
International Journal of Infectious Diseases 75 (2018) 39–48
Spatial analysis of dengue fever and exploration of its
environmental and socio-economic risk factors using ordinary
least squares: A case study in five districts of Guangzhou City,
China, 2014

Yujuan Yuea, Jimin Suna, Xiaobo Liua, Dongsheng Rena, Qiyong Liua, Xiangming Xiaob,
Liang Lua,*
a State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for
Disease Control and Prevention, Beijing 102206, People’s Republic of China
bDepartment of Microbiology and Plant Biology, University of Oklahoma, OK, USA

A R T I C L E I N F O

Article history:
Received 22 May 2018
Received in revised form 24 July 2018
Accepted 27 July 2018
Corresponding Editor: Eskild Petersen, Aar-
hus, Denmark

Keywords:
Dengue fever
Environmental and socio-economic factors
Spatial pattern analysis
Spatial statistics analysis
Spearman rank correlation
OLS
Guangzhou

A B S T R A C T

Objective: Spatial patterns and environmental and socio-economic risk factors of dengue fever have been
studied widely on a coarse scale; however, there are few such quantitative studies on a fine scale. There is
a need to investigate these factors on a fine scale for dengue fever.
Methods: In this study, a dataset of dengue fever cases and environmental and socio-economic factors was
constructed at 1-km spatial resolution, in particular ‘land types’ (LT), obtained from the first high
resolution remote sensing satellite launched from China (GF-1 satellite), and ‘land surface temperature’,
obtained from moderate resolution imaging spectroradiometer (MODIS) images. Spatial analysis
methods, including point density, average nearest neighbor, spatial autocorrelation, and hot spot
analysis, were used to analyze spatial patterns of dengue fever. Spearman rank correlation and ordinary
least squares (OLS) were used to explore associated environmental and socio-economic risk factors of
dengue fever in five districts of Guangzhou City, China in 2014.
Results: Atotal of 30 553 dengue fevercaseswere reported in the districtsof Baiyun, Haizhu, Yuexiu, Liwan, and
Tianhe of Guangzhou, China in 2014. Dengue fever cases showed strong seasonal variation. The cases from
August to October accounted for 96.3% of the total cases in 2014. The top three districts for dengue fever
morbidity were Baiyun (1.32%), Liwan (0.62%), and Haizhu (0.60%). Strong spatial clusters of dengue fever cases
were observed. Areas of high density for dengue fever were located at the district junctions. The dengue fever
outbreak was significantly correlated with LT, normalized difference water index (NDWI), land surface
temperature of daytime (LSTD), land surface temperature of nighttime (LSTN), population density (PD), and
gross domestic product (GDP) (correlation coefficients of 0.483, 0.456, 0.612, 0.699, 0.705, and 0.205,
respectively). The OLS equation was built with dengue fever cases as the dependent variable and LT, LSTN, and
PD as explanatoryvariables. The residuals were not spatiallyautocorrelated. The adjusted R-squared was 0.320.
Conclusions: The findings of spatio-temporal patterns and risk factors of dengue fever canprovide scientific
information for public health practitioners to formulate targeted, strategic plans and implement effective
public health prevention and control measures.
© 2018 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

Dengue fever is a systemic viral infection transmitted by
mosquitoes of the Aedes genus (Simmons et al., 2012), and is
endemic in more than 100 countries of the Southeast Asia,
Americas, Western Pacific, Africa, and Eastern Mediterranean
* Corresponding author.
E-mail address: luliang@icdc.cn (L. Lu).

https://doi.org/10.1016/j.ijid.2018.07.023
1201-9712/© 2018 The Authors. Published by Elsevier Ltd on behalf of International Soc
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
regions (Guzman and Harris, 2015). A study in 2013 estimated that
390 million people had dengue virus infections with 96 million
cases annually worldwide, more than three times higher than the
World Health Organization 2012 estimates (Bhatt et al., 2013).
Dengue fever has evolved from a sporadic disease to a major public
health problem with substantial social and economic impacts
because of increasing geographical extension, numbers of cases,
and disease severity (Guzman and Harris, 2015).
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Dengue fever is a notifiable disease in China. From 1978 to 2008,
a total of 655 324 cases and 610 deaths were reported in Mainland
China. From 2009 to 2014, a total of 52 749 cases and six deaths
were notified (Chen and Liu, 2015). Dengue fever outbreaks have
spread from Guangdong and Hainan in the southern coastal areas
to the relatively northern and western areas including Fujian,
Zhejiang, and Yunnan, with shorter outbreak intervals as compared
to those before the 1990s (Wu et al., 2010). Guangdong has been
the area most seriously affected by dengue fever in China (Liu et al.,
2014), and the majority of cases have occurred in Guangzhou, the
capital city of Guangdong (Wang et al., 2013a). In recent years,
Guangdong has had the highest incidence of dengue fever in China
(Wang et al., 2013b; Fan et al., 2014; Li et al., 2013). According to the
China National Notifiable Disease Surveillance System, an exten-
sive dengue outbreak that posed a substantial socio-economic
burden hit China in 2014 (Chen and Liu, 2015), with 47 127 dengue
fever cases diagnosed in the country, 45 231 dengue fever cases in
Guangdong, and 37 382 dengue fever cases in Guangzhou, among
which 30 553 cases were aggregated in the districts of Baiyun,
Liwan, Yuexiu, Haizhu, and Tianhe. The latter four districts belong
to old districts of Guangzhou.

A better understanding of dengue fever outbreaks, especially
spatial patterns, would help in the planning of resource allocation
for dengue fever prevention and control (Lai et al., 2015). Most
research on the spatio-temporal analysis of dengue fever has been
based on a coarse scale (Bhatt et al., 2013; Chen and Liu, 2015; Lai
et al., 2015; Hashizume et al., 2012; Corner et al., 2013; Dewan
et al., 2017; Lippi et al., 2018; Castro et al., 2018; Shearer et al.,
2018), such as the census district (Corner et al., 2013; Dewan et al.,
2017), block (Lippi et al., 2018), or municipality (Castro et al., 2018).
Most studies on dengue fever in China have been based on an
administrative scale, such as the province, city, or district (Liu et al.,
2014; Wang et al., 2013a,b; Fan et al., 2014; Li et al., 2013), and only
a few studies on the spatio-temporal analysis of dengue fever have
been based on the administrative scale of a town with an area in
the dozens of square kilometers (Qi et al., 2015). However, dengue
fever field monitoring performed by the present authors has
shown that adjacent blocks may have significantly different
dengue fever outbreaks. In other words, dengue fever outbreaks
are similar on a coarse scale, but the spatio-temporal patterns on a
fine scale may clearly be different. In order to evaluate the hotspot
areas exactly, dengue fever analysis should be explored at as fine a
spatial resolution as possible.

Dengue fever outbreaks are known to be strongly influenced by
imported cases (Sang et al., 2014, 2015), mosquito density (Sang
et al., 2014, 2015; Lai, 2011), meteorological factors (Wang et al.,
2013a) (such as air temperature (Sang et al., 2014, 2015; Eastin
et al., 2014; Xu et al., 2016; Goto et al., 2013), rainfall (Sang et al.,
2014, 2015; Xu et al., 2016; Goto et al., 2013; Castro et al., 2018),
relative humidity (Sang et al., 2014), vapor pressure (Sang et al.,
2014), air pressure (Sang et al., 2014), and sea surface temperature
(Lai, 2011; Laureano-Rosario et al., 2017)), socio-economic factors
(Qi et al., 2015; Hagenlocher et al., 2013; Wu et al., 2009), and
environmental factors (such as water (Fullerton et al., 2014; Tian
et al., 2016), vegetation (Qi et al., 2015), river levels (Hashizume
et al., 2012), access to paved roads, and housing conditions (Lippi
et al., 2018)). Moreover, in dengue fever field monitoring, the
present authors have found that dengue fever is closely related to
environmental and socio-economic conditions, such as sanitation
status, population density, ventilation conditions, etc.

Meteorological data rather than remote sensing data have been
used in most dengue fever research in the past (Fan et al., 2014;
Sang et al., 2014, 2015). For an area of 9 600 000 km2, there are
fewer than 800 meteorological stations in China. Furthermore, air
temperature rather than land surface temperature has been used
in such research (Sang et al., 2014, 2015). Land surface temperature
derived from remote sensing images at a moderate spatial
resolution has a smaller spatial scale and shows the true
environmental condition more directly. Some researchers have
studied risk factors of dengue fever using remote sensing data on
the coarse scale of a city or neighborhood (Laureano-Rosario et al.,
2017; Tian et al., 2016; Khormi and Kumar, 2011), such as sea
surface temperature (Laureano-Rosario et al., 2017) and surface
water areas (Tian et al., 2016). Others have studied dengue fever on
a neighborhood scale but with the existing field investigation data
(Delmelle et al., 2016). However, the use of remote sensing images
on a fine scale has been scarce in previous studies. Such
investigations are lacking, particularly in China. China now has
its first high spatial resolution satellite – the GF-1 satellite. This has
provided the opportunity to use China’s own high resolution
satellite data for application in disease prevention and control.

In this study, a dataset of dengue fever cases and environmental
and socio-economic factors was constructed at 1-km spatial
resolution for five districts of Guangzhou City, China in 2014.
Spatial analysis methods including point density, average nearest
neighbor, spatial autocorrelation, and hot spot analysis were
adopted to analyze spatial patterns of dengue fever, and Spearman
rank correlation and ordinary least squares were used to confirm
environmental and socio-economic risk factors of dengue fever, in
particular land types from GF-1 remote sensing images and land
surface temperature from moderate resolution imaging spectror-
adiometer (MODIS) images.

Materials and methods

Study area

Guangzhou is the capital city of Guangdong Province. It is the
largest coastal city in southern China, with an area of 7000 km2 and
about 13.5 million permanent residents. Guangzhou is located in
the subtropical coastal area with an oceanic subtropical monsoon
climate. In Guangzhou, the summer is long and the winter is short.
The average daily temperature in Guangzhou is 16 �C in January
and 28.7 �C in July, and the average annual precipitation ranges
from 1600 mm to 1900 mm.

A dengue fever outbreak occurred in the five districts of Baiyun,
Liwan, Yuexiu, Haizhu, and Tianhe in Guangzhou, China in 2014
(Figure 1).

Dengue fever case data

Data on dengue fever cases from January 1, 2014 to December
31, 2014 were collected from the China Information System for
Disease Control and Prevention. Each dengue fever case was
confirmed through clinical diagnosis or laboratory diagnosis, and
details including the residential address, date of illness onset, etc.,
were available for each case. With geocoding technology, the
address of each dengue fever case was transformed to a particular
spatial location with latitude and longitude. A total of 30 553 cases
from five districts of Guangzhou in 2014 were used in the analysis.
The distribution of these cases is shown in Figure 2, in which the
grey grid has a spatial resolution of 1 km. The study area comprised
758 grids. The numbers of dengue fever cases in these grids were
obtained using the Data Management Tools and Spatial Statistics
Tools of ArcMap 10.1 software. Environmental factor values in
these grids were also obtained in this way.

Environmental and socio-economic factors

The environmental factors of land types (LT), normalized
difference water index (NDWI), land surface temperature of



Figure 1. Geographic locations of the study areas.
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daytime (LSTD), and land surface temperature of nighttime (LSTN),
and the socio-economic factors of population density (PD) and
gross domestic product (GDP), were considered in this study
(Figure 3).

The GF-1 satellite, made in China, was launched on April 26,
2013. Its multi-band image resolution is 16 m. At least two scenes
of GF-1 images obtained on August 7, 2015 were chosen. The
remote sensing images taken by the GF-1 satellite were down-
loaded from the China Center for Resources Satellite Data and
Application (http://www.cresda.com/CN/sjfw/zxsj/index.shtml).
LT and NDWI used in this study were from image interpretation
of GF-1 multi-band remote sensing images. LT including water,
vegetation, and buildings was interpreted according to the object-
oriented classification approach in eCognition software, with a
classification accuracy of 0.91. NDWI was interpreted according to
band math in ENVI 5.2 software.

LSTD and LSTN at 1-km spatial resolution used in this study
were the mean values of MODIS MOD11A2 daily reprocessing
products from July 1 to September 30, 2014. These were down-
loaded from NASA MODIS LAADS DAAC (https://ladsweb.modaps.
eosdis.nasa.gov/); the unit of LSTD and LSTN was 0.1 K.

PD and GDP raster data at 1-km spatial resolution were
provided by the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences (http://www.
igsnrr.ac.cn/) and were interpolated from the census data of PD and
GDP in 2010.

Finally, all data were obtained at 1-km spatial resolution
through image resampling and geometric correction, which
coincided with the grids at 1-km spatial resolution.
Spatial pattern analysis

Spatial analysis methods of point density (Silverman, 1986),
average nearest neighbor (Mitchell, 2005), spatial autocorrelation
(global Moran’s I) (Mitchell, 2005), and hot spot analysis (Scott and
Warmerdam, 2005) were adopted to assess dengue fever spatial
patterns such as spatial distribution characteristics, spatial
clustering, and spatial hot spots in the five districts of Guangzhou.
The spatial analysis methods have been applied successfully in
disease analysis. Spatial autocorrelation and hot spot analysis have
usually been used in dengue fever spatial analysis on a coarse scale
(Liu et al., 2014; Wang et al., 2013b; Fan et al., 2014). However these
methods were used in dengue fever spatial analysis on a fine scale
in this study, such as the point scale and 1-km spatial resolution
grid. Point density and average nearest neighbor were applied on
the point scale. Spatial autocorrelation and hot spot analysis were
applied on the 1-km spatial resolution grid.

‘Point density’ calculates the density of point features around
each output raster cell. Conceptually, a neighborhood is defined
around each raster cell center, and the number of points that fall
within the neighborhood is totaled and divided by the area of the
neighborhood.

‘Average nearest neighbor’ measures the distance between each
feature centroid and its nearest neighbor’s centroid location. It
then averages all of these nearest neighbor distances. If the average
distance is less than the average for a hypothetical random
distribution, the distribution of the features being analyzed is
considered to be clustered. If the average distance is greater than a
hypothetical random distribution, the features are considered to be

http://www.cresda.com/CN/sjfw/zxsj/index.shtml
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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Figure 2. Geographic locations of dengue fever cases in the study areas, 2014.
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dispersed. If the average nearest neighbor ratio is less than 1, the
pattern exhibits clustering. If the index is greater than 1, the trend
is towards dispersion.

‘Spatial autocorrelation’ (global Moran’s I) measures spatial
autocorrelation based on both feature locations and feature values
simultaneously. The global Moran’s I index values fall between
�1.0 and +1.0. This index evaluates whether the pattern expressed
is clustered (>0), dispersed (=0), or random (<0).

The ‘hot spot analysis’ (Getis-Ord Gi*) returned for each feature
in the dataset is a z-score. For statistically significant positive
z-scores, the larger the z-score is, the more intense the clustering
of high values (hot spot). For statistically significant negative
z-scores, the smaller the z-score is, the more intense the clustering
of low values (cold spot).

Spatial statistical models

Spearman rank correlation (Lehman, 2005) was used to explore
the relationships between dengue fever and risk factors. Ordinary
least squares (OLS) (Mitchell, 2005) was adopted to establish an
equation between dengue fever and several risk factors in this
research.

Spearman rank correlation assesses how well the relationship
between two variables can be described using a monotonic function.

OLS is a method for estimating the unknown parameters in a
linear regression model, with the goal of minimizing the sum of the
squares of the differences between the observed responses (values
of the variable being predicted) in the given dataset and those
predicted by a linear function of a set of explanatory variables.
Visually this is seen as the sum of the squared vertical distances
between each data point in the set and the corresponding point on
the regression line: the smaller the differences are, the better the
model fits the data. OLS is the best known of all regression
techniques. It is also the proper starting point for all spatial
regression analysis. It provides a global view of the variable or
process one is trying to understand or predict; it creates a single
regression equation to represent that process. The OLS regression
equation is the mathematical formula applied to the explanatory
variables to best predict the dependent variable. In the regression
equation, the dependent variable is always Y and the explanatory
variables are always Xs. Each explanatory variable is associated
with a regression coefficient describing the strength and the sign of
that variable’s relationship to the dependent variable. A regression
equation might appear as follows (ESRI, 2017a): Y = β0 + β1X1 +
β2X2 + . . . βnXn+ e, where Y is the dependent variable, Xn is the
explanatory variable, βn is the coefficient, and e is the random error
residual.

Trust in the model can be assessed according to six rules: (1) the
coefficients have the expected signs; (2) there is no redundancy
among explanatory variables; (3) the coefficients are statistically
significant; (4) the residuals are normally distributed; (5) there is a
strong adjusted R-square value; (6) the residuals are not spatially



Figure 3. Environmental factors. A:LT; B:NDWI; C:LSTD; D:LSTN; E:PD; F:GDP.
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Figure 4. The monthly dengue fever occurrences in the study areas from July to November, 2014.

44 Y. Yue et al. / International Journal of Infectious Diseases 75 (2018) 39–48



Table 1
Dengue fever cases in the study area, 2014.

Baiyun Yuexiu Liwan Tianhe Haizhu

Number of dengue fever cases 11 843 4806 4469 3436 5999
Morbidity of dengue fever 1.32% 0.41% 0.62% 0.42% 0.60%
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autocorrelated (ESRI, 2017b). Collinearity was accounted for
among the variables utilized according to the six rules of the
OLS model.

Results

Monthly occurrence of dengue fever

The dengue fever outbreaks in the five districts of Guangzhou in
2014 are summarized in Figure 4 and Table 1. The monthly dengue
fever cases peaked in October with 15 034 cases; other peaks
occurred in September with 12 908 cases and August with 1473
cases. There were few dengue fever cases from January to May.
Dengue fever cases were concentrated in the districts of Baiyun,
Haizhu, and Yuexiu, accounting for 74.1% of the total cases in the
study area. The yearly dengue fever cases reached the highest
number in Baiyun District with 11843 cases (38.8%), followed by
Haizhu District with 5999 cases and Yuexiu District with 4806
cases (Table 1 and Figure 4). The top three districts for dengue fever
morbidity were Baiyun (1.32%), Liwan (0.62%), and Haizhu (0.60%).
Figure 5. Point density analysis of den
Spatial analysis of dengue fever

As shown in Figure 5, the high density areas for dengue fever
cases (between 370 and 617) at 1-km spatial resolution, which are
shown in red and orange, were located at the junctions between
Baiyun District, Yuexiu District, Liwan District, and Haizhu District.

The average nearest neighbor result indicated that dengue fever
cases in the study area were in clustered patterns, with a nearest
neighbor ratio of 0.17, z-score of �277.33, and p-value of less than
0.01.

The spatial autocorrelation (global Moran’s I) result again
showed that dengue fever cases in the study area were in clustered
patterns, with a Moran’s index of 0.59 and p-value of less than 0.01.

The hot spot analysis (Getis-Ord Gi*) results are given in Figure
6. The grids in selected ones were with statistically significantly
positive z-scores. Most of these grids showed the most intense
clustering of high values, which were located in Baiyun District,
Yuexiu District, Liwan District, and Haizhu District.

Identifying environmental and socio-economic risk factors of dengue
fever

Grid data with a PD value of zero or any other risk factor value of
zero were removed. Finally, data for 683 grids were considered in
this section.

The correlations between dengue fever cases and risk factors
such as LT, NDWI, LSTD, LSTDN, PD, and GDP are summarized in
gue fever in the study areas, 2014.



Figure 6. Hot spot analysis for dengue fever cases in the study areas, 2014.
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Table 2. The results showed that the dengue fever outbreak was
significantly positively correlated with LT, NDWI, LSTD, LSTN, PD,
and GDP, with correlation coefficients of 0.483, 0.456, 0.612, 0.699,
0.705, and 0.205, respectively.

Risk factors were first inputted into the model. Then, according
to the six rules of OLS model availability, the risk factors were
removed from the model step by step. Finally, three risk factors
were adopted in the model (Table 3). The residuals of this model
were not spatially autocorrelated. The adjusted R-squared was
0.320. The model could be shown as follows: Ŷ = �5215.584 +
20.401X1 + 17.461X2 + 31.671X3, where Ŷ was dengue fever case, X1

was LT, X2 was LSTN, and X3 was PD, which was expressed as the
number per 10 000.

Discussion

Dengue fever shows a seasonal pattern. During 2005–2014,
99.8% of indigenous dengue fever cases in continental China
Table 2
Relationships between dengue fever cases and environmental factors.

LT NDWI LSTD LSTN Population GDP

rs 0.483** 0.456** 0.612** 0.699** 0.705** 0.205**

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000

LT, land types; NDWI, normalized difference water index; LSTD, land surface
temperature of daytime; LSTN, land surface temperature of nighttime; GDP, gross
domestic product.

** Correlation significant at the 0.01 level (2-tailed).
occurred from July to November (Lai et al., 2015). A dengue
outbreak hit the city of Guangzhou extensively in 2014. There were
30 553 dengue fever cases in five districts of Guangzhou City.
Dengue fever cases were concentrated in August, September, and
October, accounting for 96.3% of the total cases. Dengue fever cases
peaked in October, accounting for 49.2% of the total cases.

Dengue fever also exhibits a spatial clustering characteristic
(Liu et al., 2014; Wang et al., 2013a,b; Fan et al., 2014; Li et al., 2013).
Counties around Guangzhou City and Chaoshan Region were at
increasing risk of dengue fever in Guangdong Province from 2001
to 2006 (Liu et al., 2014). Dengue fever cases in Guangdong
Province during the years 1978–2010 were mostly concentrated in
the developed regions of the Pearl River Delta, such as Zhanjiang
and Shantou (Wang et al., 2013b). Strong spatial clusters of dengue
fever were distributed in the study area in 2014. High density areas
of dengue fever were located at the district junctions. The most
intense clustering areas for high values were located in the areas
adjacent to the four districts of Baiyun, Yuexiu, Liwan, and Haizhu
(Figures 5 and 6). In China, a street or town on the prefectural
boundary can roughly be regarded as peri-urban, with lower levels
of management from both prefectures, because most of the streets/
towns on the prefectural boundary are far away from the
prefectural centers. These peri-urban areas can easily suffer from
poor hygiene standards and indirectly promote vector clusters
(Goto et al., 2013). The results were based on a spatial resolution of
1 km. Compared with previous studies performed on a coarse scale
(Liu et al., 2014; Wang et al., 2013a,b; Fan et al., 2014; Li et al., 2013),
the results are more detailed and specific, and could provide more



Table 3
Summary of OLS results and OLS diagnostics.

Summary of OLS results
Variable Coefficienta Probabilityb Robust_Prb VIFc

Intercept �5215.583917 0.000000* 0.000000* –

LT 20.400690 0.000087* 0.000004* 1.140798
LSTN 17.460860 0.000000* 0.000000* 1.478022
PD 31.671152 0.000000* 0.000000* 1.476165

OLS diagnostics
Number of observations: 683 Akaike’s information criterion (AICc)d: 7955.588258
Multiple R-squaredd: 0.325421 Adjusted R-squaredd: 0.320424
Joint F-statistice: 83.726619 Prob(>F), (3679) degrees of freedom: 0.000000*

Joint Wald statistice: 191.299979 Prob(>Chi-squared), (3) degrees of freedom: 0.000000*

Koenker (BP) statisticf: 27.182036 Prob(>Chi-squared), (3) degrees of freedom: 0.557469
Jarque–Bera statisticg: 12 276.417501 Prob(>Chi-squared), (2) degrees of freedom: 0.812536

OLS, ordinary least squares; LT, land types; LSTN, land surface temperature of nighttime; PD, population density.
* An asterisk next to a number indicates a statistically significant p-value (p < 0.01).
a Coefficient: represents the strength and type of relationship between each explanatory variable and the dependent variable.
b Probability and robust probability (Robust_Pr): the asterisk (*) indicates a coefficient is statistically significant (p < 0.01); if the Koenker (BP) statistic [f] is statistically

significant, use the robust probability column (Robust_Pr) to determine coefficient significance.
c Variance inflation factor (VIF): large variance inflation factor (VIF) values (>7.5) indicate redundancy among explanatory variables.
d R-squared and Akaike’s information criterion (AICc): measures of model fit/performance.
e Joint F and Wald statistics: the asterisk (*) indicates overall model significance (p < 0.01); if the Koenker (BP) statistic [f] is statistically significant, use the Wald statistic to

determine overall model significance.
f Koenker (BP) statistic: when this test is statistically significant (p < 0.01), the relationships modeled are not consistent (either due to non-stationarity or

heteroscedasticity). You should rely on the robust probabilities (Robust_Pr) to determine coefficient significance and on the Wald statistic to determine overall model
significance.

g Jarque–Bera statistic: when this test is statistically significant (p < 0.01) model predictions are biased (the residuals are not normally distributed).
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useful information for decision-making and recommendations for
dengue fever prevention and control.

Dengue fever is an acute infectious disease caused by infection
with anyoneof four serotypes of dengue virus(DENV 1–4), whichare
transmitted by Aedes mosquitoes (Lai et al., 2015). There is sufficient
evidence to argue that dengue fever is most likely influenced by a
complexcombinationof factorsratherthan a single focuspathogenic
factor, including environmental, demographic, entomological, and
epidemiological factors (Hashizume et al., 2012; Lippi et al., 2018;
Castro et al., 2018; Vanwambeke et al., 2006; Thammapalo et al.,
2005). The dengue fever outbreak was positively correlated with LT,
NDWI, LSTD, LSTN, PD, and GDP, and LSTN and PD were found to
contribute more in this research. A developed economy and
convenient transportation can promote population movement
(Lippi et al., 2018; Qi et al., 2015; Hagenlocher et al., 2013; Wu
et al., 2009), and this can promote dengue fever transmission. There
was no doubt that dengue fever was positively correlated with PD
and GDP in this research. Water and a suitable temperature are
essential factors for the larvae of the dengue virus vector, the Aedes
mosquito. Human activities are closely related to the house address,
work units, and other places of activity. Dengue fever was highly
positively correlated with NDWI, LSTD, LSTN, and LT in this research,
which is in agreement with the existing research (Fullerton et al.,
2014). LSTN is usually lower than LSTD in the same spatial place. The
correlation coefficient between dengue fever and LSTN was slightly
larger than that between dengue fever and LSTD, which further
confirms that the dengue fever outbreak was significantly associated
with daily minimum temperature (Sang et al., 2014). Finally, the OLS
model of dengue fever was builtsuccessfully with dengue fevercases
as the dependent variable and the three risk factors of LT, LSTN, and
PD as the explanatory variables.

There are several reasons why the adjusted R-squared of the
OLS model of dengue fever was not high in this study. First, dengue
fever is most likely influenced by a complex combination of factors,
including some that were not considered in this research. For
example, dengue fever is directly correlated with Aedes mosquito
density. Second, several data sources from different periods were
used in this research: the final number of dengue fever cases in
2014, GF-1 images from August 7, 2015, MODIS products from July
1 to September 30, 2014, and PD and GDP data interpolated from
2010, which might have influenced the model results. However,
these data were adaptable. There were image quality problems,
including image blurring, image stripe, etc. for GF-1 multi-band
images of the study area from 2013 to 2015. Thus, two scenes of GF-
1 images in August 7, 2015 were chosen. Guangzhou is a well
developed city and there was little change in LT between 2014 and
2015. Thus LT in 2015 could be used instead of that in 2014.
Comprehensively considering the similarity in dengue fever
seasonality, influence of precipitation on dengue fever outbreaks,
and rainfall characteristics in the study area, the NDWI interpre-
tation product from GF-1 images in August 7, 2015 was adopted. At
the same time, comprehensively considering the similarity in
dengue fever seasonality, influence of temperature on dengue
fever outbreaks, representativeness of land surface temperature,
and weather conditions at the same time among the years, as well
as the limitations in quality of MODIS images, such as the loss of
some local parts in the images, etc., LSTD and LSTN from July 1 to
September 30, 2014 were adopted. PD and GDP are relatively stable
factors. It was thus considered acceptable to use the interpolated
data from 2010 to represent data for 2014. Third, there were
machine errors and artificial errors in data processing. Some
spatial environmental data were missing, especially in the study
marginal areas. A follow-up study will be performed in which other
data mining methods will be explored, as well as the relationships
between dengue fever outbreaks and environmental factors.

Domestic GF-1 remote sensing images at 16-m spatial
resolution were used in this research. Chinese Center for Disease
Control and Prevention dengue fever field interventions consider a
circular area of 200 m radius from dengue fever case points as the
core area for intervention, and the area between 200 m and 400 m
radius from the dengue fever case point as the area in which
precautions should be taken. Thus more remote sensing images at
higher spatial resolution, especially domestic images, should be
used in disease prevention and control in the future. The research
was based on a mixture of geographical and statistical information
and a combination of spatial geographic data and spatial statistical
methods. This research quantitatively obtained spatial patterns of
dengue fever outbreaks and the correlations between dengue fever
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outbreaks and risk factors using spatial analysis methods and
spatial statistical methods at a relatively small scale. This work
improves our understanding of differences in spatial patterns of
dengue fever and the effects of environmental and socio-economic
risk factors on dengue fever, and thus can effectively support
targeted prevention and control.

Conclusions

This research provides valuable information on the spatial
patterns and associated environmental and socio-economic risk
factors of dengue fever using remote sensing (RS) and
geographical information system (GIS) technology in Guangz-
hou City. Dengue fever cases were clustered in August,
September, and October, and were clustered in the areas
adjacent to the districts of Baiyun, Yuexiu, Liwan, and Haizhu.
The dengue fever outbreak was positively correlated with LT,
NDWI, LSTD, LSTN, PD, and GDP. The model equation between
dengue fever and LT, LSTN, and PD was constructed, which will
provide scientific information for public health practitioners to
formulate targeted, strategic plans and implement effective
public health prevention and control measures.

Acknowledgements

This study was supported by the National Major Research and
Development ProgramAuthor C (grant numbers 10-Y30B11-9001-
14/16 and 2016YFC1200802).and State Key Laboratory of Infectious
Disease Prevention and Control.

Author contributions

Liang Lu and Qiyong Liu initiated the study. Yujuan Yue
collected the data, cleaned the data, performed the statistical
analysis and drafted the manuscript. Jimin Sun, Xiaobo Liu, and
Dongsheng Ren revised the manuscript.

Ethics statement

No human or animal samples were included in the research
presented in this article; therefore ethical approval was not
necessary for this research.

Conflict of interest

The authors declare no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

References

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global
distribution and burden of dengue. Nature 2013;496(7446):504–7.

Castro DB, Sampaio VS, Albuquerque BC, Pinto RS, Sadahiro M, Passos RA, et al.
Dengue epidemic typology and risk factors for extensive epidemic in Amazonas
state, Brazil, 2010–2011. BMC Public Health 2018;18:356.

Chen B, Liu QY. Dengue fever in China. Lancet 2015;385(9978):1621–2.
Corner RJ, Dewan AM, Hashizume M. Modelling typhoid risk in Dhaka Metropolitan

Area of Bangladesh: the role of socio-economic and environmental factors. Int J
Health Geogr 2013;12:13.

Delmelle E, Hagenlocher M, Kienberger S, Casas T. A spatial model of socioeconomic
and environmental determinants of dengue fever in Cali, Colombia. Acta Trop
2016;164:169–76.

Dewan AM, Abdullah AYM, Shogib MRI, Karim R, Rahman MM. Exploring spatial and
temporal patterns of visceral leishmaniasis in endemic areas of Bangladesh.
Trop Med Health 2017;45:29.

ESRI. ArcGIS 10.3 help. ESRI Press; 2017.
ESRI. Regression analysis tutorial for ArcGIS 10. ESRI Press; 2017.
Eastin MD, Delmelle E, Casas I, Wexler J, Self C. Intra-and interseasonal

autoregressive prediction of dengue outbreaks using local weather and regional
climate for a tropical environment in Colombia. Am J Trop Med Hyg 2014;91
(3):598–610.

Fan J, Lin H, Wang C, Bai l, Yang S, Chu C, et al. Identifying the high-risk areas and
associated meteorological factors of dengue transmission in Guangdong
Province, Chinafrom 2005 to 2011. Epidemiol Infect 2014;142(3):634–43.

Fullerton LM, Dickin SK, Schuster-Wallace CJ. Mapping global vulnerability to
dengue using the water associated disease index. United Nations University;
2014.

Goto K, Kumarendran B, Mettananda S, Gunasekara D, Fujii Y, Kaneko S. Analysis of
effects of meteorological factors on dengue incidence in Sri Lanka using time
series data. PLoS One 2013;8(5)e63717, doi:http://dx.doi.org/10.1371/journal.
pone.0063717 PMID: 23671694.

Guzman MG, Harris E. Dengue. Lancet 2015;385:453–65.
Hagenlocher M, Delmelle E, Casas I, Kienberger S. Assessing socioeconomic

vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based
modeling. Int J Health Geogr 2013;12(1):36.

Hashizume M, Dewan AM, Sunahara T, Rahman MZ, Yamamoto T. Hydroclimato-
logical variability and dengue transmission in Dhaka, Bangladesh: a time-series
study. BMC Infect Dis 2012;12:98.

Khormi HM, Kumar L. Modelling dengue fever risk based on socioeconomic
parameters, nationality and age groups: GIS and remote sensing based case
study. Sci Total Environ 2011;409:4713–9.

Lai SJ, Huang ZJ, Zhou H, Anders KL, Perkins TA, Yin W, et al. The changing
epedemiology of dengue in china 1990-2014: a descriptive analysis of 25 years
of nationwide surveillance data. BMC Med 2015;13:100.

Lai LW. Influence of environmental conditions on asynchronous outbreaks of
dengue disease and increasing vector population in Kaohsiung, Taiwan. Int J
Environ Health Res 2011;21(2):133–46.

Laureano-Rosario AE, Garcia-Region JE, Gomez-Carro S, Farfan-Ale JA, Muller-
Karger FE. Modelling dengue fever risk in the state of Yucatan, Mexico using
regional-scale satellite-derived sea surface temperature. Acta Trop
2017;172:50–7.

Lehman A. Jmp for basic univariate and multivariate statistics: a step-by-step guide.
Cary, NC: SAS Press; 2005.

Li S, Tao H, Xu Y. Abiotic determinants to the spatial dynamics of dengue fever in
Guangzhou. Asia Pac J Public Health 2013;25(3):239–47.

Lippi CA, Stewart-Ibarra AM, Muñoz AG, Borbor-Cordova MJ, Mejía R, Rivero K, et al.
The social and spatial ecology of dengue presence and burden during an
outbreak in Guayaquil, Ecuador, 2012. Int J Environ Res Public Health
2018;15:827.

Liu CX, Liu QY, Lin HL, Xin BQ, Nie J. Spatial analysis of dengue fever in Guangdong
Province, China, 2001-2006. Asia Pac J Public Health 2014;6(1):58–66.

Mitchell A. The ESRI guide to GIS analysis, Volume 2. ESRI Press; 2005.
Qi XP, Wang Y, Li Y, Meng YJ, Chen QQ, Ma JQ, et al. The effects of socioeconomic and

environmental factors on the incidence of dengue fever in the Pearl River Delta,
China, 2013. PLoS Negl Trop Dis 2015;9(10)e0004159, doi:http://dx.doi.org/
10.1371/journal.pntd.0004159.

Sang S, Yin W, Bi P, Zhang HL, Wang CG, Liu XB, et al. Predicting local dengue
transmission in Guangzhou, China, through the influence of imported Cases,
mosquito density and climate variability. PLoS One 2014;9(7)e102755, doi:
http://dx.doi.org/10.1371/journal.pone.0102755.

Sang S, Gu S, Bi P, Yang WZ, Xu L, Yang J, et al. Predicting unprecedented dengue
outbreak using imported cases and climatic factors in Guangzhou, 2014. PLoS
Negl Trop Dis 2015;9(5)e0003808, doi:http://dx.doi.org/10.1371/journal.
pntd.0003808.

Scott L, Warmerdam N. Extend crime analysis with ArcGIS spatial statistics tools in
ArcUser online. 2005.

Shearer FM, Longbottom J, Browne AJ, Pigott DM, Brady OJ, Kraemer MUG, et al.
Existing and potential infection risk zones of yellow fever worldwide: a
modelling analysis. Lancet Glob Health 2018;6:270–8.

Silverman BW. Density estimation for statistics and data analysis. New York:
Chapman and Hall; 1986.

Simmons CP, Farrar JJ, Chau NV, Wills B. Dengue. N Engl J Med 2012;366:1423–32.
Thammapalo S, Chongsuwiwatwong V, McNeil D, Greater A. The climatic factors

influencing the occurrence of dengue hemorrhagic fever in Thailand. Southeast
Asian J Trop Med Public Health 2005;36:191–6.

Tian H, Huang S, Zhou S, Bi P, Yang ZC, Li XJ, et al. Surface water areas
significantlyimpacted 2014 dengue outbreaks in Guangzhou, China. Environ Res
2016;150:299–305.

Vanwambeke SO, van Benthem BH, Khantikul N, Burghoorn-Maas C, Panart K,
Oskam L, et al. Multi-level analyses of spatial and temporal determinants for
dengue infection. Int J Health Geogr 2006;5:5.

Wang CG, Jiang BF, Fan JC, Wang FR, Liu QY. A study of the dengue outbreak and
meteorological factors in Guangzhou, China, by using a Zero-Inflated Poisson
Regression model. Asia Pac J Public Health 2013a;26(1):48–57.

Wang CG, Yang WZ, Fan JC, Wang FR, Jiang BF, Liu QY. Spatial and temporal patterns
of dengue in Guangdong Province of China. Asia Pac J Public Health 2013b;27
(2):844–53.

Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ. Higher temperature and urbanization
affect the spatial patterns of dengue fever transmission in subtropical Taiwan.
Sci Total Environ 2009;407(7):2224–33.

Wu JY, Lun ZR, James AA. Review: dengue fever in Mainland China. Am J Trop Med
Hyg 2010;83(3):664–71.

Xu L, Stige LC, Chan KS, Zhou J, Yang J, Sang SW, et al. Climate variation drives dengue
dynamics. PNAS 2016;114(1):113–8.

http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0005
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0005
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0010
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0010
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0010
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0015
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0020
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0020
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0020
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0025
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0025
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0025
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0030
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0030
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0030
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0035
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0040
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0045
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0045
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0045
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0045
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0050
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0050
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0050
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0055
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0055
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0055
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0060
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0060
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0060
http://dx.doi.org/10.1371/journal.pone.0063717
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0060
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0065
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0070
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0070
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0070
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0075
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0075
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0075
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0080
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0080
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0080
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0085
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0085
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0085
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0090
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0090
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0090
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0095
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0095
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0095
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0095
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0100
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0100
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0105
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0105
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0115
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0115
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0120
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0125
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0125
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0125
http://dx.doi.org/10.1371/journal.pntd.0004159
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0125
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0130
http://dx.doi.org/10.1371/journal.pone.0102755
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0135
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0135
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0135
http://dx.doi.org/10.1371/journal.pntd.0003808
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0135
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0140
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0140
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0145
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0145
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0145
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0150
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0150
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0155
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0160
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0160
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0160
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0165
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0165
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0165
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0170
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0170
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0170
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0175
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0175
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0175
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0180
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0180
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0180
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0185
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0185
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0185
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0190
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0190
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0195
http://refhub.elsevier.com/S1201-9712(18)34484-9/sbref0195

	Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least...
	Introduction
	Materials and methods
	Study area
	Dengue fever case data
	Environmental and socio-economic factors
	Spatial pattern analysis
	Spatial statistical models

	Results
	Monthly occurrence of dengue fever
	Spatial analysis of dengue fever
	Identifying environmental and socio-economic risk factors of dengue fever

	Discussion
	Conclusions
	Acknowledgements
	Author contributions
	Ethics statement
	Conflict of interest
	References


