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Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for
understanding the global carbon cycle and predicting future climate change. Multiple GPP products are
currently available based on different methods, but their performances vary substantially when validated
against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at moderate
spatial (500m) and temporal (8-day) resolutions over the entire globe for 2000–2016. This GPP dataset is
based on an improved light use efficiency theory and is driven by satellite data from MODIS and climate
data from NCEP Reanalysis II. It also employs a state-of-the-art vegetation index (VI) gap-filling and
smoothing algorithm and a separate treatment for C3/C4 photosynthesis pathways. All these
improvements aim to solve several critical problems existing in current GPP products. With a satisfactory
performance when validated against in situ GPP estimates, this dataset offers an alternative GPP estimate
for regional to global carbon cycle studies.
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land • radiation • vegetated area
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Background & Summary
Vegetation photosynthesis at the ecosystem scale, also known as the gross primary productivity (GPP), is
the first step of CO2 entering the biosphere from the atmosphere. Over the past century, with the
increasing carbon release from landcover change and fossil fuel burning, CO2 accumulation rate in land,
ocean and atmosphere has continuously increased1. The increase of CO2 in Earth’s atmosphere is the
major cause of global climate change2. Compared to the ocean sink, the global land sink exhibits much
higher inter-annual variability and is also greatly affected by global climate change1,3,4. A major
contribution of this high variability comes from GPP, as the photosynthesis process is vulnerable to
droughts, heatwaves, floods, frost and other types of disturbances5–8. An accurate estimation of GPP will
not only provide information about the ecosystem response to these extreme events, but also help to
predict the future carbon cycle dynamics.

Multiple approaches to estimating GPP at a global scale have been developed over the past decades.
Based on the fundamental theories used, they can be divided into four categories: the enzyme kinetic
(process-based) models9,10, the light use efficiency (LUE) or production efficiency models11,12, machine
learning techniques based on eddy covariance (EC) measurements13,14, and statistical models using solar-
induced chlorophyll fluorescence (SIF)15. Amongst all these types of models, LUE models have been
widely used because of its simple form and relatively long period of data availability. More importantly, it
offers a balance between the temporal (usually 8-days) and spatial (usually up to 500 m or 250 m)
resolution, which is suitable for regional to global scale studies. Most LUE models share a common form
as follows16:

GPP ¼ LUE ´APAR ð1Þ
where the APAR refers to the absorbed photosynthetically active radiation, and the LUE is an empirical
factor that converts this absorbed energy to carbon fixed through photosynthesis process17.

The most widely used LUE GPP product is the MODIS GPP product12 (hereafter MOD17,
GPPMOD17). However, site level validation studies have shown its moderate to low performance in
capturing the seasonal and inter-annual variations18. Cross-site synthesis studies also reported large scale
underestimates in GPPMOD17, especially for croplands19,20. Although improvements have been made in
recent updates of MOD17 (C55 and C6), problems still exist, most related to the parameterization of the
biome-specific lookup table and the climate drivers21,22. MOD17 assumes that the LUE remains constant
for individual biome types, and the APAR is the energy absorbed by the entire canopy12. However, recent
studies have shown that the photosynthetic capacity is not only affected by leaf quantity (amount of leaf
area or leaf area index, LAI), but also by leaf quality (the photosynthetic rate of each individual leaf)23,24.
The leaf quality is mostly related to the leaf chlorophyll content and the leaf nitrogen content25,26. There
is not only a spatial variation of leaf quality within each biome due to the environment and nutrient
availability24, but also a seasonal variation caused by the leaf’s phenological regulation27. MOD17 does
not take leaf quality into consideration, and therefore exhibits a relatively low spatial and temporal
representation of GPP when compared with in situ GPP estimations. Many recent studies suggest that the
fraction of PAR absorbed by chlorophyll (fPARchl) can better capture the seasonal variation of vegetation
photosynthetic capacity and greatly improve the seasonal representation of GPP28,29. The vegetation
photosynthesis model (VPM), developed based on this theory, showed superior performance with regards
to site-level validations across a wide range of biome types30–33. A recent study also showed satisfactory
performance (overall R2= 0.82) of regional VPM GPP simulation in North America34,35 and the potential
to apply this model to the entire globe.

The objective of this study is to develop a new global GPP dataset that overcomes the limitation of
MOD17. This dataset, dubbed VPM GPP V20, is based on an improved LUE theory which uses the
energy absorbed by chlorophyll, and implemented to the entire globe during the MODIS era. The VPM
algorithm utilized remotely sensed datasets together with reanalysis climate dataset and land cover
classification. The schematic workflow of the VPM algorithm is shown in Fig. 1 and is described in detail
in the Methods section. This dataset can serve as an alternative to MOD17 GPP product for regional and
global carbon cycle studies.

Methods
Data processing
We used multiple datasets as the input of VPM. All datasets being used are summarized in Table 1, and
detailed processing methods are described below.

Vegetation indices and gap-filling
Enhanced Vegetation Index (EVI)36 and Land Surface Water Index (LSWI)37 are two major inputs for
the VPM model, both of which are calculated from the MOD09A1 C6 500m 8-day land surface
reflectance dataset. To generate a continuous GPP product, there are two types of data gaps we need to
consider: (1) missing observations: for some tiles at some DOY, e.g., year 2001, DOY 169, 177, because of
the sensor calibration, no observations were acquired during those period; (2) bad-quality data: the data
quality of this remote sensing reflectance measurement is often affected by the atmospheric conditions
(e.g., cloud, aerosols), a rigorous quality check and gap-filling algorithm is required to generate a reliable
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time series of VI data for model simulation. Since EVI values are often lower if clouds or aerosols exist,
while LSWI may be slightly higher, we used different strategies to gap-fill these two vegetation indices.

The raw EVI calculated from the reflectance was first masked for all cloud, cloud shadow and aerosol
affected regions based on the quality assurance (QA) layer in the MOD09A1 dataset (MOD35
cloud= ‘clear’ (bit 0–1 equals ‘00’); aerosol quantity= ‘low’ or ‘average’ (bit 6–7 equals ‘01’ or ‘10’))8 and
then filled with an advanced gap-filling algorithm (Fig. 2). The median values of valid data for each day of
year (DOY) across 17 years (2000–2016) were chosen as the reference for seasonal pattern. Under
extreme conditions, some bad quality data may not be identified through the QA check, these data
usually have a lower value and can be detected using the Best Index Slope Extraction algorithm38. After
this process, gaps were filled with a linear interpolation and smoothed using a Savitzky-Golay filter. The
reference will serve as a reliable baseline of the seasonal variation of EVI for each pixel. The novelty of
this method is that, instead of linearly interpolate the EVI to fill the gaps within each year, we filled the
gaps in seasonal anomalies (seasonal EVI−reference). This allows us to give a robust estimation when
there is long period of missing/bad data during which EVI changes dramatically (Supplementary
Information, Supplementary Fig. S1). To reconstruct the gap-filled EVI, we calculated the differences
between EVI for one specific year and the corresponding DOY reference. The differences with missing
values (generated by the quality check) were then gap filled and smoothed in the temporal domain. These
gap-filled differences were added back to the reference to reconstruct the gap-filled and smoothed EVI.
Using this method, we not only filled bad observations caused by atmospheric conditions, but also
reconstructed the EVI for periods when no observations were made by the Terra satellite, e.g., in the year
2000 before DOY 49.

Figure 3 shows the average percentage of the good EVI data for the entire period. Gap-filled EVI data
mostly locates in boreal regions, which is caused by high frequency of snow, clouds and aerosols; and
tropical regions, which is caused by clouds and aerosols. No significant trend in data quality was found
for most areas during 2002–2015 (Supplementary Information, Supplementary Fig. S2).

For LSWI which also suffers from missing observations in 2000, 2001 and 2016, we used the
corresponding DOY scenes in 2001, 2002 and 2015 to fill the gaps in 2000, 2001 and 2016, respectively.
This approach may introduce uncertainties due to the year to year variation of vegetation water condition
and the biased estimation when cloud or snow exist. However, we believe it has limited impact on the
GPP estimates since LSWI was not a factor for GPP but was used to indicate water stress. When cloud
and snow exist, it usually corresponds to a higher LSWI value and the water stress is limited. We did not
use the same algorithm for LSWI gap-filling because (1) LSWI is sensitive to surface water (snow, ice,

Figure 1. Datasets and workflow of VPM to calculate GPP. This figure is modified from ref. 34. ISLSCP II:

International Satellite Land Surface Climatology Project, Initiative II; MODIS: Moderate Resolution Imaging

Spectroradiometer; NCEP: National Centers for Environmental Prediction; EVI: enhanced vegetation index;

LSWI: land surface water index; LST: land surface temperature; LUT: look-up table; Tday: daytime air

temperature; Tnight: nighttime land surface temperature; ε0: maximum light use efficiency; Topt: optimal

temperature for photosynthesis; Tmax: maximum temperature for photosynthesis; Tmin: minimum temperature

for photosynthesis; LSWImax: maximum LSWI during the growing season. Tscalar: temperature limitation for

photosynthesis; PAR: photosynthetically active radiation; Wscalar: water limitation for photosynthesis; fPARchl;

fraction of PAR absorbed by chlorophyll; APARchl: absorbed PAR by chlorophyll.
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flooding, etc.), and will exhibit a higher value which cannot be removed by using the BISE algorithm. (2)
LSWI has higher variance which contains information of water stress and using this gap-filling algorithm
may smooth this information. (3) atmospheric corruptions have limited effects on LSWI than EVI8,30.
Future studies may consider using vegetation optical depth (VOD) as an indicator of water stress and
upscale to higher spatial resolution39.

C4 percentage for cropland and natural vegetation
C3/C4 plants have substantial differences in utilizing solar energies40. C4 plants do not have
photorespiration and are less likely to have the light saturation effect41. Many previous studies have
shown that C3/C4 plants should be treated differently in LUE models42. Herein lies one of the major
causes for underestimation of GPP in cropland, since many models do not consider the C3/C4 difference.

Data source Dataset Derived variables Original spatial
resolution

Original temporal
resolution

Reference URL

MODIS MOD09A1 C6 EVI, LSWI 500m 8-day https://doi.org/10.5067/modis/mod09a1.006

MYD11A2 C6 Nighttime LST (01:30
am overpass)

1 km 8-day https://doi.org/10.5067/modis/myd11a2.006

MCD12Q1 C51 Land cover type 500 m Annual https://lpdaac.usgs.gov/dataset_discovery/
modis/modis_products_table/mcd12q1

NCEP-
reanalysis II

Daily maximum/
minimum air
temperature

Daytime temperature ~ 1.875° × 2° daily http://www.cpc.ncep.noaa.gov/products/
wesley/reanalysis2/kana/reanl2-1.htm

Radiation Daily mean PAR ~1.875° × 2° daily http://www.cpc.ncep.noaa.gov/products/
wesley/reanalysis2/kana/reanl2-1.htm

Earth Stat Major crop types
distribution

C4 crop percentage 0.083° invariant http://www.earthstat.org/data-download/

ISLSCP II C4 vegetation
percentage map

C4 grassland
percentage

1° × 1° invariant https://doi.org/10.3334/ORNLDAAC/932

Table 1. Input datasets used to drive vegetation photosynthesis model (VPM) and their
specifications. For acronyms please refer to captions in Fig. 1.

Figure 2. Flowchart showing the gap-filling and smoothing algorithm for reconstructing continuous EVI

for 2000 to 2016. Different monochromatic colors represent different intermediate outputs, with different

shades indicating different years.
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Our previous VPM GPP product for North America did take C3 and C4 crop into consideration34.
However, because of the data availability and spatial and temporal coverage, we did not used the
Cropland Data Layer but made a simple assumption that the C3/C4 species are half-half for all cropland
pixels. This is not accurate since, for example, the Mid-West corn belt grows much more corn (C4) than
the Mississippi river basin. Since we aim to develop a global GPP product in this study, we use two static
C4 vegetation maps (one for cropland, one for natural vegetation) for the entire globe. Although these
maps are low in spatial resolution (Table 1) and lack inter-annual variation, they provide the best
estimates of C4 vegetation distribution based on our current knowledge43,44. C4 crop and natural
vegetation are considered separately. For C4 crop, we used the Earth Stat global major crop type
distribution for the year 200044. Among 19 major crop types, 4 are C4 crops (corn, millet, sorghum,
sugarcane). This dataset provides the plant area percentage of each crop type for each 0.083 degree
gridcell, through which we calculated the C4/C3 crop ratio:

RatioC4 ¼ C4 crop percentage
Total crop percentage

ð2Þ

where the Total crop percentage for the 0.083 gridcell was calculated from the MODIS landcover dataset
(MCD12C1 C55). Within each 0.083 degree gridcell, all 500-m cropland pixels were considered to have a
fixed C3/C4 crop ratio which allowed us to calculate the LUE using the area-weighted average of C3 and
C4 LUE. However, this assumption introduces uncertainty when comparing simulated GPP with GPP
estimates from cropland flux towers, since most sites are surrounded by either pure C3 or C4 crop. When
averaged over a larger scale however, this mismatch may be negligible. We used the ISLSCP II C4
vegetation map for natural C4 vegetation distribution43 and assumed that all grassland, savannas, woody
savannas and wetland within each 1° × 1° gridcell share the same C3/C4 ratio. The corresponding LUE for
these C3/C4 mixed pixels can be calculated based on their area-weighted averages.

Climate data
For the global GPP simulation, we used the NCEP reanalysis II dataset. The daily downward shortwave
radiation flux at surface (dswrf in Wm− 2) was averaged over 8 days to match the model simulation
interval. We used the average of daily maximum temperature (tmax.2m) and the daily mean temperature
(air.2m) as daytime temperature and it was then averaged over each 8-day period. The aggregated
datasets were in Gaussian grid (192 × 96) and further downscaled to the 500-m resolution using the same
method that was described in previous publications21,34.

Vegetation photosynthesis model (VPM) description
The VPM model follows the light use efficiency scheme and estimates GPP as the product of light
absorption by chlorophyll of the vegetation (APARchl) and the efficiency (εg) that converts the absorbed
energy to carbon fixed by plants through photosynthesis:

GPP ¼ APARchl ´ εg ð3Þ

where APARchl is calculated as a product of photosynthetically active radiation (PAR) and the fraction of

Figure 3. Average percentage of good EVI data (not gap-filled) for 2000–2016.
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PAR absorbed by chlorophyll (fPARchl):

APARchl ¼ PAR ´ fPARchl ð4Þ
The fPARchl is calculated as a linear function of EVI, which is modified from previous model
framework32:

fPARchl ¼ EVI - 0:1ð Þ ´ 1:25 ð5Þ
The coefficients 0.1 and 1.25 are used to adjust for sparsely vegetated or barren land and have been
validated using the solar-induced chlorophyll fluorescence data (data not shown). εg in equation (3) is
down-regulated by temperature limitation (Tscalar) and water stress (Wscalar) from its maximum value (ε0)
which only differs by C3/C4 photosynthesis pathways:

εg ¼ ε0 ´Tscalar ´Wscalar ð6Þ
Both Tscalar and Wscalar range from 0 to 1 and can be calculated as follows:

Tscalar ¼ T -Tmaxð Þ ´ T -Tminð Þ
T -Tmaxð Þ ´ T -Tminð Þ - ðT -ToptÞ2

ð7Þ

Wscalar ¼ 1þ LSWI
1þ LSWImax

ð8Þ

Where the T, Tmax, Tmin and Topt refer to the daytime mean temperature, maximum, minimum, and
optimum temperature for photosynthesis, respectively. The last three parameters are biome-based and
can be obtained from a look-up table (Table 2). The land cover product from MODIS (MOD12Q1) is
used to provide biome information since this is the only annual land cover product with high spatial
resolution and global coverage. The uncertainty of the land cover classification is not assessed but is
supposed to have limited effect on the final GPP estimation since it only directly affects the temperature
scalar and indirectly affects ε0. LSWImax is the maximum LSWI during the snow-free period for each
pixel each year. To eliminate potential bias, a temporal smoothing using nearby four years (two years
before, two years after) is applied and calculates the second largest LSWImax within this five-year period34.

Code availability
The code for EVI gap-filling and VPM algorithms are available at https://github.com/zhangyaonju/
Global_GPP_VPM_NCEP_C3C4.

Data Records
The original VPM GPP V20 dataset is available at 500 m spatial resolution and 8-day temporal
resolution. The entire earth land surface is divided into 290 subregions (tiles) under the sinusoidal
projection. There are 46 GeoTiff files for each year each tile, each of which represents GPP for an 8-day
average. The units are all in g C m− 2 day− 1 with a scalar factor of 0.001. Each file is also associated with a

IGBP class ε0 (g C/mol APAR) Tmin (°C) Tmax (°C) Topt (°C)

ENF 0.42 − 1 40 20

EBF 0.42 − 2 48 28

DNF 0.42 − 1 40 20

DBF 0.42 − 1 40 20

MF 0.42 − 1 48 19

CSH 0.42 − 1 48 25

OSH 0.42 1 48 31

WSA 0.42 − 1 48 24

SAV 0.42 (C3) 0.63 (C4) 1 48 30

GRA 0.42 (C3) 0.63 (C4) 0 48 27

WET 0.42 (C3) 0.63 (C4) − 1 40 20

CRO 0.42 (C3) 0.63 (C4) − 1 48 30

URB 0.42 0 48 27

CNV 0.42 (C3) 0.63 (C4) 0 48 27

Table 2. Biome specific lookup-table. This table is adopted from ref. 34, where the ε0 values are from
multiple site level studies30,33,66,67, and the temperature related parameters are adopted from Terrestrial
Ecosystem Model68,69. ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous
needleleaf forest; DBF: deciduous broadleaf forests; MF: mixed forest; CSH: closed shrublands; OSH: open
shrublands; WSA: woody savannas; SAV: savannas; GRA: grassland; WET: wetland; CRO: cropland; URB:
Urban; NVM: cropland/natural vegetation mosaic.
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data quality layer: a Boolean value indicates whether the EVI is from the raw data (0) or gap-filled (1). We
also provide two coarser spatial resolutions at 0.05° × 0.05° and 0.5° × 0.5° with a longitude-latitude
projection under WGS84 datum. Three temporal resolutions, i.e., 8-day, monthly and annual,
are available for 0.05° × 0.05° and 0.5° × 0.5° spatial resolution products. The units are g C m− 2 day − 1,
g C m− 2 month− 1, and g C m− 2 year− 1, respectively. GPP products at 0.05° × 0.05° and 0.5° × 0.5° spatial
resolutions can be accessed at (Data Citation 1); the raw 500 m 8-day GPP product together with the data
quality layer can be accessed at (Data Citation 2). Because of the state-of-the-art gap-filling and
smoothing algorithms applied, we can provide a continuous spatial temporal GPP estimate with no
missing tiles.

The global GPP estimation for the period 2000 to 2016 ranges from 121.60 to 129.42 Pg C year− 1 with
an increasing rate of ~0.39 Pg C year− 2. The highest annual GPP occurs mostly in tropical regions,
especially in the Amazon and Southeast Asia (Fig. 4a). This corresponds to the highest peak in annual
GPP around the equator (Fig. 4b). The maximum daily GPP however, shows its highest value in the
Midwest region of the United States. Other crop planting regions, e.g., central Europe, Northeast China,
Southeast Africa and South America also show relatively high maximum daily GPP. High maximum
productivity in these regions creates another peak around 50°N (Fig. 4d).

Figure 4. Spatial pattern of annual and maximum daily GPP for 2000–2016. (a) average annual GPP, (c)

maximum daily GPP, latitudinal pattern of (b) average annual GPP, and (d) maximum daily GPP. Annual total

GPP and maximum daily GPP within a year were averaged over the period of 2000 to 2016.
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All other continents except South America and Oceania exhibit an increasing trend of annual GPP
over the past 17 years (Table 3). The increasing rate is highest for Europe (0.89% year− 1), followed by
Asia (0.64% year− 1), North America (0.61% year− 1), and Africa (0.21% year− 1). Annual GPP for
Oceania did not show much change throughout the study period while South America experienced a
significant decrease (−0.19% year− 1).

Technical Validation
Comparison against eddy covariance flux tower
This GPP dataset was validated against 113 eddy covariance flux towers across the globe. These flux
towers data were obtained from the FLUXNET 2015 Tier 1 dataset (2016 November release, http://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/), and only a small portion (23 out of 136) was excluded
due to inconsistency between the flux tower footprint and MODIS pixels (Supplementary Information,
Supplementary Table S1). GPP from the flux tower was calculated as an average from both daytime and
nighttime partition methods after a rigorous data quality check. The validation was carried out at two
scales: (1) at spatial and seasonal scale, we used all 8-day GPP estimates for all sites-years (n= 28,378)
and (2) at interannual scale, we calculated annual GPP anomalies for long-term sites from both EC
estimates and VPM (more than 5 years of observation between 2000 and 2016, n= 479) (Fig. 5).

The overall accuracy of the VPM GPP V20 dataset is relatively high with an R2 of 0.74 and a low
RMSE of 2.08 g Cm− 2 day− 1. A complete list of sites used and GPP comparisons is available in the
Supplementary Information (Supplementary Table S1). For individual biome types, the VPM GPP
product underestimated evergreen forest (~27% and 30% for ENF and EBF, respectively) and slightly
underestimated cropland (~15%). For other biome types, the VPM GPP did not show a systematic bias
for the spatial seasonal variation. Except ENF and CSH, most biome types showed relative high R2 values
(> 0.7) which means VPM GPP captures well the spatial and seasonal variations. In terms of interannual
variation, VPM GPP did not show much agreement with EC-based GPP estimates. Across all biome
types, VPM GPP showed less inter-annual variation compared with that from the EC tower. The R2 is low
(o0.5) for most biome types. This low consistency in interannual variation may be caused by
insensitivity of stress factors of VPM at an interannual scale, ecosystem memory effects which is not
taken into consideration in VPM, and uncertainties in both GPP estimates.

Comparison with other GPP datasets
We also compared our GPP dataset with some other data-driven GPP products, e.g., FluxCom GPP,
MOD17 (both C55 and C6). VPM showed higher annual GPP estimates in eastern and central US, mid-
latitude Eurasia, and subtropical region in South America and Africa (Fig. 6a). These regions are mostly
dominated by C4 cropland or grassland. VPM GPP is lower in tropical rainforest. When compared with
MOD17C6, VPM gave higher estimations for most mid- to low-latitude regions, which is consistent with
a recent study suggesting that MOD17C6 largely underestimates GPP for most ecosystems20.

The average global annual GPP estimates are similar in value for VPM and FluxCom, both around
125 Pg C year− 1, though VPM showed a significant increasing trend (0.39 Pg C year− 2) while FluxCom is
almost stable during the past 14 years (Fig. 6c). Both MOD17 products showed lower GPP estimates, with

Year Africa Asia Europe North America South America Oceania Global total

2000 27.43 29.82 8.50 16.69 33.72 5.44 121.60

2001 27.69 30.52 8.64 17.22 33.43 4.96 122.46

2002 27.62 31.64 8.82 16.46 34.05 4.17 122.76

2003 27.57 31.18 8.54 17.33 34.02 4.29 122.93

2004 27.84 30.86 8.83 17.81 34.61 4.79 124.74

2005 26.93 31.00 8.90 17.88 34.27 4.43 123.41

2006 28.62 31.50 8.86 17.37 34.92 4.74 126.02

2007 28.20 31.76 9.04 18.03 33.28 4.39 124.70

2008 28.27 31.39 9.10 17.47 33.07 4.52 123.82

2009 28.80 31.82 9.07 17.23 33.92 4.54 125.38

2010 28.30 31.80 8.88 18.14 33.46 5.32 125.90

2011 28.54 32.21 9.43 17.26 33.52 5.82 126.79

2012 28.23 32.26 9.11 18.19 32.90 4.98 125.66

2013 29.09 33.00 9.48 17.89 32.89 4.48 126.81

2014 29.41 33.13 9.67 18.08 33.33 4.73 128.35

2015 28.02 34.42 9.79 19.05 33.73 4.42 129.42

2016 27.19 33.43 10.08 19.10 33.10 4.79 127.70

Table 3. Continental and global total GPP for each year. Units are in Pg C year− 1.
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Figure 5. GPP validation against eddy covariance measurements for different biome types. Comparison of

GPP for (a,b) forest, (c,d) non-forest and (e,f) cropland at 8-day scale across sites, and at annual scale in

anomalies. Each point in (a,c,e) represents GPP estimates from VPM and EC for an 8-day period from one site;

each point in (b,d,f) represents annual GPP estimates anomalies (GPP for one year minus GPP average over

years for this site) for one year from one site; only sites with more than 5 years’ observations were used for

annual anomaly comparison.
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a difference of ~14 Pg C year− 1 for MOD17C55 and ~26 Pg C year− 1 for MOD17C6, in comparison with
VPM GPP. The C6 version of MOD17 also showed a significant increasing trend (0.29 Pg C year− 2)
that did not appear in the C55 version. This difference may be caused by using different climate data

Figure 6. Comparison of GPPVPM with other GPP products. Mean annual GPP difference between VPM

and (a) FluxCom14,61 (for the period 2000–2013) and (b) MOD17A2H C662 (MOD17C6 for the period

2002–2014) and (c) annual total GPP from VPM, FluxCom, MOD17 (both C662 and C55 version22). Units for

(a,b) are g C m − 2 year− 1. GPPMOD17C6 was not available for year 2000, 2001 and 2015 because of the missing

tiles in the data distribution center. All comparisons were conducted at 0.5° × 0.5° spatial resolution.

Figure 7. The GPP trend estimated from the seasonal Theil-Sen’s slope estimator63,64. Grey area indicates

no significant trend at 0.05 level according to the seasonal Mann-Kendall test65. Very high and low values in

Arabian Peninsula and central Australia may be caused by artifacts of the seasonal Theil-Sen’s slope method

and is not evident in linear regression.
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(GMAO/NASA (Global Modeling and Assimilation Office/National Aeronautics and Space Adminis-
tration) and NCEP Reanalysis II) or the corrected sensor degradation effect in MODIS C6 data45,46.

We also calculated the spatial pattern of GPP trend using the 0.5° × 0.5° 8-day dataset as a further
validation (Fig. 7). This spatial pattern is consistent with many previous studies: (1) high latitude regions
and Qinghai Tibet Plateau experienced a continuous increasing GPP caused by warming and extended
growing season47–50; (2) afforestation in Northern China51,52 and vegetation greening in southern Sahara
Desert53,54 also lead to an increase in GPP; (3) Tropical forest in southeast Asia55 and southern part of
Amazon56 where deforestation happened exhibited a decreasing trend of GPP.

Overall, GPPVPM provides a reliable GPP estimation for non-forest natural vegetation and cropland by
considering the C3/C4 vegetation ratio57. The underestimation for ENF and EBF may be related to the
higher light use efficiency for diffused radiation58, but requires further testing. The total global GPP
estimation is close to previous studies using different approaches59,60, and the trend of annual GPP
increase are also in line with some other recent reports4.

Usage Notes
The GPP for gridcells in coastal regions (in 0.05° × 0.05 and 0.5° × 0.5° spatial resolution products) are
averaged over the entire gridcell but land only, therefore, the land area fraction is not needed when
calculating the regional sum.
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