;
Konings and Gentine, 2017; Momen et al., 2017; Tian et al., 2018), but
they are also more sensitive to rainfall and dew. With decreasing mi-
crowave frequency, VOD contains more information of the total vege-
tation water in the branches and stems, as well as the understory ve-
getation; the relative sensitivity to the leaf water content decreases, and
so will the model performance. Due to limitations in data availability,
the model presented in this study is not tested using even higher fre-
quency VOD dataset (e.g., K-band at 19 GHz). This can be done in fu-
ture studies. In addition, this metric requires root-zone soil moisture
estimates that cannot be directly derived from concurrent active and
passive remote sensing. This limits its application at a regional or global
scale. However, with the extensive soil moisture measurements net-
works (e.g., International Soil Moisture Network (ISMN), FLUXNET),
ecosystem iso/anisohydricity can be effectively retrieved at these sites
where leaf water potential measurements are missing. Lastly, recent
development in satellite remote sensing and data assimilation techni-
ques will also improve the accuracy of global root-zone soil moisture
datasets and help generate contiguous dataset.

A global iso/anisohydricity dataset is important for understanding

Fig. 7. Responses of VODday/VODnight from LPRM (a, c) and LPDR (b, d) during
soil dry-down events. One forest site (Wister, left column) and one non-forest
site (Blackwell, right column) are shown as examples. Wister is located in the
southeast Oklahoma and is dominated by oak forest (Diamond and Elliot,
2015); Blackwell is dominated by cropland with maize occupies 24% of the
VOD pixel ( ° × °0.25 0.25 ) according to the cropland data layer (CDL-USDA)
dataset (https://nassgeodata.gmu.edu/CropScape/). The red lines represent the
linear regression, and the blue dashed lines represents the 95% confidence in-
tervals for the regression. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Relationship between the soil matric potential and the daytime VOD/
nighttime VOD from LPRM (a) and LPDR (b). Each line represents the regres-
sion for one site. Solid lines indicate the regression is significant with a P-value
of 0.05. Comparison between the two VOD datasets in terms of correlation
coefficient (c) and regression slope (d).
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ecosystem responses to drought and climate change, and further in-
corporate hydraulic processes into land surface models. By comparing
two VOD datasets against the soil matric potential from the Mesonet
stations with various vegetation and climate condition, our results
suggest that the use of VOD to estimate ecosystem iso/anisohydricity is
hindered by the fact that VOD variation is dominated by AGB. A new
metric is proposed and is not affected by the seasonal variation of AGB.
Since a global estimate of leaf water potential is not possible at present,
increasing the VOD dataset accuracy and obtaining a global root-zone
soil water potential (or soil water content) is imperative to get better
ecosystem iso/anisohydricity estimates. More in situ and high frequency
observations of leaf water potential are also needed to directly validate
the VOD sensitivity to AGB and leaf water potential and the iso/ani-
sohydricity derived from different methods.
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