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A B S T R A C T

The rampant encroachment of Spartina alterniflora into coastal wetlands of China over the past decades has
adversely affected both coastal ecosystems and socio-economic systems. However, there are no annual or multi-
year epoch maps of Spartina saltmarsh in China, which hinders our understanding and management of Spartina
invasion. In this study, we selected Chongming island, China, where Spartina saltmarsh had expanded rapidly
since its introduction in the 1990s. We investigated phenology of Spartina, Phragmites and Scirpus saltmarshes,
and the time series vegetation indices derived from Landsat images showed that Spartina saltmarsh did not
green-up in April–May and stayed green in December–January, which differed from the phenology of Phragmites
and Scirpus saltmarshes. We developed a pixel- and phenology-based algorithm that used time series Landsat
data to identify and map Spartina saltmarsh, and we applied it to quantify the temporal dynamics (expansion and
removal) of Spartina saltmarsh on Chongming island during 1995–2018. The resultant maps showed that
Spartina saltmarsh area on Chongming island increased from ~4 ha in 1995 to ~2067 ha in 2012 but dropped
substantially to ~729 ha in 2016 after a large-scale ecological engineering project (US$ 186 million) was started
to remove Spartina during 2013–2016. Chongming island still had ~1315 ha Spartina saltmarsh in 2018, and
majority of it was distributed outside the Chongming Dongtan National Nature Reserve, which could serve as the
sources for reinvasion in the near future. This study demonstrates the feasibility of using time series Landsat
images, pixel- and phenology-based algorithm, and GEE platform to identify and map Spartina saltmarsh over
years in the region, which is useful to the management of invasive plants in coastal wetlands.

1. Introduction

Biological invasion has been one of the most crucial ecological is-
sues in the coastal wetlands worldwide (Mao et al., 2019; Vaz et al.,
2018). Spartina alterniflora (hereafter, Spartina), a C4 grass growing
primarily in the Atlantic coastal regions of North America, was first
introduced to China in December 1979 (Zuo et al., 2012). The original
purpose of Spartina introduction to China was for soil amelioration,
tidal reclamation and erosion mitigation (Li et al., 2009; Lu and Zhang,
2013; Xiao et al., 2010). However, with its high survivability and strong
adaptability, introduced Spartina has been well established in the in-
tertidal zones and become a dominant species in saltmarshes in China

(Wan et al., 2014). As time passed, the overwhelming spread of Spartina
populations threatened the coastal environments by altering the es-
tuarine sediment dynamics, outcompeting native plant species, and
reducing bird biodiversity due to losses of food resources and feeding
habitats. China has the largest area of exotic Spartina (Liu et al., 2018).
In 2003, Spartina was listed as one of the most harmful invasive plants
by the Ministry of Environmental Protection of China (Chung, 2006).
Accurate, consistent, and comprehensive records of Spartina saltmarsh
in China are urgently needed for ecological management and coastal
ecosystem conservation. However, to date, no datasets of Spartina
saltmarsh at high spatial resolution and annual temporal resolution in
China are available to the stakeholders and public.
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Remote sensing is an effective tool for ecological monitoring and
management of invasive plants (Bradley, 2014; Wang et al., 2017). Image
data from satellite and airborne sensors, coupled with geographic in-
formation systems (GIS) and advanced cloud computing system, offer re-
searchers viable tools to detect and monitor the distribution of invasive
plants. Table 1 provides a brief summary on Spartina saltmarsh classifica-
tion and mapping over the past two decades. One approach is to carry out
visual interpretation and digitalization of single or multi-date images and
generate Spartina saltmarsh maps (Liu et al., 2017; Wan et al., 2014; Zhang
et al., 2004). This approach is labor-intensive and time-consuming, and the
resultant maps often have large uncertainty when images from different
acquisition dates are used or interpreted by different researchers. The
second approach is to use single or multi-date hyperspectral or multi-
spectral optical images, calculate the spatial statistics of spectral bands,
vegetation indices and texture in these images, and apply supervised or
unsupervised classification algorithms (e.g., maximum likelihood, random
forest, support vector machine) to generate Spartina saltmarsh maps (Liu
et al., 2016; Lu and Zhang, 2013; Mao et al., 2019). Many studies used
Landsat images (Liu et al., 2018; Zhang et al., 2017) and selected one to
multiple images based on image quality and other factors (e.g., tidal level).
Because of large tidal dynamics and many human activities, the resultant
maps of Spartina saltmarsh from the analyses of single or multi-date images
in a year also have large uncertainty. To date, most of previous studies
generated Spartina saltmarsh maps at either specific year(s) or small study
region(s). The third approach is to use time series data of individual pixels,
calculate the temporal statistics of spectral bands and vegetation indices in
the pixels, and apply decision trees or rule-based algorithms to generate
annual maps of Spartina saltmarsh. Phenological differences of plant spe-
cies, which are documented in the time series data of spectral bands and
vegetation indices, are carefully studied and the unique phenological fea-
tures are identified, selected and used for classification of individual pixels.
In recent years, the pixel- and phenology-based algorithms have been used
in a number of studies for crops, tree plantations, coastal tidal flats and
coastal vegetation (Dong et al., 2016; Helman et al., 2015; Kou et al., 2015;
Wang et al., 2018).

Gao and Zhang (2006) and Ouyang et al. (2013) conducted in-situ field
studies to collect hyperspectral data of coastal saltmarshes on Chongming
island, Shanghai, China over different seasons and they found that Spartina
has unique spectral characteristics that are different from other native
saltmarsh plants in spring and fall seasons. In all multi-spectral bands and
vegetation indices, Normalized Difference Vegetation Index (NDVI) in the
senescence stage was considered to be useful for identifying Spartina salt-
marsh (Ouyang et al., 2013). The phenological information of coastal
saltmarshes acquired from field studies provide valuable reference but is
hardly to be used at large spatial scale. There are also some studies that
used monthly NDVI data from the China GaoFen-1 satellite and China
Huanjing-1 satellite to identify and map coastal saltmarshes (Ai et al.,
2017; Sun et al., 2016), and NDVI in the senescence stage (November to
mid-December) and the green-up stage (late April–May) was recognized as
an useful indicator for identifying Spartina saltmarsh (Ai et al., 2017). Al-
though these efforts have presented the significance of unique phenological
stages for identifying Spartina saltmarsh, the developed methods faced
challenges in the extension of the resulting classifiers and parameters and
the high cost of commercial satellite images. Landsat imagery at 30-m
spatial resolution over the period of 1984-present (Wulder et al., 2019;
Wulder et al., 2016) is an undoubtedly suitable data source for mapping
long-term dynamics of Spartina saltmarsh. One pilot study evaluated the
potential of time series Landsat images in 1984–2015 to track Spartina
saltmarsh dynamics within the three pixels (500-m spatial resolution) of
the Moderate Resolution imaging Spectroradiometer (MODIS) in the Yan-
cheng Coastal Wetland Nature Reserve, Jiangsu province, China (Wu et al.,
2018). However, the potential of time series Landsat images in tracking the
phenological differences between Spartina and other native saltmarsh
plants has not been fully assessed. Documenting the long-term and large-
scale dynamics of Spartina saltmarsh would need to process a large volume
of satellite images, which requires advanced and efficient computerTa
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processing power. To develop a mapping tool that uses time series Landsat
images, a pixel- and phenology-based algorithm, and the Google Earth
Engine cloud computing platform to quantify and monitor the dynamics of
Spartina saltmarsh over years would certainly address such needs.

In this study, we addressed the following questions: (1) what are the
phenological differences between Spartina and other native saltmarsh
plants as observed by time series Landsat images? (2) Do the time series
Landsat images suffice to track phenology of Spartina and other native
saltmarsh plants over years? (3) Is the phenology-based mapping algo-
rithm with time series Landsat images reliable to discriminate Spartina
saltmarsh from native saltmarshes? As a pilot and methodological study,
we selected the Chongming island in the Yangtze River estuary, Shanghai,
China, as case study area, which is the largest alluvial island in the world
and has experienced both expansion and removal of Spartina in recent
decades. The specific objectives of this study are: (1) to better understand
the phenological characteristics of Spartina and other native saltmarsh
plants on Chongming island with time series Landsat images; (2) to de-
velop and evaluate a pixel- and phenology-based algorithm that uses time
series Landsat images to effectively discriminate Spartina saltmarsh from
other saltmarshes; and (3) to quantify the spatial-temporal dynamics of
Spartina saltmarsh on Chongming island since the 1990s, which could
illustrate the expansion dynamics of Spartina saltmarsh from the 1990s to
2000s and assess the effectiveness of the ecological restoration project to
control and remove Spartina in the 2010s. The resultant maps of Spartina
saltmarsh on Chongming island could be used to support conservation
efforts and decision-making in Shanghai and the Yangtze River estuary.
The resultant mapping tools could also be readily applied (and modified if
needed) to identify and map Spartina saltmarsh in other coastal wetlands
in China.

2. Materials and methods

2.1. Study area

Chongming island is part of the megacity Shanghai, China (31°27′-
31°5 l'N, 121°09′-121°54′E), and is located at the mouth of Yangtze
River (Fig. 1). It is the largest alluvial island in the world and covers an
area of about 1267 km2. It has a typical subtropical monsoon climate
with an annual mean temperature of about 15.3 °C and annual mean

precipitation of about 1022 mm. The eastern fringe of Chongming is-
land is the Chongming Dongtan National Nature Reserve (hereafter,
CDNNR), one of the largest nature reserves for migratory birds in
Eastern Asia (Hu et al., 2015). The CDNNR was listed in the Chinese
Protected Wetlands report in 1992, recognized as the Wetland of In-
ternational Importance under the Ramsar Wetlands Convention in
2001, and designated as a National Nature Reserve for migratory bird
conservation in 2005 (Xiao et al., 2010). The total area of the CDNNR is
about 242 km2, accounting for 20% of Chongming island area.

The commonest native plants in the study area are Phragmites aus-
tralis (hereafter, Phragmites), Scripus mariqueter (hereafter, Scirpus) (Sun
et al., 1992). In 1995, Spartina was first spotted in the north of the
CDNNR. In an effort to reclaim more land for regional development by
accelerating siltation, Spartina was intentionally planted in the CDNNR
in 2001 (337 ha) and 2003 (542 ha), respectively (Wang, 2011). In
2007, the area of Spartina saltmarsh in Shanghai ranked third among all
Spartina-invaded megacities and provinces in China, and the area of
Spartina saltmarsh in Shanghai, Jiangsu, Zhejiang and Fujian accounted
for 94% of the total area in China (Zuo et al., 2012).

In order to avoid the adverse effects of Spartina encroachment,
Shanghai government had invested about ¥1.3 billion Chinese Yuan
(US$ 186 million) to carry out an ecological restoration project (here-
after, DEPA) in the CDNNR since 2013 (Fig. 1a). The project had three
major components: ecological eradiation of Spartina, restoration of
native saltmarsh plant communities, and reconstruction of bird habitats
(Tang, 2016). Its preliminary work was started in December 2010 and
various technical methods were tested and evaluated during
2011–2012 in one demonstration area (~4 km2). Large-scale restora-
tion work was launched in December 2013, covering a total area of
24.19 km2. The project region was enclosed with artificial levee for
eradicating Spartina through cutting the plants and flooding the mar-
shes (Hu et al., 2015).

2.2. Data

In this study we used time series Landsat datasets, images from
Google Earth, and in-situ data to identify and map Spartina saltmarsh on
Chongming island, and Fig. 2 shows the dataflow and workflow for
image processing and classification.

Fig. 1. The location of the Chongming island, Shanghai, China. It is within Landsat scene (path/row 118/38 and 119/38). (a) The locations of three field sites for
Spartina (121.9481°, 31.5523°), Phragmites (121.9101°, 31.4531°) and Scirpus (121.9863°, 31.4932°) are shown, which were used for spectral signature analysis; (b, c,
d) zoom-in view of landscapes from a very high spatial resolution image in the Google Earth (dated as 2012/11/01); and (e, f, g) field photos taken in August 2015 at
the three field sites.
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Fig. 2. The workflow for the pixel- and phenology-based Spartina saltmarsh mapping in this study.

Fig. 3. The annual distributions of number of Landsat images (a) by sensors (Landsat5 TM, Landsat7 ETM+, and Landsat8 OLI), (b) by seasons (spring, summer,
autumn, and winter), and percentage of pixels with various numbers of good-quality observations in April–May (c) and December–January (d) on Chongming island
during 1995–2018.
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2.2.1. Landsat data and preprocessing
The study area is covered by 2 paths/rows (P118R38 and P119R38)

of the Landsat Worldwide Reference System (WRS-2) (Fig. 1). We used
all the available Landsat 5/7/8 surface reflectance (SR) products be-
tween January 1, 1995 and January 1, 2019, which have been archived
in Google Earth Engine (GEE), a popular cloud computing platform for
planetary-scale remote sensing analysis (Gorelick et al., 2017). The SR
datasets have been atmospherically corrected through Landsat Eco-
system Disturbance Adaptive Processing System (LEDAPS) algorithm
and Landsat Surface Reflectance Code (LaSRC) algorithm, respectively
(Masek et al., 2006; Vermote et al., 2016). The bad-quality observa-
tions, including clouds, cirrus, and cloud shadows were identified, ac-
cording to the pixel quality assessment (pixel_qa) generated from the
CFMask algorithm (Zhu and Woodcock, 2012). All the Landsat image
pre-processing tasks were carried out on the GEE platform. Fig. 3 shows
the annual distributions of all the available Landsat images by sensors
(Fig. 3a) and by seasons (Fig. 3b) during 1995–2018. We also counted
the numbers of good-quality observations of individual pixels in
April–May (Fig. 3c) and in December–January (Fig. 3d) in each year
during 1995–2018. The majority of pixels had at least one good ob-
servation in April–May (> 93.7% pixels) and in December–January (>
93.9% pixels) during 1995–2018.

The time series Landsat SR data with good-quality observations
were used to calculate three vegetation indices (VIs): Normalized
Difference Vegetation Index (NDVI) (Tucker, 1979), Enhanced Vege-
tation Index (EVI) (Huete et al., 2002), and Land Surface Water Index
(LSWI) (Xiao et al., 2005). NDVI is closely related to leaf area index
(LAI), and EVI is more responsive to chlorophyll content in the canopy.
Both NDVI and EVI are widely used in the studies of land surface
phenology (Zhang et al., 2003). LSWI is a spectral indicator of canopy
and soil moisture, and a change from positive LSWI value to negative
LSWI value is used to represent a state of change from green leaf to
senescent leaf (Xiao et al., 2009). These three vegetation indices are
calculated using following equations:

=
+

NDVI NIR Red

NIR Red (1)

= ×
+ × × +

EVI 2.5
6 7.5 1

NIR Red

NIR Red Blue (2)

=
+

LSWI NIR SWIR

NIR SWIR (3)

where ρBlue, ρRed, ρNIR, ρSWIR are the surface reflectance values of blue
(450–520 nm), red (630–690 nm), near-infrared (NIR: 760–900 nm),
and shortwave-infrared (SWIR: 1550–1750 nm) bands.

2.2.2. In-situ field survey data for training
We collected and organized in-situ data from different sources. First,

two major field surveys on Chongming island were carried out in mid-
July of 2012 and August to September of 2015, taking many GPS field
photos. Second, a transect perpendicular to the levee through east to
west was established in 2005, and nowadays there are totally five
transects in the CDNNR. Those transects provided frequent vegetation
information and geo-referenced field photos. According to field photos
and very high spatial resolution (VHSR) imagery from Google Earth
(GE) around 2012, we selected and digitized the training Region of
Interests (ROIs) (Fig. 1). Although some field photos were taken in
2015, they also offered useful references to vegetation types through
visual interpretation. We collected training ROIs across the Spartina
saltmarsh (17 ROIs with a total of 610 pixels) and other saltmarshes
dominated by Phragmites and Scirpus (10 ROIs with a total of 68 pixels).

2.3. Phenology of Spartina and other saltmarshes on Chongming island

We collected time series in-situ phenological observations in

2018–2019 for one Spartina site from an automated digital camera
(Brinno BCC200). The camera has high performance HDR video sensor
that generates a real time-lapse video at 5-second interval. We selected
one photo with best quality per month to construct the growth cycle of
Spartina, which serves as reference to interpret the time series Landsat
data in tracking saltmarsh vegetation phenology (Fig. S1). According to
the ground observation, Spartina starts to green-up in late April, grows
rapidly from June to early September, and senesces in late December.

Time series VIs derived from Landsat 5/7/8 images from 2008 to
2012 were used to depict the seasonal dynamics and interannual var-
iation of three saltmarsh types at the pixel scale. We selected three sites
(Fig. 1a), which were dominated by Spartina, Phragmites and Scirpus
saltmarshes during 2008–2012, respectively, according to the field
photos and VHSR images in GE (Fig. 1b-g). Phragmites and Scirpus
saltmarshes are the main native saltmarsh communities. The seasonal
dynamics of vegetation indices of Spartina saltmarsh differed from those
of Phragmites and Scirpus saltmarshes in two periods (Fig. 4): (1) April to
May (spring; plant green-up) and (2) December to January (winter;
plant senescence). The detailed phenological analysis for these three
saltmarshes is given in Section 3.1.

2.4. A pixel- and phenology-based algorithm for identifying and mapping
Spartina saltmarsh

The workflow diagram for identifying and mapping spatial-

Fig. 4. The seasonal dynamics of Landsat (TM/ETM+/OLI)-derived vegetation
indices (a) NDVI, (b) EVI, and (c) LSWI at the three Spartina, Phragmites and
Scirpus saltmarsh sites during 2008–2012. The landscapes of these three salt-
marsh sites are shown in Fig. 1a.
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temporal dynamics of Spartina saltmarsh on Chongming island during
1995–2018 is given in Fig. 2. For each year, we first delineated the
intertidal zone, which stretches between the low-tide waterline, mud-
flats, wetland, and high-tide waterline. Second, we identified and
mapped the coastal vegetation area. Third, we identified Spartina salt-
marsh from other saltmarshes among the coastal vegetation maps. Since
the ecological project was started in 2013, we used 2012 as the baseline
year to first produce the intertidal zone, coastal vegetation area, and
Spartina saltmarsh maps. We generated annual maps of Spartina salt-
marsh during 1995–2018, and used them to analyze the expansion
process (1995–2012) and removal dynamics (2013–2018) of Spartina
saltmarsh on Chongming island. The detailed procedure is described
below.

2.4.1. Delineating intertidal zone
Spartina encroachment into native saltmarshes is the main focus in

this study, thus we are more concerned with the vegetation distributed
in the intertidal zone. We delineated the coastline by visual inter-
pretation and manual digitization of very high spatial resolution
images, and then excluded the inland area by specifying intertidal
buffer zone. A 6-km outward coastline buffer zone was generated to
delineate the intertidal range. The boundary of buffer zone was mod-
ified in some regions where the border intersects with Jiangsu province
and two southern islands (Hengsha island and Changxing island).
Delineation of intertidal zone as potential distribution regions was the
first step to assist for Spartina saltmarsh extraction.

2.4.2. Identifying coastal vegetation area
Effective discrimination of Spartina saltmarsh starts with the accu-

rate coastal vegetation maps. In an earlier study, we had developed a
decision tree classification algorithm for mapping coastal vegetation in
China, based on Landsat TM/ETM+/OLI imagery (Wang et al., 2018;
Wang et al., 2020). As a follow-up work, we produced coastal vegeta-
tion maps of Chongming island using the same algorithm. Individual
good-quality observations in a year were first identified as green ve-
getation or not, using Eq. (4), and then vegetation frequency in a year is
calculated, using Eq. (5).

= >Vegetation NDV EVI LSWII 0.2 0.1 0 (4)

=VF
N

N
Vegetation

Good (5)

where VF is green vegetation frequency scaled to 0 and 1 for a pixel in a
year, NVegetation is the number of observations identified as green vege-
tation in a year, NGood is the number of good-quality observations in a
year. The frequency threshold value of 0.05 was used to classify a pixel
as coastal vegetation area (VF ≥ 0.05) or non-vegetated area such as
tidal flats (VF < 0.05) (Wang et al., 2018; Wang et al., 2020). The
resultant annual coastal vegetation maps on Chongming island were
used as the baseline map for the phenology-based identification and
mapping of Spartina saltmarsh in the next step.

2.4.3. Identifying Spartina saltmarsh
As an invasive plant with high competitiveness, Spartina could ra-

pidly dominate and replace the native saltmarsh communities, forming
large patches on the ground. A pixel- and phenology-based algorithm
was developed for Spartina saltmarsh mapping based on 30-m Landsat
data. The two key phenology features of Spartina saltmarsh (Fig. 4)
were used in the phenology-based algorithm: (1) later green-up in
spring and (2) later senescence in winter. In April–May, Spartina salt-
marsh had low NDVI, EVI and LSWI values, while the other saltmarshes
(Phragmites and Scirpus) started to green-up with higher VIs values
especially in LSWI (> 0). We calculated the mean value of LSWI during
April to May (LSWImean(Apr-May)) for individual pixels, and the histo-
gram suggested that LSWImean(Apr-May) less than 0 could discriminate
Spartina from the other saltmarshes (see Section 3.1 for more details). In

December–January, NDVI and EVI showed large differences between
Spartina and the other two saltmarshes. The relatively high NDVI (>
0.2), EVI (> 0.1) and LSWI (> 0) values at the Spartina pixels re-
presented green vegetation signal, which was another critical indicator
to identify Spartina saltmarsh. The green vegetation here is consistent
with the concept presented in Section 2.4.2. We counted the number of
observations that were identified as green vegetation in De-
cember–January and calculated the green vegetation frequency (VFDec-
Jan). Approximately 99% of Spartina saltmarsh pixels had VFDec-Jan > 0
(see Section 3.1 for more details). Therefore, the decision rules for
identifying Spartina saltmarsh from the coastal vegetation map were
LSWImean(Apr-May) ≤ 0 and VF(Dec-Jan) > 0, as shown in Eq. (6).

= >Spartina saltmarsh LSWI VF0 0ean Apr May Dec Janm ( ) ( ) (6)

where LSWImean(Apr-May) is the mean value of LSWI in April–May, and
VF(Dec-Jan) is the green vegetation frequency in December–January,
calculated as the ratio of the number of observations identified as green
vegetation to the number of good quality observations in De-
cember–January, similar to Eq. (5).

2.5. Accuracy assessment of the Spartina saltmarsh maps

For the validation datasets we first used the stratified random
sample function in GEE to define and collect samples. When the sample
size in each category is in proportion to the surface area of that cate-
gory, the accuracy assessment is reliable (Olofsson et al., 2014; Olofsson
et al., 2013). As Spartina saltmarsh and the other saltmarshes (Non-
Spartina) had comparatively similar-sized areas, we set the same
number of random points (100 points) for both categories. Next, the
validation ROIs were delineated with a 30-m circle buffer of the random
sampling points in ArcGIS, exported as Keyhole Markup Language
(KML) file, and loaded into Google Earth. The VHSR imagery in GE is an
effective data source to validate the land classification results (Huang
et al., 2010; Kennedy et al., 2010). We inspected each ROI through
visual interpretation of VHSR images and the geo-referenced photos.
The ROIs without clear land cover information due to unavailable re-
ference or cloud interference were excluded. In the VHSR images, the
Spartina patches could be clearly identified from their clumpy config-
uration (Fig. 1b). Owing to the high invasion rate, the spatial dis-
tribution of Spartina saltmarsh was subject to interannual variation,
making it necessary to take an annually intensive accuracy assessment.
However, because of the limited numbers of VHSR images and field
photos, we only assessed the accuracies of mapping results in four years
(i.e., 2012–2014, and 2016). The total number of validation samples for
Spartina and Non-Spartina were 71 and 61 in 2012, 75 and 80 in 2013,
82 and 86 in 2014, 61 and 91 in 2016, respectively (Fig. S2). The
confusion matrix of Spartina saltmarsh maps was calculated to estimate
the accuracy of the maps. Following the previous study (Olofsson et al.,
2013), we adjusted accuracies of the resultant maps by considering the
area of each category, and the area estimates were also corrected based
on the area-adjusted accuracies.

2.6. Comparison with other available Spartina saltmarsh datasets

Besides the validation by in-situ data and VHSR images, a compar-
ison between our Landsat- and phenology-based Spartina saltmarsh
maps and other Spartina saltmarsh datasets would be informative.
Unfortunately, no other Spartina saltmarsh maps are available to the
public for spatial comparison. A couple of publications reported only
the area estimates of Spartina saltmarsh, thus we did the areal com-
parison in this study. The Resource Monitoring Reports from Shanghai
Chongming Dongtan National Nature Reserve were published annually
during 2006–2015, and provided data of plants, macrobenthos, zoo-
plankton, fishes, and waterfowl (http://www.dongtan.cn/). In most
cases, they analyzed either satellite images (e.g., HJ-1a/b and ZY-02C/
3) or airborne images with maximum likelihood supervised

X. Zhang, et al. Remote Sensing of Environment 247 (2020) 111916

6

http://www.dongtan.cn/


classification method for monitoring and reporting the dominant plant
communities. The classification results were corrected with field survey
data and validated by various sources (e.g., aerial photos) with an ac-
curacy over 85%.

3. Results

3.1. Phenology of Spartina saltmarsh as observed by Landsat time series
images

We combined all the available good-quality observations during
2008–2012 at three sites (Fig. 1a) to show the seasonal dynamics of
NDVI, EVI and LSWI of Spartina, Phragmites and Scirpus saltmarshes
(Fig. 4). In winter, NDVI and EVI values at these three sites were very
low and in similar range during February–March. In spring, NDVI, EVI
and LSWI values at the Phragmites site rose substantially during late
April-early May, which were driven by new leaf flush and rapid growth
of leaves. LSWI values at the Scirpus site also rose substantially in late
April-early May. In comparison, NDVI, EVI and LSWI values at the
Spartina site remained to be very low in late April-early May, including
LSWI remained negative value (< 0). The seasonal dynamics of NDVI,
EVI and LSWI in spring season suggested that Phragmites and Scirpus
started to green-up in late April and early May, and Spartina started to
green-up in late May. The Phragmites and Scirpus saltmarsh sites reached
their highest NDVI, EVI and LSWI values in the early summer, but
NDVI, EVI and LSWI values at the Spartina saltmarsh site peaked at the
late summer. NDVI and EVI values at the Phragmites and Scirpus sites
dropped substantially by November–December, reaching NDVI < 0.2
and EVI < 0.1, which were driven by leaf senescence. In comparison,
the Spartina site still remained green in November–December, having
relative higher NDVI (> 0.2) and EVI (> 0.1) values. The seasonal
dynamics of NDVI, EVI, and LSWI in fall and winter seasons suggested
that Pragmites and Scipus started to experience leaf senescence in

November and December, and Spartina did not enter senescence until
January of the next year. These phenological characteristics as observed
by three vegetation indices suggested that April–May and De-
cember–January are two temporal periods that we can use Landsat
images to separate Spartina saltmarsh from Phragmites and Scirpus
saltmarshes on Chongming island.

Fig. 5 shows the relationships between greenness-related indices
(NDVI, EVI) and water-related index (LSWI) in spring (April–May) and
winter (December–January) during 2010–2012 based on the training
dataset (see 2.2.2 section). In spring, most observations of the Spartina
saltmarsh pixels had negative LSWI values, while most observations of
the other saltmarshes (Pragmites and Scirpus) pixels had positive LSWI
values (Fig. 5a-b). In winter, most observations of the Spartina salt-
marsh pixels had NDVI values greater than 0.2, EVI values greater than
0.1, and LSWI values greater than 0, while most observations of the
other saltmarshes pixels had NDVI values smaller then 0.2 and EVI
values smaller than 0.1 (Fig. 5c-d). These scatterplots also illustrated
the potential to separate Spartina saltmarsh from the other two native
saltmarshes by vegetation indices in the spring and winter seasons.

We also used the training data and the histograms to explore and
visualize the separability between Spartina and the other two salt-
marshes in spring (April–May) and winter (December–January) during
2010–2012 (Fig. 6). In April–May, LSWI was a more effective indicator
than NDVI and EVI for identifying Spartina saltmarsh (Fig. 6a-c). The
mean value of LSWI in April–May (LSWImean(Apr-May)) indicated that a
threshold of 0 could be used for identifying Spartina saltmarsh (Fig. 6d).
In December–January, NDVI and EVI were more effective indicators
than LSWI for identifying Spartina saltmarsh (Fig. 6e-g). The histogram
of green vegetation frequency in December–January (VF(Dec-Jan))
showed that the threshold of 0 can separate 99.7% of Spartina saltmarsh
pixels (VF(Dec-Jan) > 0) from 98.5% of Non-Spartina saltmarsh pixels
(VF(Dec-Jan) < 0) (Fig. 6h). The results from the training datasets clearly
illustrated phenological differences between Spartina saltmarsh and the

Fig. 5. The two-dimensional scatterplots between greenness-related indices (NDVI, EVI) and water-related index (LSWI) of Spartina and Non-Spartina saltmarshes
based on the training dataset in April–May (spring season) (a, b) and December–January (winter season) (c, d) during 2010–2012.
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other saltmarshes (Phragmites and Scirpus), which were the foundation
for our pixel- and phenology-based algorithm to identify and map
Spartina saltmarsh on Chongming island.

3.2. Annual map of coastal vegetation and Spartina saltmarsh on
Chongming island in 2012

According to the annual map of coastal vegetation and Spartina
saltmarsh in 2012 (Fig. 7), there were 2067, 1312 ha, and 1253 ha
Spartina saltmarsh in 2012 on Chongming island, CDNNR, and DEPA,
respectively. Spartina encroachment mainly occurred in the northern
and northeastern part of Chongming island, which can be seen as two
encroachment clusters (see box 1 and 2 in Fig. 7a). The northern cluster
was located where tidal flats had been expanding outward over years,
and Spartina saltmarsh gradually colonized newly emerging tidal flats.
The northeastern cluster was spatially in line with the artificial Spartina

planting history, accounting for ~56% of the total Spartina saltmarsh
area on Chongming island.

3.3. Accuracy assessment of the Spartina saltmarsh maps

We carried out the accuracy assessment for annual maps of Spartina
saltmarsh in 2012, 2013, 2014, and 2016, based on the availability of
the validation datasets (Table 2). The overall accuracies (OA) were
0.93, 0.94, 0.91, and 0.94, and the Kappa coefficients were 0.86, 0.87,
0.82, and 0.88 in 2012, 2013, 2014, and 2016, respectively. The
Spartina saltmarsh had producer accuracies (PA) of 0.90, 0.91, 0.89,
and 0.92, and user accuracies (UA) of 0.99, 0.96, 0.93, and 0.93 in
these four maps. We also calculated the error-adjusted producer's
(APA), user's (AUA) and overall (AOA) accuracies (Olofsson et al.,
2013). The adjusted OAs (AOA) ranged between 0.90 and 0.94, which
were slightly lower than the unadjusted OAs (0.91–0.94). The adjusted

Fig. 6. The histograms of vegetation indices (NDVI, EVI, and LSWI), LSWImean(Apr-May) and VF(Dec-Jan) of Spartina and Non-Spartina saltmarshes based on the training
dataset in April–May (a-d) and December–January (e-h) during 2010–2012.
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PAs (APA) dropped substantially to 0.70, 0.66, 0.59, and 0.46, re-
spectively. This discrepancy between PA and APA could be explained
by the variation in estimation weights associated with the areas of each
category. We calculated the Spartina saltmarsh mapping areas (Area)
and also error-adjusted estimated areas (EArea) with 95% confidence
interval from these four annual maps. The adjusted areas for Spartina
saltmarsh increased substantially, for example, increasing from 2119 ha
to 3082 ha in 2013 on Chongming island.

3.4. Expansion and removal dynamics of Spartina saltmarsh during
1995–2018

To reduce uncertainties caused by image quality or other factors in
individual years, we aggregated annual maps of Spartina saltmarsh

within multi-year (three to five years) interval and then reported its
maximum extent at multi-year epochs (1995–1999, 2000–2004,
2005–2009, 2010–2012) during 1995–2012, which is considered as
Spartina expansion period before the Spartina removal project was
started in December 2013. Fig. 8a shows the Spartina saltmarsh ex-
pansion dynamics at 30-m spatial resolution in four multi-year epochs.
The spatial-temporal analysis showed that Chongming island experi-
enced a significant Spartina encroachment and expansion in the north
and northeast part. The expansion process of Spartina saltmarsh in the
north and northeast of Chongming island was depicted in spatial detail
(Fig. 8b-c). Spartina saltmarsh had clearly extended into the sea side
over the past two decades, which was in accordance with the trajectory
of tidal flats (Wang et al., 2018). It also showed the opposite direction
of expansion toward high mudflat in some regions, replacing the native

Fig. 7. The coastal vegetation and Spartina saltmarsh maps in 2012 on Chongming island, China. (a) annual map in 2012, (b, c) zoom-in view of two regions labeled
as 1, 2 in (a), respectively.

Table 2
A summary for the accuracy assessment for annual maps of Spartina saltmarsh and the other saltmarshes in 2012, 2013, 2014, and 2016 on Chongming island.
Producer's (PA), user's (UA) and overall (OA) accuracies and error-adjusted producer's (APA), user's (AUA) and overall (AOA) accuracies. This table also shows the
mapped areas (Area) and estimated areas (EArea) with 95% confidence interval.

Year Class PA UA OA Area(ha) APA AUA AOA EArea(ha)

2012 Spartina 0.90 0.99 0.93 2067.26 0.70 0.99 0.90 3173.57 ± 756.83
Non-Spartina 0.98 0.87 1.00 0.87

2013 Spartina 0.91 0.96 0.94 2119.09 0.66 0.96 0.92 3082.16 ± 767.51
Non-Spartina 0.96 0.91 0.99 0.91

2014 Spartina 0.89 0.93 0.91 1809.79 0.59 0.93 0.90 2856.55 ± 755.51
Non-Spartina 0.93 0.90 0.99 0.90

2016 Spartina 0.92 0.93 0.94 728.78 0.46 0.93 0.94 1469.86 ± 691.30
Non-Spartina 0.96 0.95 1 0.95
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saltmarshes such as Phragmites saltmarsh. We calculated the annual,
multi-year, and cumulative areas of Spartina saltmarsh during
1995–2012 in the Chongming island (Fig. 8d), CDNNR (Fig. 8e), and
DEPA (Fig. 8f), respectively. The Spartina encroachment includes three
stages: colonization, rapid expansion, and successful invasion. In the
1990s and early 2000s, Spartina was intentionally planted and naturally
propagated with very small patches that hardly detected from the
Landsat images. Spartina encroachment had entered successful invasion
phase since the mid-2000s and then expanded linearly and con-
tinuously from ~729 ha in 2004 to ~2067 ha in 2012 on Chongming
island (Fig. 8d).

The ecological engineering project of controlling Spartina was im-
plemented in 2013–2016. Based on the experimental results for re-
moving Spartina plants in 2012 at the experimental fields, staff at the
CDNNR used a procedure that first cut Spartina plants at the flowering
stage and then inundate (flood) the fields over 6 months, which would
ensure full death of Spartina plants. The annual Spartina saltmarsh maps
during 2013–2018 showed the spatial-temporal changes of Spartina
saltmarsh (Fig. 9a-f). Spartina saltmarsh area decreased substantially in
the project area (DEPA) during 2013–2016 at the rate of ~440 ha per
year (P< 0.01) (Fig. 9i), which is in line with the project's cutting plan.
According to the reports from the engineering project, Spartina salt-
marsh area was reduced by more than 95% in 2016. The Landsat-based
Spartina saltmarsh maps also showed that the Spartina saltmarsh area
was reduced by ~99% during 2013–2016. The agreement between the
project's report and our Landsat-based analysis demonstrates the po-
tential and capacity of Spartina saltmarsh monitoring by using Landsat
images and the algorithm.

4. Discussion

4.1. Area estimates and spatial-temporal dynamics of Spartina saltmarsh

According to our Landsat-based annual maps of Spartina saltmarsh
on Chongming island during 1995–2012, Spartina saltmarsh area had a
slowly increasing phase in the 1990s and a rapidly increasing phase in
the 2000s (Fig. 8d-f). In our literature review, we found only two stu-
dies that reported Spartina saltmarsh area on Chongming island,
1239 ha in 2003 (Li et al., 2006) and 3132 ha in 2007 (Lu and Zhang,
2013), which were much larger than our estimates. A few studies re-
ported Spartina saltmarsh area in the CDNNR (Huang, 2009; Lin et al.,
2018; Luo, 2019; Wang, 2007), and the area estimates of Spartina
saltmarsh varied among these publications. According to the study by
Wang (2007), Spartina saltmarsh area in the CDNNR was 466 ha in
2000, 579 ha in 2002, 1112 ha in 2003 and 1441 ha in 2004. Another
study by Huang (2009) showed that Spartina saltmarsh area in the
CDNNR was 187 ha in 2000, 932 ha in 2003, 1377 ha in 2008 Spartina
saltmarsh. Spartina saltmarsh area estimates from Lin et al. (2018) was
345 ha in 2000, 1114 ha in 2003, 1184 ha in 2007, 463 ha in 2009 and
837 ha in 2013. In a study of mapping Spartina saltmarsh along the
coastal zones of mainland China, Liu et al. (2018) analyzed 43 Landsat
8 OLI images from 2014 to 2016 and reported 965 ha of Spartina
saltmarsh in the CDNNR in 2015, which is higher than our mapping
result (668 ha) using images from 2015. Ge et al. (2013) developed a
process-based grid model to simulate Spartina expansion in the CDNNR
and reported that Spartina saltmarsh area increased from 107 ha in
2001 to 922 ha in 2006 and then slowed down in 2007–2008. Our

Fig. 8. The expansion dynamics of Spartina saltmarsh during 1995–2012 on Chongming island. (a) spatial distribution of Spartina saltmarsh at multi-year epochs, (b,
c) zoom-in view for the region highlighted by the red box in (a). The annual, multi-year, and cumulative areas of Spartina saltmarsh in the Chongming island (d),
CDNNR (e), and DEPA (f) during 1995–2012. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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results (Fig. 8e) show that the Spartina saltmarsh area continued to
increase linearly up to 2012. The dramatic increase of Spartina salt-
marsh in the 2000s was the result of competitive replacement of native
Phragmites by invasive Spartina, driven by high salinity (Li et al., 2009).
The CDNNR department reported that in 2012 the reserve had a total
area of 4265 ha saltmarshes, including 1958 ha Spartina saltmarsh
(accounting for ~45.9% of the total saltmarsh area), which are ap-
proximately 30% larger than the area estimates from our Landsat-based
annual map in 2012 (1312 ha). However, when we overlaid all annual
maps of Spartina saltmarsh in 2011–2013, the resultant maximum area
of Spartina saltmarsh is 1650 ha. It should be pointed out that the
CDNNR monitoring report classified saltmarsh vegetation by visual
interpretation of very high spatial resolution images (e.g., ZY1-02c), it
included small patches of Spartina saltmarsh, which are likely to be
missed by the pixel-based algorithms and Landsat images.

During those years the ecological engineering project was im-
plemented (2013–2016), our annual maps show that Spartina saltmarsh
area in Dongtan ecological project area (DEPA) dropped linearly and
was 19 ha in 2016 (Fig. 9g). Note that the CDNNR did not report
Spartina saltmarsh area during 2016–2018. To date, our Landsat-based
annual maps during 1995–2018 is the only dataset that documented
annual dynamics of Spartina saltmarsh in the reserve. Our maps also
show that Spartina saltmarsh area outside the CDNNR had large in-
crease in 2015 but large drop in 2016 in the 2015/2016 El Nino year
(Fig. 9). The large drop of Spartina saltmarsh in 2016 was attributed to
the die-back and removal by the CDNNR staff (Ma Qiang, personal

communication from the CDNNR). By comparing the Spartina saltmarsh
maps in 2013, 2016, and 2018 (Fig. 9 and S3), we also found a small
number of newly emerging Spartina saltmarsh patches in 2018. These
newly emerging Spartina invasions in the DEPA and the large Spartina
saltmarsh area outside the CDNNR clearly suggest that the CDNNR and
researchers need to pay close attention to the remaining Spartina po-
pulations and develop a continuous monitoring and management plan
for the CDNNR.

4.2. The potential of the pixel- and phenology-based algorithm for Spartina
saltmarsh mapping

Many studies have used single or multi-date satellite images to
identify and map Spartina saltmarsh in China (Table 1). Most of these
studies calculated the spatial statistics of spectral bands and vegetation
indices and used supervised or unsupervised classification algorithms to
classify Spartina saltmarsh and generate maps of Spartina saltmarsh
(Huang and Zhang, 2007a; Liu et al., 2016; Zhang et al., 2017). The
metrics and parameters in these algorithms are affected by selected
images used in the calculation of the spatial statistics of individual
images, as saltmarsh plants have strong and diverse phenology in a
year. Numerous studies have shown that vegetation phenology can be
well depicted by time series vegetation indices from the MODIS sensors
that acquire images at daily interval (Wu et al., 2017; Zhang et al.,
2006; Zhang et al., 2003). In this study, our results show that there are
reasonable numbers of time series Landsat images, which were acquired

Fig. 9. The removal dynamics of Spartina saltmarsh during 2013–2018 on Chongming island. (a-f) annual maps of Spartina saltmarsh, (g-i) annual area of Spartina
saltmarsh in the Chongming island, CDNNR and DEPA, respectively. The red and blue polygons represent the CDNNR and DEPA boundary. The linear regression
model was applied for the Spartina saltmarsh area data in 2013–2016. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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at 16-day interval, to describe phenology of saltmarshes on Chongming
island, China (Fig. 4). This can also refine the studies that use single or
multi-date images, as researchers could now carry out phenological
analysis of all Landsat images in a year and then select appropriate
images for data analysis.

Our study investigated phenology of Spartina saltmarsh and other
saltmarshes (Phragmites and Scirpus) on Chongming island, and the
unique phenological characteristics of these saltmarshes in spring
green-up and winter senescence stages were identified (Fig. 5). This is
similar to a previous study (Ai et al., 2017) that tracked the phenolo-
gical variations of Spartina and native species by using GF-1 WFV
imagery. We also found that both greenness-related vegetation indices
(NDVI, EVI) and water-related vegetation indices (LSWI) are useful to
separate invasive Spartina saltmarsh from native Phragmites and Scirpus
saltmarshes on Chongming island, which is consistent with our previous
studies that aimed to identify and map inland natural and agricultural
wetlands (Dong et al., 2015; Dong et al., 2016; Xiao et al., 2006; Xiao
et al., 2005). Both NDVI and LSWI were also used in recent studies that
identified and mapped Spartina saltmarsh in China (Liu et al., 2018).

As described in Table 1, we developed a mapping tool that uses time
series Landsat images and a pixel- and phenology-based algorithm to
identify and map Spartina saltmarsh over years. The simple algorithms
are built upon the phenological differences between Spartina saltmarsh
and other saltmarshes (Phragmites and Scirpus) in spring (April–May)
and winter (December–January) (Fig. 5). Several studies that used
single or multi-date Landsat images also considered phenological stages
and tidal level and selected images in spring and winter (Liu et al.,
2018; Mao et al., 2019; Wang et al., 2015). In our study, we used all the
available time series Landsat images, in this way, we have more good-
quality observations and could better capture phenological differences
between Spartina and other saltmarshes in a year. The pixel- and phe-
nology-based mapping algorithm and time series Landsat data have
been used to identify water-related land cover types, including open
surface water (Zou et al., 2017; Zou et al., 2018), paddy rice (Dong
et al., 2015; Dong et al., 2016; Zhang et al., 2015) and coastal wetlands
(Wang et al., 2018; Wang et al., 2020). The spatial-temporal dynamics
of Spartina saltmarsh on Chongming island reported from this study
showcases that the human management of invasive species (e.g., eco-
logical engineering project) could be accurately assessed by the time
series Landsat images and pixel- and phenology-based mapping algo-
rithm.

4.3. Sources of errors and limitations of the resultant annual maps of
Spartina saltmarsh

In general, the quality and accuracy of land cover map is affected by
a number of factors: (1) good-quality image data, (2) availability and
quality of in-situ training sample data, (3) algorithms, and (4) definition
of land cover type (Foody, 2002; Gong et al., 2012). The annual maps of
Spartina saltmarsh from this study also have a number of sources of
errors and limitations. First, the implementation of pixel- and phe-
nology-based algorithm in coastal wetlands was largely restricted by
the amount of good-quality observations in specified phenological
phases, which depends upon observation frequency (16-days revisit
cycle) and data quality (e.g., cloud and cloud shadow). For example,
more than 80% of the pixels had zero good-quality observation in
April–May of 2003 and December–January of 2007 (Fig. 3), which
would result in high omission errors in the annual maps of 2003 and
2007. For this reason, we also reported multi-year area estimates (e.g.,
1995–1999, 2000–2004, 2005–2009, 2010–2012) and combined an-
nual Spartina saltmarsh maps to generate cumulative Spartina saltmarsh
extent for documenting expansion dynamics of Spartina saltmarsh
(Fig. 8). Second, there are some small patches of Spartina saltmarsh,
thus mixed-pixel phenomenon is unavoidable in Landsat 30-m spatial
resolution imagery. A pixel may be a pure pixel or a mixed pixel with
plants, soil, and sea water. The process of Spartina plants encroaching

into a new pixel involve generally four phases: introduction, estab-
lishment, expansion, and dominance (Vaz et al., 2018). During the stage
of introduction and establishment, Spartina often has small canopy and
occupies small fraction area within 30-m pixels. It is a challenge to
classify pixels with mixed vegetation species in the field of land-cover
mapping (Gong et al., 2012; Herold et al., 2008; Wang et al., 2017). In
our pixel- and phenology-based study, we aimed to identify those pixels
dominated by Spartina, which means that the Spartina will only be
detectable once it reaches high coverage (relative to pixel size) to in-
fluence the phenological signal. That could be one reason that our
Spartina saltmarsh estimate area is lower than the area estimates from
the annual reports of the Chongming Dongtan National Nature Reserve.
Sentinel-2A/2B data together constitute time series data at higher
temporal frequency (5-day) and spatial resolution (10-m, 20-m), thus,
future effort in mapping and monitoring Spartina saltmarsh should
combine both Landsat and Sentinel-2 images together. Third, LSWI,
calculated as a normalized ratio between NIR and SWIR bands, is useful
for measuring both leaf water contents and soil moisture (Chandrasekar
et al., 2010). Sea water or moist soils in coastal wetland, such as the
spatial-temporal variability of flooding, ponding and soil wetness could
also affect NIR and SWIR bands, which might introduce some un-
certainties (i.e., omission error) in identifying Spartina saltmarsh when
using only LSWI-based criterion, especially for those saltmarshes close
to seashore. In this study, we used all the available Landsat images,
which help reduce the classification errors in the resultant annual and
multi-year Spartina saltmarsh maps (Table 2).

5. Conclusions

In this study, we used a pixel- and phenology-based algorithm and time
series Landsat 5/7/8 images to identify and map Spartina saltmarsh. Our
case study on Chongming island shows that annual maps of Spartina salt-
marsh track well the expansion dynamics of Spartina saltmarsh during
1995–2012 and removal dynamics during 2013–2016. The resultant an-
nual and multi-year maps of Spartina saltmarsh can be used to support
various studies that aim to understand the driving factors of Spartina salt-
marsh dynamics and assess the impacts of Spartina saltmarsh expansion on
biodiversity, carbon cycle and ecosystem services. The limited number of
Landsat images in a year due to the 16-day revisit cycle, tidal dynamics,
and mixed coastal vegetation communities could still cause some un-
certainties in Spartina saltmarsh maps. As time series images from other
optical sensors with higher temporal and spatial resolution, for example,
Sentinel-2 A/B (10-day revisit cycle, 10-m spatial resolution), become
freely available, the proposed algorithm in this study could be by com-
bining both Landsat and Sentinel-2 time series images to identify and map
saltmarshes over years in the coastal zones, where billions of people de-
pend upon its goods and services.
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