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Abstract: Previous studies have concluded that the increase in vegetation in the arid northwest
of China is related to precipitation rather than temperature. However, these studies neglected
the effects of climate warming on water availability that arise through changes in the melting
characteristics of this snowy and glaciated region. Here, we characterized vegetation changes
using the newly improved third-generation Global Inventory Modeling and Mapping Studies
Normalized Difference Vegetation Index (GIMMS-3g NDVI) from 1982 to 2011. We analyzed the
temperature and precipitation trends based on data from 51 meteorological stations across Northwest
China and investigated changes in the glaciers using Gravity Recovery and Climate Experiment
(GRACE) data. Our results indicated an increasing trend in vegetation greenness in Northwest
China, and this increasing trend was mostly associated with increasing winter precipitation and
summer temperature. We found that the mean annual temperature increased at a rate of 0.04 ˝C per
year over the past 30 years, which induced rapid glacial melting. The total water storage measured
by GRACE decreased by up to 8 mm yr´1 and primarily corresponded to the disappearance of
glaciers. Considering the absence of any observed increase in precipitation in the growing season,
the vegetation growth may have benefited from the melting of glaciers in high-elevation mountains
(i.e., the Tianshan Mountains). Multiple regression analysis showed that temperature was positively
correlated with NDVI and that gravity was negatively correlated with NDVI; together, these variables
explained 84% of the NDVI variation. Our findings suggest that both winter precipitation and
warming-induced glacial melting increased water availability to the arid vegetation in this region,
resulting in enhanced greenness.

Keywords: warming; preceding winter precipitation; glacial melting; arid regions

1. Introduction

Ecosystems in arid and semi-arid regions are sensitive to changes in climate [1–5]. Recently, a
significant increase in vegetation growth and a change in climate have been observed in Xinjiang, a
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typical arid and semi-arid ecosystem located in Northwest China [6–10]. Previous studies indicated
that the increased trend of vegetation was related to precipitation rather than temperature [9–11].
However, these studies neglected the potential effects of warming on vegetation growth via the increase
in water availability through the melting of snow and glaciers. In arid and semi-arid regions, water
availability from precipitation has been reported as the key factor in promoting vegetation growth as
a result of reduced water stress [3–5], but a considerable amount of variability in vegetation growth
remains unexplained by precipitation alone [9,12–15]. Even if the annual precipitation inputs remain
unchanged, the predicted changes in the distribution of precipitation events will impact the timing
and quantity of soil water available for plant uptake and biogeochemical processes [16–19]. Local,
regional, and global studies all support an increase in winter precipitation in the high latitudes of the
Northern Hemisphere [8,20–25], and the higher temperature could increase the rate and intensity of
snowmelt. For example, winter precipitation in the form of snow can be an important water resource
for vegetation in arid and semi-arid ecosystems as it melts in the spring because it improves moisture
conditions and offsets water loss through evapotranspiration [23,26].

Increased precipitation is clearly associated with increased vegetation greenness in arid and
semi-arid ecosystems where water is a limited resource [9,12–15]; however, it is unclear why
temperature was not found to be an important factor in regulating vegetation in Xinjiang [9]. Higher
temperatures can lead to higher productivity provided that other stresses do not intensify [27].
However, warming-induced drought can also decrease vegetation cover/greenness. Therefore, to
promote vegetation growth in arid and semi-arid regions, increased precipitation must first offset
the increase in drought stress associated with increased temperature in the absence of additional
water sources. One important alternative water source is the glacial/snow melt that occurs in snowy
areas with large glaciers on high-elevation mountains. Warming temperatures and increasing winter
snowfall are expected to increase glacial/snow-derived water in arid and semi-arid regions, which
can provide additional water for vegetation [26,28,29]. Knowledge of the responses of glacial melt to
climate change is crucial for understanding the water availability for vegetation growth in arid regions.
However, to date, only a few studies have investigated the relationship between climate change and
glacial melt in the Xinjiang region. The most direct method for studying variations in glaciers and
glacial runoff is to monitor changes in the surface mass balance and the equilibrium-line altitude
in a small region of a glaciated area [30]. However, due to limited human and financial resources,
long-term monitoring is rare, and observations of glacier changes at a regional scale are rarer still.

Temperature has changed more than precipitation in recent decades in Xinjiang [9,11]. It is
unclear why this rapid warming trend did not counteract the effects of precipitation in terms of water
availability via increased evapotranspiration. Xinjiang is one of the most snowy and glaciated regions
in China, and approximately 22,240 glaciers exist in the high-elevation mountains. These glaciers cover
an area of 27,974 km2 and store approximately 2,814.81 km3 of ice [11,31]. The glaciers are mainly
concentrated in the Tianshan and Kunlun Mountains, and glacier melt from these high mountains is a
major water source for both humans and natural ecosystems in this region [32]. Recent studies have
suggested that glacial melting in the Tianshan Mountains is among the most rapid on Earth due to
climate warming [30,31,33]. The resulting water might be an important resource for vegetation under
a warming climate for the arid and semi-arid ecosystems near the mountains in Xinjiang. Therefore,
we hypothesized that both the increased precipitation and warming-induced glacial melting were
associated with the increased vegetation greenness in Xinjiang in recent decades. This hypothesis
considers the potential positive effects of changes in both temperature and precipitation on vegetation
in this region and motivates us to revisit the possible impacts of climate change on vegetation in the
arid northwest of China.

To test our hypothesis, the spatiotemporal changes in vegetation greenness, meteorological
conditions, and glacial storage in Xinjiang were comprehensively examined using satellite-observed
normalized difference vegetation index (NDVI) data and meteorological data from weather stations
from 1982–2011, as well as gravity recovery and climate experiment (GRACE) gravity observations
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from 2003–2011. Specifically, we (1) investigated the spatiotemporal changes in the trends of vegetation
greenness to determine whether vegetation greenness increased in Xinjiang during this period;
(2) investigated the spatiotemporal changes in seasonal precipitation and temperature and their
correlations with NDVI to determine the seasons in which climate change was most important;
and (3) quantified the empirical relationships between glacier/climate variations and changes in
vegetation greenness to test our main hypothesis.

2. Materials and Methods

2.1. Study Area

Xinjiang is located in Northwest China, and it is divided into two large basins by the Tianshan
Mountains: the Junggar Basin in the north and the Tarim Basin in the south (Figure 1). The climate in
this region is dry because large distances and high mountains (i.e., the Tianshan and Kunlun Mountains,
which effectively block atmospheric circulation) separate it from the ocean [11]. The mean annual
temperature (MAT) ranges from ´4 to 9 ˝C north of the Tianshan Mountains and from 7 to 14 ˝C south
of the Tianshan Mountains. A significant gradient in annual precipitation (AP) exists from north to
south. The AP ranges from 400 to 1000 mm in the Altai Mountains, 100 to 250 mm in the Junggar Basin,
100 to 400 mm in the Tianshan Mountains, and 200 to 300 mm in the Kunlun Mountains. The AP in
the Tarim Basin is typically less than 50 mm. The complex geography has led to diverse biomes in the
region (Figure 1B).
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Figure 1. The location of the study area. (A) 1-km Digital Elevation Model of Xinjiang; (B) Spatial
distributions of vegetation types and 51 meteorological stations in Xinjiang. The vegetation type dataset
is provided by the Environmental & Ecological Science Data Center for West China, National Natural
Science Foundation of China (http://westdc.westgis.ac.cn).

2.2. AVHRR GIMMS-3g NDVI

We used the NDVI as an indicator of vegetation greenness. This index reflects vegetation growth
because it is closely related to the amount of photosynthetically absorbed active radiation [27,34,35].
The newly improved, third-generation Global Inventory Modeling and Mapping Studies (GIMMS-3g)
NDVI dataset was obtained from the Advanced Very High Resolution Radiometer (AVHRR)
sensors [36–38]. The GIMMS-3g dataset extends the widely used GIMMS dataset, the latter of which is
only available for the period of 1981–2006 [35]. The GIMMS-3g dataset covers the period from July
1981 to December 2011 with a spatial resolution of 8 km at 15-day intervals.

We used the larger 15-day NDVI of the two datasets captured each month to produce monthly
NDVI datasets that minimize atmospheric effects and cloud contamination effects [27]. To avoid
the influence of winter and early spring snow, we only used NDVI data from the growing season
(i.e., April to October, NDVI-gs) to compute annual mean NDVI and analyze inter-annual vegetation
changes. Grid cells with NDVI values less than 0.05 were masked to exclude sparsely vegetated areas
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and extremely dry deserts [34]. Because cropland is influenced by human activity (e.g., irrigation), we
masked these areas based on land use/land cover information from 2001 (Figure 1B) when analyzing
the response of NDVI-gs to precipitation and temperature changes. However, the vegetation signal
from cropland was compared with signals from other vegetated areas to determine the additional
effects resulting from human influence. Moreover, cropland and afforestation have both benefited
from glacier/snow melt water as well, and irrigation in such areas can reduce GRACE gravity by
depleting groundwater. Therefore, when analyzing the relationship between vegetation greenness and
the GRACE signal, we considered cropland and afforested areas.

2.3. Climate Data

Climate data were provided by the China Meteorological Data Sharing Service System of the
China Meteorological Administration (http://cdc.nmic.cn/home.do). Daily mean temperature and
precipitation data from 51 available meteorological stations were used to analyze climate trends from
1982 to 2011 (Figure 1B). All 51 meteorological stations had complete daily records from 1982 to 2011.
The seasonal/annual precipitation and mean temperature values were calculated to analyze long-term
trends. The seasons were defined as Spring, from March to May; Summer, from June to August;
Autumn, from September to November; and Winter, from December to February. As there were no
meteorological stations in almost a third of the study area (e.g., desert and Gobi regions) and as most
stations were distributed in vegetated areas, we did not interpolate the temperature and precipitation
data into grids. Snowfall in winter and early spring was included in the precipitation data.

2.4. GRACE

Glacial storage and melting are investigated by using GRACE remote sensing data. GRACE was
launched in March 2002 and obtains monthly measurements of changes in the Earth’s gravity and
therefore changes in mass. In the absence of tectonic movement, mass anomalies are mainly caused
by changes in the form of water storage. Therefore, GRACE gravity observations were converted to
mass in units of equivalent water thickness to measure the variation in total water storage, which
includes groundwater, river discharge, and the water balance of lakes, snow pack, and glaciers [39,40].
We used GRACE to measure glacial storage variations in Xinjiang and particularly the Tianshan
Mountains, based on the premise that glacier changes caused by climate warming would overwhelm
other water mass changes at a large scale in our study area. Water from melted glaciers was expected
to first form surface flow, recharge groundwater and soil water, and then be transferred to other places
through runoff and evaporation, causing reduced mass around the glacier region. We noted that
irrigation is another important process in Xinjiang that can reduce GRACE gravity by direct pumping
of groundwater and subsequent evapotranspiration. The depleted water can be partly recharged
by glacier/snow-melted water and thus help accelerate the transfer of water mass originating from
glacier/snow outside this region. Meanwhile, heavy irrigation must withdraw previously stored
groundwater as well, but it is assumed to be a minor effect compared to glacier retreat because irrigation
occurs mainly in cropland and afforested areas, which account for a relatively small area. The GRACE
team produces three different solutions (i.e., the Center for Space Research (CSR) at the University
of Texas at Austin solution, the German Research Center for Geosciences (GFZ) at Helmholz Centre
Potsdam solution, and the Jet Propulsion Laboratory (JPL) at the California Institute of Technology
solution). Due to different data processing methodologies, differences in the three solutions can
exist [41]. We therefore used all three versions of the new Release-05 (RL05) Level 2 products. The
periods of June 2003 and January and June 2011 are missing in all three products, and December 2011 is
missing in the JPL product. GRACE mass anomaly data for all three solutions in the form of equivalent
water thickness on a 1 ˆ 1˝ grid for the land were obtained from the JPL Tellus website [41–43].
Positive GRACE values indicate higher water storage mass than the long-term (2003–2011) average,
and negative GRACE values indicate lower water storage mass than the long-term average.



Remote Sens. 2016, 8, 364 5 of 14

2.5. Statistical Analysis

Ordinary least squares analyses were conducted to estimate linear trends in NDVI-gs, temperature,
precipitation, and GRACE mass over the study period, and the statistical significance of these
trends was tested via F-tests at the 95% level. To further understand the possible effects of seasonal
temperature and/or precipitation on vegetation greenness, these variables were included in multiple
regression models to explain the NDVI-gs variation. Winter precipitation in the previous year (PWP)
instead of current year winter precipitation was used in these models because vegetation in the growing
season can only use water from the previous winter. Akaike’s information criterion (AIC) was used to
select the optimum linear models among all the possible models. We used AIC instead of R2 to select
our models because AIC is a measure of the relative quality of a statistical model considering both
the fitness and the number of parameters. The model with the smallest AIC was selected as the most
appropriate model [44]. According to Symonds and Moussalli [45], models with an AIC difference
(∆i) less than 2 are considered to be essentially equivalent. Thus, all models with ∆i less than 2 were
considered in this study. AIC (Equation (1)) is calculated as

AIC “ 2k` n
„

ln
ˆ

RSS
n

˙

(1)

AICc “ AIC` 2k pk` 1q {n´ k´ 1 (2)

where k is the number of parameters, RSS is the residual sum of squares of the model, and n is the
sample size. When n was less than 40, AICc (Equation (2)), which entails a sample-size correction, was
used instead of AIC.

To determine whether glacier melt contributes to the increased greenness of vegetation
independent of temperature and precipitation changes, a multiple regression model was constructed
in which the GRACE water equivalent thickness along with precipitation and temperature were used
to predict NDVI. The monthly anomaly values of these variables during the period from 2003–2011
were used to fit this model. The same criteria based on AIC were used to select the best models
among all candidate models. Annual data were not used to fit the model due to the small data size.
We also checked whether afforestation and the conversion of natural lands to croplands may have
contributed to the decline in GRACE gravity by depleting groundwater (via irrigation) and root-zone
water (via evapotranspiration). To check this effect, we plotted the relative percentage of pixels with
NDVI > 0.3 annually along the GRACE data time series, as a single-year land use map (e.g., Figure 1B)
was not sufficient to detect the changes in cropland and afforestation directly. The value 0.3 was
selected empirically, as our data shows that the NDVI of other lands rarely exceeds 0.3. To do this, we
assumed that an increased number of pixels with annual mean NDVI > 0.3 are mainly from cultivated
cropland and afforestation.

3. Results

3.1. Linear Trends in Climate and NDVI-gs

Significant changes in NDVI-gs and MAT were observed over the entire study area from 1982
to 2011 (Figure 2a). The NDVI-gs without cropland significantly increased by 0.001 yr´1 (R2 = 0.77,
p < 0.001). The NDVI of cropland was higher and increased at a greater rate (0.0016 yr´1, R2 = 0.48,
p < 0.001). The MAT increased at a rate of 0.04 ˝C yr´1 (R2 = 0.41, p < 0.001) during the 30-year
period, and especially rapidly after 1997. No significant change was observed in AP (R2 = 0.12,
p = 0.06). However, a significant increase in precipitation was exclusively observed in winter, with
a rate of 0.35 mm yr´1 (p < 0.05). No obvious trends in the spring (p = 0.29), summer (p = 0.31),
or autumn (p = 0.27) precipitation were observed (Figure 2b). All seasonal temperatures except the
winter temperature (p = 0.70) exhibited significant increasing trends (Figure 2c). The spring and
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autumn temperature increased by 0.06 ˝C yr´1 (p < 0.05), and the summer temperature increased by
0.04 ˝C yr´1 (p < 0.05).
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Figure 2. Linear trends in (a) NDVI-gs (Normalized Difference Vegetation Index, where gs refers to the
growing season from April to October) without cropland (y = 0.001x + 0.1417, R2 = 0.77, p < 0.001), NDVI
in cropland (y = 0.0016x + 0.35, R2 = 0.48, p < 0.001), mean annual temperature (MAT, y = 0.04x ´ 81.41,
R2 = 0.41, p < 0.001), and annual precipitation (AP, y = 0.99x ´ 1837.9, R2 = 0.12, p = 0.06) during the
period 1982–2011; Trends of (b) seasonal precipitation (mm per year): spring precipitation (spring P,
p = 0.29), summer precipitation (summer P, p = 0.31), autumn precipitation (autumn P, p = 0.27), winter
precipitation (winter P, y = 0.34x ´ 666.7, R2 = 0.29, p < 0.05); and (c) seasonal temperature (˝C per year):
spring temperature (spring T, y = 0.06x ´ 119.1, R2 = 0.25, p < 0.05), summer temperature (summer
T, y = 0.04x ´ 63.6, R2 = 0.44, p < 0.05), autumn temperature (autumn T, y = 0.06x ´ 115.5, R2 = 0.37,
p < 0.05), winter temperature (winter T, p = 0.70). The analyzed data are from the climate records of
51 meteorological stations.

Three regression models were selected based on our AIC values to explain the inter-annual
variations in NDVI-gs at the scale of the whole study area (Table 1). The spring precipitation
(spring P), summer temperature (summer T), and preceding winter precipitation (PWP) exhibited close
relationships with the changes in NDVI-gs in all of the selected models (Table 1). Among these three
variables, PWP possessed the largest standardized regression coefficient (0.49) and explained most
of the variation in NDVI-gs compared with spring P (0.10) and summer T (0.17) (Table 1). Summer T
presented similar standardized coefficients as spring P but shared more variance with NDVI-gs than
did spring P (i.e., a stronger correlation with NDVI-gs) (Table 1). The best regression model with the
fewest parameters (Model 1) explained 62% of the inter-annual variation in NDVI-gs. A considerable
amount of variability in annual mean NDVI-gs remained unexplained by inter-annual changes in
seasonal precipitation and temperature.

Only those models within 2 AIC units were considered comparable. All of the coefficients in
this table are reported as standardized coefficients to reflect the relative importance of each predictor
within a model. The correlation between each predictor and the NDVI-gs is reported in the bottom row
(spring precipitation (spring P), summer temperature (summer T), autumn precipitation (autumn P),
winter temperature (winter T), and preceding winter precipitation (PWP)).
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Table 1. Regression coefficients of NDVI-gs models with seasonal climate variables from 1982 to
2011 as predictors. AICc refers to Akaike’s information criterion with a sample size correction
(see Equation (2)).

Models with Standardized Coefficients AICc ∆i R2

1. NDVI-gs~0.10 spring P + 0.08 summer T + 0.34 PWP 62.7 0.00 0.62

2. NDVI-gs~0.09 spring P + 0.09 summer T + 0.02 winter T + 0.33 PWP 64.0 1.27 0.63

3. NDVI-gs~0.07 spring P + 0.08 summer T + 0.02 autumn P + 0.33 PWP 64.1 1.40 0.63

Correlation with NDVI-gs spring P summer T autumn P winter T PWP

0.32 0.4 0.17 0.01 0.7

3.2. Spatial Variations in the Climate Variables and NDVI

Most regions of the study area exhibited a significant increasing trend in NDVI-gs (p < 0.05)
(Figure 3). The highest rate of increase in NDVI-gs occurred in areas surrounding the Tianshan
Mountains. Only a few areas exhibited significant negative NDVI-gs trends. These areas were mainly
located at the edges of the desert and were associated with an oasis-desert ecotone that is strongly
influenced by human activities. A significant increase in AP was observed at only six stations (p < 0.05);
the remaining 46 stations did not show significant trends in AP from 1982 to 2011 (Figure 4a). Fifteen
stations located in the Altai Mountains and at the edge of Junggar Basin showed positive trends in
winter precipitation (p < 0.05), with rates of 4 mm yr´1 (Figure 4f). Only a few stations in the study
area exhibited significant increasing trends in spring P, summer P, and autumn P (Figure 4c–e). In
contrast, most stations showed significant increasing trends in spring T, summer T, and autumn T
(but not winter T) (Figure 4b,g–i), with rates exceeding approximately 0.04 ˝C yr´1.
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3.3. Water Storage Derived from GRACE

The GRACE total water storage estimates revealed that water storage declined in Xinjiang from
2003 to 2011 (Figure 5). All three solutions (i.e., CSR, GFZ, and JPL) showed similar temporal patterns
of water storage for the entire study area during the study period (Figure 5). A slight recovery in 2010
was apparent in all three solutions and was consistent with an increase in winter precipitation. Overall,
good agreement was observed for the spatial patterns among the three datasets. The largest declines
(p < 0.05) occurred in the Tianshan Mountain ranges and were as high as 8 mm yr´1, which reflects the
disappearance of glaciers at high elevations in the Tianshan Mountains (Figure 6). An increasing trend
(p < 0.05) was observed in the Kunlun Mountains along the border of Tibet.
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3.4. Relationships Between Temperature, Precipitation, GRACE, and NDVI

Significant variability in the GRACE water thickness was observed throughout the study area,
decreasing yearly during 2003–2011 and corresponding to the increasing trend in NDVI and the
increasing trend in the number of pixels with NDVI values greater than 0.3 (Figure 7). Although
monthly precipitation, temperature, GRACE total water storage, and the interaction term between
GRACE water thickness and temperature were all included in a multiple regression model to predict
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NDVI, only temperature and GRACE water thickness (e.g., from the CSR solution) showed significant
effects (Table 2). The final best two models, shown in Table 2, explained more than 84% of the variation
(R2 = 0.84) in NDVI. In these two models, the removal of temperature decreased the R2 value to 0.17,
and the removal of GRACE water thickness decreased the R2 value to 0.73, while the removal of
precipitation changed less than 0.01 of the R2. A significant negative relationship between GRACE
water thicknesses and NDVI was observed (p < 0.05), whereas a significant positive correlation between
temperature and NDVI was observed (p < 0.05).

Remote Sens. 2016, 8, 364 8 of 14 

 

3.3. Water Storage Derived from GRACE 

The GRACE total water storage estimates revealed that water storage declined in Xinjiang from 
2003 to 2011 (Figure 5). All three solutions (i.e., CSR, GFZ, and JPL) showed similar temporal patterns 
of water storage for the entire study area during the study period (Figure 5). A slight recovery in 2010 
was apparent in all three solutions and was consistent with an increase in winter precipitation. 
Overall, good agreement was observed for the spatial patterns among the three datasets. The largest 
declines (p < 0.05) occurred in the Tianshan Mountain ranges and were as high as 8 mm yr−1, which 
reflects the disappearance of glaciers at high elevations in the Tianshan Mountains (Figure 6). An 
increasing trend (p < 0.05) was observed in the Kunlun Mountains along the border of Tibet. 

 
Figure 5. Mean annual GRACE (Gravity Recovery and Climate Experiment) water equivalent thickness 
in Xinjiang from 2003 to 2011. The histogram represents winter precipitation in mm. GRACE data from 
all three solutions were plotted: The Center for Space Research (CSR) at the University of Texas at 
Austin solution, the German Research Center for Geosciences (GFZ) at Helmholz Centre Potsdam 
solution, and the Jet Propulsion Laboratory (JPL) at the California Institute of Technology solution. 

 
Figure 6. Spatial distribution of GRACE gravity trends in equivalent water thickness based on three 
solutions: (a) Center for Space Research (CSR); (b) German Research Center for Geosciences (GFZ); 
and (c) Jet Propulsion Laboratory (JPL). Areas significant at the 95% level are highlighted. 

Figure 6. Spatial distribution of GRACE gravity trends in equivalent water thickness based on three
solutions: (a) Center for Space Research (CSR); (b) German Research Center for Geosciences (GFZ);
and (c) Jet Propulsion Laboratory (JPL). Areas significant at the 95% level are highlighted.

Remote Sens. 2016, 8, 364 9 of 14 

 

3.4. Relationships Between Temperature, Precipitation, GRACE, and NDVI 

Significant variability in the GRACE water thickness was observed throughout the study area, 
decreasing yearly during 2003–2011 and corresponding to the increasing trend in NDVI and the 
increasing trend in the number of pixels with NDVI values greater than 0.3 (Figure 7). Although 
monthly precipitation, temperature, GRACE total water storage, and the interaction term between 
GRACE water thickness and temperature were all included in a multiple regression model to predict 
NDVI, only temperature and GRACE water thickness (e.g., from the CSR solution) showed 
significant effects (Table 2). The final best two models, shown in Table 2, explained more than 84% of 
the variation (R2 = 0.84) in NDVI. In these two models, the removal of temperature decreased the R2 
value to 0.17, and the removal of GRACE water thickness decreased the R2 value to 0.73, while the 
removal of precipitation changed less than 0.01 of the R2. A significant negative relationship between 
GRACE water thicknesses and NDVI was observed (p < 0.05), whereas a significant positive 
correlation between temperature and NDVI was observed (p < 0.05). 

Table 2. Regression coefficients of NDVI models with temperature, precipitation and gravity from 
2003 to 2011. 

 Models AICc Δi R2 
1. NDVI = 0.0713 + 0.0007P + 0.0037T − 0.0103 CSR 113.1 0.00 0.846 
2. NDVI = 0.0784 + 0.0039T − 0.0104 CSR 113.9 0.81 0.842 

 
Figure 7. Monthly values in gravity and NDVI from January 2003 to December 2011 in Xinjiang.  
The histogram represents the pixel number with NDVI values greater than 0.3. 

4. Discussion 

The significant positive NDVI trends observed over most parts of Xinjiang are consistent with 
previous findings [9,10]. A few locations exhibited significant negative NDVI trends and were mainly 
located at the edges of deserts (Figure 1) in oasis-desert ecotones greatly influenced by human 
activities [46,47]. The increasing rate of NDVI observed in this study (0.001 yr−1) is lower than  
that observed by Zhao and Tan [9] (0.007 yr−1). This difference might be due to the difference in the 
study period analyzed. The latest AVHRR GIMMS-3g datasets were calibrated with improved 
algorithms [36–38], and this study excluded agricultural lands that were influenced by irrigation. 
According to Liu and Kuang [48], cultivation represents one of the major land cover changes in recent 
decades in Northwest China. Therefore, such areas should be excluded to study the impacts of 
climate change alone. We minimized the confounding effects of human activity by masking 
agricultural land. The cropland, however, was increasing at a higher rate due to the combined effects 
of human interference and changing climate. 

Previous studies revealed that increases in annual precipitation were associated with increased 
vegetation greenness [2,9]; however, we found that the annual precipitation increase was mainly 
attributable to increased precipitation in the winter. Winter precipitation significantly increased and 
explained the most NDVI variation compared with the other seasonal climate variables (Figure 2b 

Figure 7. Monthly values in gravity and NDVI from January 2003 to December 2011 in Xinjiang. The
histogram represents the pixel number with NDVI values greater than 0.3.



Remote Sens. 2016, 8, 364 10 of 14

Table 2. Regression coefficients of NDVI models with temperature, precipitation and gravity from
2003 to 2011.

Models AICc ∆i R2

1. NDVI = 0.0713 + 0.0007P + 0.0037T ´ 0.0103 CSR 113.1 0.00 0.846
2. NDVI = 0.0784 + 0.0039T ´ 0.0104 CSR 113.9 0.81 0.842

4. Discussion

The significant positive NDVI trends observed over most parts of Xinjiang are consistent with
previous findings [9,10]. A few locations exhibited significant negative NDVI trends and were mainly
located at the edges of deserts (Figure 1) in oasis-desert ecotones greatly influenced by human
activities [46,47]. The increasing rate of NDVI observed in this study (0.001 yr´1) is lower than
that observed by Zhao and Tan [9] (0.007 yr´1). This difference might be due to the difference in
the study period analyzed. The latest AVHRR GIMMS-3g datasets were calibrated with improved
algorithms [36–38], and this study excluded agricultural lands that were influenced by irrigation.
According to Liu and Kuang [48], cultivation represents one of the major land cover changes in recent
decades in Northwest China. Therefore, such areas should be excluded to study the impacts of climate
change alone. We minimized the confounding effects of human activity by masking agricultural
land. The cropland, however, was increasing at a higher rate due to the combined effects of human
interference and changing climate.

Previous studies revealed that increases in annual precipitation were associated with increased
vegetation greenness [2,9]; however, we found that the annual precipitation increase was mainly
attributable to increased precipitation in the winter. Winter precipitation significantly increased and
explained the most NDVI variation compared with the other seasonal climate variables (Figure 2b
and Table 1). Winter precipitation played a critical role in regulating vegetation growth, most likely
through persistent effects on soil moisture and nutrients [49]. Arid and semi-arid regions are typically
water- and nutrient-limited ecosystems, but winter precipitation in the form of snow can provide
a large volume of soil water and a large amount of nutrients during the following spring in the
form of snowmelt, thereby stimulating seed germination and vegetation growth [20,21]. Winter
precipitation in Northwest China consists primarily of snowfall, which can be accumulated and stored.
Increased winter snow depth can increase soil microbial activity and nitrogen mineralization rates
by increasing soil temperature [50,51], thereby making nutrients available for plant uptake during
the winter (e.g., for plants with overwintering roots) and potentially into the growing season [50].
Snowmelt following winter is a slower process compared with rainfall and can thus recharge the soil
more effectively and to greater depths [4,52]. Therefore, in Xinjiang, even forested areas, with relatively
deeper roots, can benefit from increased winter precipitation. The importance of winter precipitation in
vegetation growth is supported by previous studies. For example, shrub abundance in North America
was found to increase with an increased proportion of winter precipitation despite a simultaneous
decrease in mean annual precipitation [18]. Walker et al. [19] found that the aboveground biomass in
alpine and arctic ecosystems increased in response to both winter snow and warming. Peng et al. [49]
found that the mean winter snow depth increased at a rate of >0.01 cm yr´1 from 1980 to 2005 in this
region. Additionally, in Peng et al., snow depth was significantly and positively correlated with NDVI
during both the early (May and June) and middle growing seasons (July and August).

Most previous studies have focused on the vegetation impacts of precipitation increases in arid
Northwest China [9,11]. However, some of the most severe impacts of climate change are likely to
arise from not only the expected increase in precipitation but also the changes in temperature [23,26].
Changes in temperature could lead to important changes in water availability in snowy and glacial
areas. Our analysis suggests that increasing summer temperature was important in promoting
vegetation greenness (Table 1). Without an increase in precipitation in summer, the increasing
temperature in the summer did not decrease vegetation greenness by causing more severe drought
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but instead promoted vegetation growth, suggesting that other sources of water might be available.
Snow and glacial melting are important hydrologic processes in snow-dominated regions, and changes
in temperature are expected to affect the melt characteristics [26,28,29]. We found a rapid decline
in total water storage across a large area centered on the high-elevation, glaciated regions of the
Tianshan Mountains based on GRACE observations from 2003–2011 (Figure 6). Therefore, we conclude
that the glaciers experienced a rapid retreat and that the strong negative signals observed in the
surrounding area were likely caused by energy leaking from the glacier center due to the coarse
resolution of the GRACE data [28,42]. Other studies have estimated that the glacier area decreased by
1400 km2 from 1960 to 1995, with a corresponding increase in glacial melt due to rising temperatures
in this region [30]. The annual runoff from glacial melt in the Tianshan Mountains increased 84%
from 1958–1985 to 1985–2001 [30]. Therefore, the glacial melting caused by increasing temperature
must have provided additional water in addition to direct rainfall, which, when coupled with the
increasing temperature, promoted vegetation growth. Cropland and afforested areas use considerable
quantities of irrigation water, which involves pumping groundwater and root-zone water into the
atmosphere and can contribute to decreases in GRACE gravity values. We have demonstrated that
this area has increased since 2003 and that this increase was coupled tightly with the GRACE data
(Figure 7). Although irrigated and afforested areas only represent a small portion of the total area, these
processes can accelerate the transfer of water originating as glacier/snow to the atmosphere through
the discharge process, regardless of the withdrawal of historically stored groundwater. Therefore,
although we cannot isolate the effects of groundwater depletion, we have shown its minor effects
on reducing total water storage. Furthermore, this does not falsify the previous premise that glacier
melting is the main cause of water storage reduction.

To further explore the possible influence of glacial melting on vegetation growth, multiple
regression models were conducted to predict NDVI based on the available data from GRACE total
water storage observations (Table 2). Although GRACE total water storage was correlated with
temperature (i.e., rising temperatures drove glacier melting), the interaction term between the GRACE
data and the temperature data did not have a significant effect on NDVI. Temperature was found to
be more important than the GRACE data in explaining NDVI variations. This is reasonable because
seasonal NDVI variations regulated by temperature were included in the monthly values. However,
adding GRACE anomalies to the model significantly increased the R2 value by 10%, suggesting that the
seasonal changes in the GRACE total water storage were also related to vegetation changes. Because
the total water storage change was mainly caused by the accumulation and melting of glaciers and
snow (as we assumed and demonstrated), the seasonal melting characteristics of the glaciers could
have contributed to the vegetation growth. This conclusion, however, would be more valid if it could be
tested over an area without glaciers/snow. A controlled comparison is not possible for such large-scale
studies, but findings from other studies can provide supporting evidence. Inner Mongolia experienced
no changes in terms of GRACE gravity data in recent decades [28] but did experience climate changes
similar to those in Xinjiang [8]. Interestingly, the drylands in Inner Mongolia have exhibited either
degradation or no change in vegetation [53,54]. Winter snow occurs in Inner Mongolia, but without
glacial/snow accumulation on high-elevation mountains, it cannot be stored until the growing season.
If glacial melting were present to provide supplemental water, the vegetation conditions might have
experienced improvement rather than degradation.

5. Conclusions

In this study, we presented the spatiotemporal trends of vegetation greenness, annual/seasonal
precipitation, and temperature in Northwest China from 1982 to 2011. Linear regression analysis
indicated significant positive NDVI-gs and temperature trends over most parts of Xinjiang, consistent
with previous studies. We found that total annual precipitation changed little and non-significantly,
whereas winter precipitation significantly increased, and the increased vegetation greenness was due
to this increase. Due to the lack of observable changes in precipitation during the growing season
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throughout the study period, we concluded that climate-warming-induced glacial melting might have
provided another source of water for both natural and cultivated vegetation. The results from the
GRACE total mass anomaly measurements demonstrated that glaciers experienced rapid melting
during 2003–2011 and that the melting was empirically related to the vegetation growth. In general,
our results are consistent with our main hypothesis that both increased winter precipitation and
warming-induced glacial melting were associated with the increased vegetation greenness in Xinjiang
in recent decades. The precipitation increase mainly occurred in the winter, whereas the temperature
increase occurred in all seasons except winter. As a result, snow and glacier accumulated mass in the
winter and melted during the growing season, thereby promoting vegetation growth.
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