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A B S T R A C T   

Increased attention has been paid to refining Local Climate Zone (LCZ) maps. However, the 
mapping process is difficult because of image resolution limitations and the lack of detailed 
planning data. To our knowledge for the first time, to promote the application of refined LCZ 
maps in urban climate research, we have proposed the downscaling mapping process by by 
integrating GIS workflow and remote sensing workflow. The results have shown that: (1) By 
adjusting the scale and input of the deep learning model, the LCZ basemap achieved the highest 
overall accuracy of 83.64% and the highest data matching degree of 0.71. (2) Visual interpre-
tation showed that the overall accuracy of LCZ map at all scales is >70%, and the highest overall 
accuracy of 84.44% is achieved at 20 m scale. (3) Usefulness assessment showed that the LST 
levels of LCZs significantly differ at all scales (p < 0.01). The 160 m scale was the most suitable for 
analysis of the thermal characteristics of urban landscapes. This downscaling mapping method 
will help urban planners in developing urban climate models to determine the impact mecha-
nisms of urban development and support progress in sustainable urban development efforts.   

1. Introduction 

Rapid urbanization and climate change are important global trends (Zhang, 2020). The population in global cities have increased 
weekly by ~1 million people and urban areas have expanded by ~20,000 American football fields per day (Zhu et al., 2019a). Pursuit 
of a better life is at the heart of urbanization (Stokes and Seto, 2019). However, as the most pronounced local climate phenomenon in 
urbanization, the urban heat island effect is often accompanied by adverse effects such as increased urban air pollution (Liang et al., 
2021), a surge in the energy demand (Li et al., 2019; Yang et al., 2020a), and increased risk of residents’ heat stress (Li et al., 2018; 
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Vanos et al., 2015). This poses considerable challenges in the sustainable development of cities. Based on the Sustainable Development 
Goals (United Nations, 2015), building sustainable cities and communities and taking climate action are important for achieving peace 
and prosperity for people and our planet. To promote achieving the Sustainable Development Goals, urban climatologists are 
committed to establishing local climate responses to urbanization and planning a more climate-resilient urban sustainable develop-
ment blueprint (Chen et al., 2023; He et al., 2019; Masó et al., 2019; Woodruff et al., 2022). 

The Local Climate Zone (LCZ) (Stewart and Oke, 2012; Stewart et al., 2014) is a useful concept for determining the influence of 
urban landscape changes on local heat island effects (illustrations and real scenes are shown in Table S1 in Support material). Urban 
landscapes have been divided into ten built types and seven natural types according to the material, surface coverage, structure, and 
energy metabolism. This highlights the difference in the thermal environment between different landscape types. The LCZ concept 
focuses on distinguishing urban climate patterns without considering specific regional and cultural characteristics. Therefore, it is 
more easily transferable than landscape classification methods such as urban topographic zones (Ellefsen, 1991), urban land units 
(Stokes and Seto, 2019), and global urban footprints (Esch et al., 2013). The LCZ concept has been widely used in thermal environment 
analysis (Ren et al., 2022; Yu et al., 2023), outdoor thermal comfort improvement (Stepani and Emmanuel, 2022), and urban heat 
island effect mitigation (Li et al., 2021; Yang et al., 2020b). Its effectiveness in addressing the impact of urban climate hotspots, such as 
urban ventilation (Yang et al., 2021a), energy consumption and water balance (Brousse et al., 2016), and carbon emissions has been 
demonstrated (Jarvi et al., 2019). 

GIS workflow is a common means of LCZ mapping using computer technology. Lelovics et al. (2014) and Unger et al. (2014) were 
the first to use GIS workflow for LCZ mapping. Since then, studies applying GIS workflows for mapping have been conducted in >20 
cities worldwide (Quan and Bansal, 2021). LCZ mapping of GIS workflows generally relies on detailed planning data such as building 
vector and land cover data. Increasing the data density is an effective way of improving the mapping accuracy (Ren et al., 2023; Xin 
et al., 2023). Therefore, many studies have incorporated additional parameters into LCZ mapping. This has included the application of 
digital elevation and remote sensing image data to supplement the description of urban surface properties (Estacio et al., 2019). 
Vegetation description information has also been added to improve the classification accuracy of vegetation-type LCZs (Geletič and 
Lehnert, 2016; Oliveira et al., 2020). However, there is a lack of coherent global urban databases suitable for urban climate research 
(Chen et al., 2021), especially in certain developing countries and regions. These areas are expected to experience substantial pop-
ulation migration from rural to urban areas in the next few years (Zhou et al., 2018). Their rapid urbanization process needs to rely on 
LCZs and the promotion of urban climate monitoring and improvement. However, urban data resources and especially building height 
information often have low spatial and temporal resolutions or are imperfect or missing. 

Remote sensing (RS) workflow is another commonly used method for LCZ mapping which is used to directly extract LCZ classi-
fication information from Earth observations (Ma et al., 2021). Compared with GIS workflows, the transferability of RS workflows is 
considerably enhanced. However, this method requires a high-confidence LCZ label dataset as training data (Qiu et al., 2022). World 
Urban Database and Access Portal Tools (WUDAPT) currently represents the primary platform for global LCZ classification. WUDAPT 
officially released global LCZ L0-level maps generated on the LCZ online generation platform based on the random forest algorithm 
(Demuzere et al., 2019, 2020). Deep learning methods are also gaining attention for LCZ classification. Convolutional neural networks 
can effectively employ the receptive field to capture and learn necessary contextual information (Rosentreter et al., 2020). Compared 
with the method provided by WUDAPT, it pays more attention to understanding the target scene, which can improve the overall 
accuracy by 6–8% and the built type accuracy by 10–13% (Yoo et al., 2019). Researchers have committed to promoting convolutional 
neural networks to play more important roles in global LCZ mapping. Based on convolutional neural networks, researchers have 
established many LCZ-specific classification networks including Sen2LCZ (Qiu et al., 2020), LCZNet (Liu and Shi, 2020), and MSMLA 
(Kim et al., 2021). Based on the Sentinel-2 satellite images with 10 m spatial resolution, a LCZ label dataset named So2Sat LCZ42 (Zhu 
et al., 2019b) comprising 42 metropolitan areas with different cultures and development levels worldwide was also established for 
global LCZ mapping. However, the LCZ map generated by the RS workflow needs to have the same grid size as the training data. This 
means that adjustment of the grid scale of the LCZ map under the CNN method needs to be based on the reevaluation of the LCZ label 
dataset at the same scale, which relies heavily on unified urban knowledge. 

The fusion of GIS and RS workflows promotes more refined and accurate development of LCZ mapping. At this stage, LCZ mapping 
studies that integrate both workflows have predominantly focused on using GIS data as an optional input for RS workflows to improve 
the classification accuracy (Kim et al., 2021; Yoo et al., 2020). However, the flexibility of GIS workflows in handling the LCZ grid scale 
has often been overlooked. Therefore, as an alternative, we have proposed a downscaling process for the LCZ base map, which was 
generated by deep learning based on the GIS method. This process uses RS workflow to make up for the obstacles caused by urban data 
with low spatial and temporal resolutions and provides more complete urban architectural landscape information. However, the 
process uses GIS workflow to obtain more flexible and refined mapping results and is no longer limited by the grid scale of the fixed 
label dataset. This means that it can be adapted to urban climate research under different grid scale requirements. We believe that the 
downscaling process facilitates the application of more refined LCZ maps in urban climate studies and will help urban planners in 
determining the mechanisms based on which urban development affects local climate and how this can contribute towards sustainable 
urban development. 
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2. Data and methods 

2.1. Data 

2.1.1. Study area 
The capital of Liaoning Province, Shenyang is in Northeast China. Shenyang has a temperate continental monsoon climate with four 

distinct seasons. The study area comprised the central area of Shenyang, which lies between 123.02◦E–123.81◦E and 41.46◦N–42.19◦N 
and included five subdivisions (Dadong, Huanggu, Shenhe, Tiexi, and Heping), Yuhong District, Shenbei New District, Hunnan Dis-
trict, and Sujiatun District (Fig. 1). As the capital of Liaoning Province, Shenyang has a well-developed society and economy. In 2020, 
the resident population of the study area was 7,885,100, the study area was 3495 km2, and the population density was 2256.11 
people/km2. In the urban area of the study area, more intensive land use is achieved by building medium- and high-rise buildings (LCZ 
1–2, 4–5) and large low-rise buildings (LCZ 8). In contrast, the suburbs are characterized by rural areas dominated by construction land 
for low-rise buildings. Shenyang is also an important heavy industry base in China, with equipment manufacturing as its pillar industry 
and numerous industrial parks (LCZ 10). Shenyang municipal district is located on the Songnen Plain. The landscape is predominantly 
characterized by agricultural land (LCZ D), with low forest cover and a concentration in the east of the municipal district (LCZ A-C). 
The Hun River (LCZ G) passes through the center of the municipal district and plays an important role in cooling the city. 

2.1.2. Data source 
The public LCZ label dataset So2Sat LCZ42 was used in this study for deep learning model training. It contains 400,673 Sentinel-1,2 

image patches with a scale of 320 m from 42 metropolitan areas worldwide. The dataset is based on a strict LCZ labeling process with 
an overall confidence level of 85%. 

The input data of the deep learning model are the product of Sentinel 2 RS images from four seasons generated by the Google Earth 
Engine (GEE) platform. The 10 m resolution Environmental Systems Research Institute (ESRI) Land Cover data (Karra et al., 2021) 
downloaded from GEE provide a finer segmentation of the natural landscape. The building outline vector data from the study area in 
2020 were obtained from the National Tibetan Plateau Data Center (Zhang et al., 2022). The specific data sources and descriptions 
have been provided in Table 1 (see Table S2 in the Support material for the unique identifiers of the remote sensing images). 

Fig. 1. Overview of the study area. (a) Location of Shenyang in China; (b) Topography and location of Shenyang municipal district; (c) Land cover 
of Shenyang. 
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Table 1 
Data sources and descriptions.  

Data type Data source Describe Date 

So2Sat LCZ42 http://doi.org/10.14459/2018mp1483140 LCZ label dataset 2018 
Sentinel-2 RS images https://earthengine.google.com/ Input for LCZ deep learning classification model 2020.01.14, 2020.05.13 

2020.08.21, 2020.10.30 
Landsat-8 RS images https://earthengine.google.com/ LST retrieval 2020.07.22 
Esri Land Cover https://earthengine.google.com/ 10 m resolution fine land cover products 2020 
Building data http://doi.org/10.11888/Geogra.tpdc.271702 Building outline vector 2020  

Fig. 2. Technical workflow chart of the downscaling process.  
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2.2. Methods 

2.2.1. LCZ downscaling process 
In this study, a LCZ downscaling mapping process was designed (Fig. 2). First, the downscaling process was preprocessed, which 

included the following steps: (1) Determine the optimal deep learning model scale suitable for the So2sat LCZ42 dataset according to 
the overall accuracy; (2) Compare the matching degree of the LCZ classification results generated by the RS images of the four seasons 
and determine the best input for the LCZ classification in the study area; (3) Use the fishing net tool in GIS to establish the original-scale 
grid of the same scale as the So2sat LCZ42 dataset; (4) Determine downscaling multiples and generate the downscaled grid; and (5) 
Calculate the median value of the influence distance of buildings according to the building outline data. 

The four key parameters required for the downscaling process were calculated and connected to the downscaled grid, which 
included the following steps: (1) Select the deep learning model input with the highest matching degree to generate the LCZ basemap 
(BLCZ); (2) Identify the building outline of the original scale grid and calculate the building proportion (PBO) of the original scale grid 

Fig. 3. Downscaling process of original scale grids with different LCZ types.  

W. Yu et al.                                                                                                                                                                                                             



Urban Climate 49 (2023) 101500

6

to determine if the built type LCZ grids were correctly classified; (3) Use the buffer analysis tool to generate the building influence area 
and calculate the proportion of the building influence area in the downscaled grid (PBD) to determine if the downscaled grid belongs to 
the built-type LCZ; (4) Reclassify ESRI Land Cover data into refined natural-type LCZs based on their characteristics and determine the 
natural LCZ type (NLCZ) with the largest proportion in the downscaled grid. 

A rule-based classifier was constructed, and four key parameters were used to classify the downscaled grid LCZ type. Based on 
BLCZ, the original scale grid was divided into built type and natural type for downscaling. Fig. 3 shows the processing basis and 
downscaling results when the original scale grid has been scaled down by 16 times. If the original scale grid where the downscaled grid 
is located (BLCZ) belongs to the natural type, then the classifier determines the land cover type with the highest proportion (NLCZ) in 
each downscaled grid as the downscaled LCZ type. This is based on the 10 m resolution ESRI land cover data. As shown in Fig. 3(a), the 
original scale grid of BLCZ type LCZ A has been further divided into LCZ A, LCZC, LCZ D, LCZ E, and LCZ G according to the highest 
proportions of land cover types (NLCZ). If the original scale grid where the downscaled grid is located (BLCZ) belongs to the built type, 
we first determined whether the BLCZ of the grid had been incorrectly divided by determining whether the PBO is 0. If PBO was 0, we 
could not obtain the building information to determine the downscaled grid that belonged to the built type in the original scale grid. 
Therefore, the grid was then processed according to the downscaling process of the natural type original scale grid, that is, the reduced 
downscaled grid type is NLCZ. If the PBO is not 0%, the original scale grid can be further downscaled to built and natural types. The 
original grid scale (320 m) can guarantee the homogeneity of its internal built types (Lau et al., 2015; Zheng et al., 2018; Ching et al., 
2019). Therefore, we believe that all the buildings in the original scale grid belong to the same built LCZ type. Buildings can have an 
impact on the local climate within a certain range. The buildings and their surrounding influencing area within a certain range jointly 
constitute the built LCZ type (Gal and Unger, 2009; Skarbit et al., 2017; Unger et al., 2014). The classifier will make the following 
judgment accordingly. If the proportion of buildings and their influenced areas in the downscale grid (PBD) is higher than that of the 
natural cover, the downscale grid type can be considered as built type LCZ. To achieve this, an effective method is to determine 
whether the PBD is higher than 50%. Fig. 3(b) shows the downscaling process of a grid with an original scale grid type of LCZ 9. The 
classifier will determine whether the PBD in each downscale grid is higher than 50%. If the PBD is higher than 50%, the downscaled 
grid reflects the built LCZ type of the original scale grid, and the downscaling type is BLCZ, that is, LCZ9. If the PBD is lower than 50%, 
the downscale grid is dominated by natural cover. Therefore, the classifier will follow the downscale process of natural type LCZ to 
assign the downscaled grid to the NLCZ type. In Fig. 3 (b), these grids have been further classified from LCZ 9 into LCZ C, LCZ D, LCZ E 
and LCZ G. 

2.2.2. LCZ basemap generation method 
In the downscaling process, the LCZ basemap generated based on deep learning provided the basis for distinguishing the built/ 

natural type LCZ and the type and height attributes of the underlying surface of the built landscape. This plays an important role in the 
entire process. Improving the accuracy of the LCZ basemap is important in enhancing the validity of the downscaled map. As 
mentioned in the Section 2.2.1, in this study, the accuracy of the LCZ basemap was improved by optimizing the model size and inputs. 
The specific process is as follows. 

2.2.2.1. Model selection and training process. The Multi-Scale, Multi-Level Attention Network (MSMLA-NET) has outperformed other 
networks with respect to the LCZ classification task, and was used for deep learning training of the LCZ label dataset (Kim et al., 2021). 
Fig. 4 shows that the MSMLA model comprises the backbone network Se-ResNet, Multi-Scale module, and Multi-Level Attention 
module. The MS module is suitable for scene classification and uses local information by fusing multiple viewpoints of input images at 
different scales. A smaller receptive field can then be used to extract fine features from local information, whereas a larger receptive 
field can be used to delineate spatial context features from global information. The convolutional block attention module (CBAM) is 

Fig. 4. MSMLA architecture (adapted from Kim et al., 2021).  
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integrated into the MLA module and the CBAM attention mechanism is divided into two parts, that is, spatial attention and channel 
attention. After CBAM, the new features will be assigned attention weights in the channel and spatial dimensions. This substantially 
improves the connection of each feature in the channel and spatial dimensions and is more conducive to extracting the effective 
features of the target. The model width factor n controls the overall parameter of the model and is used to optimize the size of the 
model. 

The So2Sat LCZ42 dataset was used for deep learning training. The original training, validation, and test sets contain landscape 
information from different geographically separated cities. To learn more urban landscape information, the dataset was reorganized in 
this study. To form a new training dataset, 95% of the original training set and 80% of the validation set were randomly selected. The 
remaining parts of the training and validation sets were combined to form a new validation set, whereas the test set remained un-
changed. During the training process in this study, the learning rate was dynamically adjusted and the training was stopped in advance. 
The initial learning rate was set to 0.01 and the verification accuracy of each iteration was checked. If the accuracy decreased, the 
learning rate was reduced ten times to continue training. If the validation accuracy dropped in both iterations, the training process was 
stopped. 

2.2.2.2. Accuracy test. Given that the number of image patches and source complexity of the So2sat LCZ42 label dataset are higher 
than those of the original study (Kim et al., 2021), the MSMLA model size was adjusted by increasing the model width factor n to 
determine the optimal model width for this dataset. The overall accuracy (OA) measures the performance of the model with respect to 
the overall classification of LCZs and is the ratio between the number of LCZs that the model correctly predicted among all test sets to 
the overall number. It can be expressed as follows: 

OA =
∑M

i=1

LCZii

N
, (1) 

The overall accuracy of the built types, OAb, and the overall accuracy of natural types, OAn, measure the performance of the model 
with respect to the LCZ classification of built and natural types, respectively, and can be expressed as: 

OAb =
∑Mb

i=1
bLCZii

/

Nb (2) 

The overall class accuracy OAtype measures the ability of the model to effectively distinguish natural from built types and can be 
expressed as follows: 

OAtype =
N − T

N
, (3) 

The average accuracy (AA) measures the average value of user’s accuracy. It can be expressed as follows: 

AA =

(
∑M

i=1

LCZii

LCZi+

)/

M, (4) 

The average reliability (AR) measures the average value of user’s accuracy. It can be expressed as follows: 

AR =

(
∑M

i=1

LCZii

LCZ+i

)/

M, (5) 

Kappa coefficient is a common indicator for consistency inspection, and its calculation method is as follows 

Kappa =

N
∑M

i=1
LCZii −

∑M

i=1
(LCZi+ × LCZ+i)

N2 −
∑M

i=1
(LCZi+ × LCZ+i)

, (6)  

where, N is the total number of image blocks in the test set, and Nb and Nn represent the total number of image blocks of built and 
natural types in the test set, respectively. M is the number of LCZ types in the test set, and Mb and Mn are the number of categories of 
built and natural types, respectively. LCZii refers to the diagonal elements of the confusion matrix, bLCZii and nLCZii represent the 
diagonal elements of built-type LCZs and natural-type LCZs in the confusion matrix, respectively. LCZi+ is the total observation number 
of row I and LCZ+i is the total observation quantity of the column. T is the sum of the number of image blocks whose natural type is 
classified as built type and the number of image blocks whose built type is classified as natural type in the confusion matrix. 

2.2.2.3. Matching degree test. Urban land cover significantly changes depending on the season. To determine the effects of seasonal 
factors on the LCZ classification, ESRI Land Cover and building vector data were used to test the matching degree of the LCZ deep 
learning results in different seasons and select the best input. In the ESRI Land Cover category, the built area is LCZ 1–10 and LCZ E. 
Trees are considered LCZ A/B; shrubs are LCZ C. Grass, flooded vegetation, and crops are considered to be LCZ D, bare ground is 
considered to be LCZ F, and water is considered to be LCZ G. The land cover classification matching degree MDLc in the study area can 
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then be expressed as follows: 

MDLc = LCcorrect/LCtotal, (7)  

where LCcorrect indicates the number of grids with correct land cover classification and LCtotal represents the number of all grids in the 
study area. 

The urban built-up area is the main area for urban residents to carry out social and economic activities and the built form has a 
pronounced impact on the thermal environment (Yang et al., 2021b). Therefore, the building density in the grid was compared with 
that defined by the LCZ framework definition in this study to express the classification effect of the built-type LCZ. The matching 
degree of the building density MDBD can be expressed as follows: 

MDBD = BDcorrect/BDtotal, (8)  

where BDcorrect represents the number of grids with correct building density classification and BDtotal represents the number of grids 
containing building vector data in the study area. 

The comprehensive matching degree MD of the LCZ map can be expressed as: 

MD = k1MDLC + k2MDBD (9)  

where k1 = k2 = 0.5. 

2.2.3. Building influence distance calculation 
Gal and Unger (2009), Skarbit et al. (2017), and Unger et al. (2014) delineated the area of influence closest to the building by 

establishing a Thiessen polygon for the building and used this area as the influence range of the building. In this study, buildings and 
their impact areas were considered regular rectangles, and the median influence distance of the buildings was determined as follows: 

d =
( ̅̅̅̅̅̅̅̅

A/r
√

−
̅̅̅̅̅̅̅
a/r

√ )/
2, (10)  

where d is the median value of the building influence distance, A is the median value of the Thiessen polygon area, a is the median 
value of the building area, r is the median value of the building aspect ratio in the study area, and 

̅̅̅̅̅̅̅̅
A/r

√
and 

̅̅̅̅̅̅̅
a/r

√
represent the length 

of the short side of the Thiessen polygon and building rectangle, respectively. Based on modeling and calculations, the average impact 
distance of buildings in the study area was determined to be 28.3 m. 

2.2.4. Usefulness assessment of the LCZ map 
The usefulness of LCZ mapping remains a necessary and diverse research problem in this field. This study assessed the usefulness of 

the classification results through the ability of LCZ to distinguish urban landscape thermal characteristics (Zhao et al., 2017, 2021). In 
previous studies, the usefulness of LCZ maps was assessed using the station-observed air temperature (Kotharkar and Bagade, 2018a), 
mobile-measured air temperature (Leconte et al., 2015), or RS land surface temperature (LST; Quan, 2019). In these assessment 
methods, RS technology creates conditions for easy acquisition of the LST and urban surface heat island (Voogt, 2021). Therefore, in 
this study, RS data were used to analyze the significance of the LST differences between LCZ classes at different grid scales to assess the 
usefulness of the downscaling mapping results. 

The atmospheric correction method was used for the land surface temperature retrieval of the Landsat-8 RS image. The thermal 
infrared radiance value Lλ consists of three parts, that is, the real radiated energy of the ground passing through the atmosphere, the 
upward radiated energy and the reflected energy of the downward radiated radiation reaching the ground. The formula is shown as 
follows 

Lλ = [ε ⋅ B(Ts)+ (1 − ε)L1 ] ⋅ τ+L↑, (11)  

where τ is the atmospheric transmittance in the thermal infrared band, ε is the surface specific emissivity, Ts is the real temperature of 
the land surface, and B(Ts) is the black body radiance. 

The radiance B(Ts) of a black body with temperature T can be calculated by the formula Eq. (12): 

B(Ts) = [Lλ − L↑ − τ ⋅ (1 − ε)L↓ ]/τ ⋅ ε , (12)  

where, transmittance τ, atmospheric upward radiance L↑ and atmospheric downward radiance L↓ can be calculated by entering image 
information (center latitude and longitude, acquisition time) and the weather conditions (altitude, air temperature, atmospheric 
pressure, relative humidity) on the NASA official website. Ts is obtained with Planck’s formula Eq. (11): 

Ts = K2/ln(K1/B(Ts)+ 1 ), (13)  

where, for Band 10 of Landsat 8 images, K1=774.89 W/(m2*μm*r)，K2=1321.08 K. 
Subsequently, 20% of the grids in LCZ maps were randomly selected as samples. The one-way analysis of variance (ANOVA) test 

and post-hoc pairwise comparison of Tamhaini T2 provided in SPSS 26 were used to determine = whether there was a significant 
difference in the LST among the LCZ types. 
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3. Results 

3.1. Downscaling preprocessing results 

3.1.1. Optimal model size 
MSMLA models with different model width factors were used to learn the So2sat LCZ42 dataset. The test set evaluation results are 

presented in Table 2. MSMLA models can achieve an OA of >80%, >75% of AA and AR, and OAtype is higher than 98%. The classi-
fication ability for natural types is higher than that for built types. The OAb is maintained above 75%, whereas OAn is higher than 90%. 
With the increase in model width, OA, OAb, and Kappa increase. When the model width factor was 4, the highest OA, OAb, and Kappa 
of 83.64%, 78.68% and 82.09%, respectively, were achieved for the test set. When the model width factor was 5, the model was 
overfitting and OA, OAb and Kappa all decreased. Therefore, MSMLA*4 was used as the optimal deep learning model in this study. 

The confusion matrix of the test set generated by the MSMLA*4 model is shown in Fig. 5. Among the built types, LCZ 8 (large low- 
rise) has the highest accuracy rate, whereas LCZ 10 (heavy industry) has the lowest accuracy rate. Compact LCZ types (LCZ 1–3) can be 
easily confused with open LCZ types (LCZ 4–6) of the same height class. Open LCZ types (LCZ 4–5) can be easily confused when 
identifying building heights. Given that LCZ 8 and LCZ 10 exhibited a large low-rise morphology, confusion between the two was 
relatively easy. 

3.1.2. Optimal model input 
The input images and prediction results of the MSMLA*4 model for different seasons are presented in Fig. 6 and the matching 

degree of the prediction results is shown in Table 3. Seasonal factors influenced the LCZ prediction results. The winter LCZ map barely 
classifies the grids correctly, with an MD of 0.23. The natural and built types were largely misidentified as waterbodies and large low- 
rise buildings, respectively. This is predominantly because of the study area generally being covered with snow in winter, which 
disturbs the LCZ prediction. The spring LCZ map also has a low degree of land cover matching. This is mainly affected by rice planting 
in the study area. Several grids with notable farmland characteristics (LCZ D) were incorrectly identified as waterbodies, resulting in a 
MDLC of 0.74. The results of the land cover identification based on the summer and autumn LCZ maps were relatively accurate, with a 
MDLC value of 0.84 and 0.85, respectively. However, there was a considerable difference in determining the underlying surface at-
tributes. Under the influence of vegetation phenology, more built grids in the autumn LCZ map were identified as compact type with 
more patches. Meanwhile, more built grids in the summer LCZ map were identified as open type with fewer patches. The results of the 
building density matching have shown that the summer LCZ map more accurately reflected the building characteristics. The highest 
MDBD value was 0.57. Based on the results summary, natural land cover and building information was reflected well based on the 
application of the summer RS image for LCZ prediction, and the highest matching degree of 0.71 was obtained. Therefore, we chose the 
summer RS image as the deep learning input to generate the base map during downscaling. 

3.2. LCZ downscaling mapping 

The LCZ basemap obtained by deep learning was downscaled by integer multiples (1, 2, 4, 8, 16) using the downscaling process, 
and LCZ maps with grid scales of 320–20 m (Fig. 7b–f) were obtained. Comparison of the results of different downscaling LCZ maps has 
shown that the LCZ type of 70.66% of the grids is consistent across the maps at all scales, indicating that the downscaling process has a 
high level of stability. Grids in which the types have changed are predominantly distributed inside the built type LCZs or at the 
junctions of different types of LCZs. The downscaling method enables the extraction of hidden natural surface features within the built 
type grids. As the downscaling factor increases, the number of grids in which types change decreases. The boundaries between different 
LCZ types become smoother, and more refined changes in the underlying surface can be identified. 

We created a total of 180 random points (20 for each district) to evaluate the accuracy of the LCZ maps at various scales, and the 
results are shown in Table 4. The 20-m scale LCZ map had the highest classification accuracy, while the 320-m scale LCZ map had the 
lowest classification accuracy. In previous studies, because RS workflow requires more image information to achieve high-precision 
classification, the optimal classification scale was substantially larger (150 m for Berlin, 170 m for Hamburg, 190 m for Cologne 
and Frankfurt, 480 m for Shanghai and Beijing) (Liu and Shi, 2020; Rosentreter et al., 2020). The downscale LCZ mapping method 
proposed in this study effectively improves the classification accuracy of the fine-scale LCZ map by introducing GIS workflow and more 
detailed building and land cover data. 

Table 2 
Overall accuracy of the MSMLA under different model width factors.  

Model n Parameters OA OAb OAn OAtype AA AR Kappa 

MSMLA 1 808,913 81.37 74.99 90.87 98.22 76.04 76.14 79.61 
MSMLA*2 2 3,148,809 82.07 76.31 90.64 98.23 76.74 77.02 80.37 
MSMLA*3 3 7,020,097 82.04 76.43 90.41 98.25 76.64 76.61 80.35 
MSMLA*4 4 12,422,777 83.64 78.68 91.04 98.11 77.81 78.13 82.09 
MSMLA*5 5 19,356,849 82.92 77.23 91.39 98.12 78.02 77.71 81.30 

Note: The unit of OA, OAb, OAn, OAtype, AA, AR, and Kappa is %. 
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3.3. Assessment of the usefulness of the LCZ downscaled map 

The LCZ plays an important role because it can distinguish the LST between different landscapes. To assess the usefulness of the LCZ 
map, this paper first retrieved the LST of the study area through atmospheric correction method. The spatial LST distribution obtained 
from Shenyang is shown in Fig. 8. After that, the LST and its corresponding LCZ types at different scales are sampled at an interval of 20 
m, and >11 million sampling points were obtained. The average value and standard deviation of LST of each LCZ type at different 
scales were statistically summarized, as shown in Table 5. Given that 70.66% of the grid LCZ types in all the scale maps are consistent, 
the average LST of the LCZs at different scales did not significantly differ. The highest and lowest LST values of the natural types were 
obtained for LCZ F and LCZ G, respectively. The highest and lowest LST values of the built types were observed for LCZ 2 and LCZ 9, 
respectively. 

In this study, 20% of the grids were randomly selected as samples. The one-way ANOVA test provided in SPSS 26 and post-hoc 
pairwise comparison of Tamhaini T2 were used to determine whether there is a significant difference in the LST among the LCZ 
types. The one-way ANOVA test results have shown that the LST levels of LCZ at each scale significantly differed (p < 0.01), indicating 
that the LCZ downscaling process has a strong ability to express the thermal characteristics of urban landscapes. The post-hoc pairwise 
comparison results are shown in Fig. 9. In 136 pairs of paired comparisons, 5–6 pairs of LCZ have not significant LST differences at the 
0.01 level. This also shows that the LST differences between different LCZ types can be effectively distinguished by the downscale 
maps. The proportions of LCZ 7 (lightweight low-rise) and LCZ F (bare soil or sand) are small in the study area, resulting in the least 
prominent landscape thermal characteristics among the study results. The LSTs of three LCZ combinations at the 160 m scale did not 
significantly differ at the 0.05 level, which is the most suitable scale for analyzing the urban thermal environment in the study area. 
The 200 m scale is the optimal scale to distinguish the characteristics of Hong Kong’s thermal environment (Lau et al., 2015). This 
study has further demonstrated the applicability of the results in other cities with dense high-density buildings. 

4. Discussion 

4.1. Refined LCZ mapping and application 

Stewart and Oke (2012), the creators of the LCZ concept, recommend 400–1000 m as the grid scale for LCZ maps. However, in 
practical applications, the grid scale of LCZ maps often varies from tens of meters to several kilometers based on the complexity of the 
urban surface and the study scale. Obtaining more refined edge recognition between LCZ classes is conducive to a more accurate 

Fig. 5. MSMLA*4 confusion matrix.  

W. Yu et al.                                                                                                                                                                                                             



Urban Climate 49 (2023) 101500

11
(caption on next page) 

W. Yu et al.                                                                                                                                                                                                             



Urban Climate 49 (2023) 101500

12

understanding of urban microclimate and will benefit future urban environment planning and climate mitigation measures (Cai et al., 
2018). 

At present, the 100-m-scale refined LCZ map produced by the World Urban Database and Access Portal Tools has been widely used 
in urban climate studies (Chen et al., 2020; Dian et al., 2020; Verdonck et al., 2017). Some researchers have also tried to achieve more 
refined LCZ classification by using GIS workflow (Yang et al., 2022; Xin et al., 2022; Zhang et al., 2022). Oliveira et al. (2020), Ren 
et al. (2022), and Yang et al. (2021a) made LCZ maps with scales ranging from 30 to 60 m and showed that different types of LCZs have 
different effects on the LST. The LST exhibits the strongest correlations with the floor area ratio of LCZ 2 and building height of LCZ 3. 
Shi et al. (2022) analyzed the effect of urban ventilation corridors on the urban heat island intensity on a 30 m LCZ map and reported 
that LCZ E is the largest component of ventilation corridors and the urban heat island intensity of LCZs in ventilation corridors is often 

Fig. 6. RS images and prediction results for different seasons.  

Table 3 
Comparison of the matching degree of LCZ prediction results for different seasons.  

Season MDLC MDBD MD 

Spring 0.74 0.43 0.59 
Summer 0.84 0.57 0.71 
Autumn 0.85 0.36 0.61 
Winter 0.35 0.10 0.23  

Fig. 7. Downscaling mapping results. (a) RS image; (b–f) LCZ maps with scales of 320, 160, 80, 40, and 20 m.  
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Table 4 
Classification accuracy of LCZ maps at different scales.  

Scale of LCZ Map OA OAb OAn OAtype AA RA Kappa 

320 m 72.22 72.41 71.86 88.33 66.22 63.87 68.26 
160 m 75.56 75.67 75.36 88.89 67.65 70.15 72.16 
80 m 79.44 78.90 80.28 90.00 70.89 71.89 76.58 
40 m 83.33 81.65 85.92 93.33 74.55 74.70 80.99 
20 m 84.44 83.49 85.92 94.44 73.75 76.37 82.29 

Note: The unit of OA, OAb, OAn, OAtype, AA, AR, and Kappa is %. 

Fig. 8. Spatial distribution of the LST in the study area.  

Table 5 
Average LST of each LCZ at different scales.  

LCZ Type Percentage 20 m 40 m 80 m 160 m 320 m   

Mean std Mean std Mean std Mean std Mean std 

LCZ 1 0.34-0.40  38.4  2.28  38.39  2.27  38.4  2.26  38.41  2.23  38.41  2.32 
LCZ 2 1.24-1.40  41.27  2.02  41.26  2.02  41.22  2.05  41.17  2.09  40.99  2.26 
LCZ 3 0.99-1.13  39.35  2.36  39.33  2.37  39.33  2.37  39.24  2.45  38.89  2.7 
LCZ 4 2.23-2.65  38.04  2.23  38.02  2.23  38.00  2.23  38.01  2.23  38.03  2.28 
LCZ 5 3.61-4.06  39.52  2.25  39.52  2.25  39.52  2.25  39.51  2.27  39.33  2.42 
LCZ 6 4.17-4.56  36.43  2.29  36.43  2.28  36.41  2.3  36.28  2.4  35.85  2.7 
LCZ 7 0.01-0.01  37.82  4.84  37.83  4.83  38.08  4.4  37.56  5.1  39.44  2.83 
LCZ 8 6.24-6.63  40.63  3.65  40.64  3.64  40.65  3.63  40.58  3.66  40.3  3.8 
LCZ 9 0.57-0.91  35.72  2.39  35.72  2.39  35.78  2.38  35.87  2.38  35.91  2.47 
LCZ 10 0.33-0.43  39.03  2.95  39.05  2.92  39.14  2.89  39.16  2.93  39.45  3.12 
LCZ A 3.83-3.86  30.59  1.03  30.59  1.04  30.6  1.07  30.63  1.13  30.67  1.23 
LCZ B 0.19-0.19  33.24  2.42  33.24  2.42  33.19  2.37  33.17  2.39  33.18  2.40 
LCZ C 3.93-4.40  32.59  2.75  32.59  2.75  32.59  2.78  32.58  2.8  32.64  2.98 
LCZ D 51.76-53.09  31.23  2.32  31.22  2.32  31.24  2.33  31.29  2.38  31.4  2.49 
LCZ E 14.96-16.93  36.07  2.96  36.04  2.94  35.95  2.93  35.82  2.98  35.69  3.13 
LCZ F 0.10-0.15  38.56  4.3  38.59  4.29  38.67  4.22  38.91  4.14  38.93  4.02 
LCZ G 1.97-2.44  30.6  2.44  30.58  2.42  30.57  2.44  30.54  2.51  30.51  2.51  
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lower than that of non-corridor LCZs. 
However, it is difficult to obtain high-precision refined LCZ maps using the above methods (Yoo et al., 2019; Ren et al., 2019). This 

is predominantly because directly creating smaller-scale grids will reduce the scene information in RS workflows and small-scale grids 
in GIS workflows will cause building segmentation. To achieve more precise LCZ mapping, very-high resolution (VHR) images have 
been applied to a refined scale in LCZ classification studies (Bartesaghi Koc et al., 2018; Zhao et al., 2019). Based on the combination 
with a geographic object-based image segmentation method (Chen et al., 2018), the LCZ mapping accuracy of VHR RS images reached 
89%, which is substantially higher than the 69% based on Landsat 30 m resolution images (Simanjuntak et al., 2019). However, the 
availability of VHR images also limits the development of refined LCZ maps over a wide area. 

This study has proposed a downscale process that can maintain the accuracy of LCZ classification and the ability of thermal 
environment feature expression, which provides a new idea for the creation of fine LCZ maps. However, the downscaling process still 
needs the support of building roof data. When drawing LCZ maps of long time series, it is necessary to use artificial intelligence method 
to recognize the building contour in the study area, which increases the complexity of the study to a certain extent. 

4.2. Transferability of the downscaling process 

Data used in LCZ downscaling process are mainly from deep learning LCZ basemaps, building outline vectors, and ESRI land cover 
data. These are all secondary products obtained by using deep learning methods for object classification and semantic segmentation of 
original RS images. All the data used in the downscaling process have an accuracy above 80%, providing the opportunity for global 
researchers to use or reproduce relevant data. Therefore, the downscaling process proposed in this study can be applied to the LCZ 
classification in countries or regions with different development levels and different cultures. To further improve the classification 
transferability of the LCZ downscaling process, global, high time resolution and high accuracy remote sensing products are still needed. 

In terms of training datasets required for generating LCZ base maps, given that the metropolitan areas in the So2Sat LCZ42 label 
dataset are geographically separated from each other in the training set, validation set, and test set, the classification accuracy in 
previous studies often does not exceed 75% (Qiu et al., 2020; Wang et al., 2022; Zhou et al., 2021; Zhu et al., 2019b). In this study, the 
training and validation sets were remixed to improve the quality of the training samples. An overall accuracy of 83.64% was achieved 
and the user accuracy and producer accuracy of the built type LCZs have improved. This has shown that improving the spatial dis-
tribution of sample cities can effectively improve the classification accuracy. 

The lack of complete building vector data with height information is another important factor that restricts LCZ mapping at the 
global scale. In previous GIS workflow LCZ mapping studies, building height information was generally provided by planning de-
partments and often had a low temporal resolution or was incomplete. Therefore, related research also focused on urban central areas 

Fig. 9. Significance of the LST differences between LCZ classes under different scale grids. (a–e) Significance of differences at scales of 20, 40, 80, 
160, and 320 m. 
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(Geletič and Lehnert, 2016; Kotharkar and Bagade, 2018b). In the downscaling process proposed in this study, given that the height 
information of buildings was extracted from remote sensing images, we only needed to obtain the building density information from 
the building outline vectors to determine the LCZ classification of the downscale grid. Compared with detailed planning data, building 
outline vectors that do not provide building heights are often easier to generate automatically through deep learning methods and 
often have a high level of accuracy. Based on global building outline vectors such as that provided by Microsoft Bing Map (Microsoft, 
2022), the downscaled LCZ mapping method proposed in this study can be applied to a wider area. 

5. Conclusion 

In this study, a process for downscaling the deep learning LCZ basemap based on the GIS method was proposed and the validity of 
the process has been verified. The results have shown that:  

(1) When the width of the MSMLA model was expanded four-fold, the highest overall accuracy of 83.64% was achieved on the 
So2Sat LCZ42 dataset. Based on the results, that is, the highest matching degree of 0.71, summer is the most appropriate season 
for LCZ classification in the study area.  

(2) The grids with changed LCZ types at different scales accounted for 29.34% and were predominantly distributed in the interior of 
the built type LCZ or at the junctions of different types of LCZs. As the downscaling multiple increased, the boundaries between 
different types of LCZs became smoother and more refined information about the land surface changes could be obtained.  

(3) The LST levels of LCZs at each scale significantly differed (p < 0.01), indicating that the LCZ downscaling process has a strong 
ability to express the thermal characteristics of urban landscapes. At the 160 m scale, only the LSTs of 3 LCZ combinations did 
not significantly differ at the 0.05 level. This has shown that this scale was the most suitable for analyzing the urban thermal 
environment in the study area. 

Given that all data used in the downscaling process are secondary products generated by artificial intelligence models, the 
downscaling process proposed in this study in theory has a high level of transferability. This downscaling process compensates for the 
inability to create fine-scale LCZ maps when ultra-high-resolution images and detailed planning data are missing and promotes a more 
refined analysis of urban microclimate. 
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