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a b s t r a c t

Rapid urbanization has caused radical changes in urban climates. As a result, issues related to urban
thermal environments have become more prominent. Finding a balance between urban expansion and
thermal environment quality is key to ensuring sustainable urban development. Taking Dalian City
(China) as an example, we used multi-source datasets, including Luojia1-01 nighttime light imagery,
Landsat-8, Sentinel-2, and building vector data, to analyze the thermal characteristics of different local
climate zones (LCZs). Additionally, the LCZ combination mode with the lowest heat island effect intensity
in the human settlements was also investigated. The results showed that the human settlements covered
an area of 351.976 km2, with 33.476% corresponding to building LCZs (LCZ1-10) and 66.524% to natural
LCZs (LCZA-G). The different LCZs had different thermal environment characteristics, and the UHIA values
for the building LCZs were significantly higher than those of the natural LCZs. Additionally, for the
building LCZs, the UHIA values for compact building LCZs (LCZ 1e3) were also significantly higher than
those for open and spare building LCZs. With the current settlement area and population size, the most
appropriate LCZ layout model for the study area was LCZ5 þ LCZ6 þ (LCZ7þLCZ8þLCZA
þ LCZC þ LCZD þ LCZE þ LCZG), which had areas 28.585, 57.170, 57.170, 28.585, 54.236, 54.236, and
54.236 km2, respectively. This layout model had the smallest UHIA value (11.654 �C), and urban planning
according to the above ratio can alleviate the UHI effect in different cities.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Since the 20th century, China’s rapid urbanization and devel-
opment as a big industrialized country has led to a significant up-
ward trend in average annual surface temperatures. Rapid
urbanization has led to environmental problems, and the interac-
tion of the negative impacts of urban thermal environments poses
an ongoing threat to urban human settlements (Yang et al., 2014;
Zhang et al., 2007). Impervious surfaces that have significantly
replaced original and natural surfaces owing to urban expansion
nment and Toursim, Captial
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and increasing population density in cities have resulted in a
persistent increase in overall urban heat emissions. Consequently,
this has significantly changed the original urban energy balance
regime (Rizwan et al., 2008; Tu et al., 2016; J. Yang et al., 2018a,b,
2017a,b), and has resulted in a phenomenon known as the urban
heat island (UHI) effect, whereby urban interior temperatures are
generally higher compared with those of countryside areas. This
UHI effect is the epitome of the issues that are associated with the
urban thermal environment. In the context of global warming
(Mitchell et al., 2016), extreme heat waves and UHI interact and
promote each other. This interaction exacerbates the negative ef-
fects of the UHIs, and results in higher health risks for urban resi-
dents, as well as higher building energy consumption and CO2
emissions (Tong et al., 2017; Wu et al., 2012). Additionally, these
occurrences negatively affect the sustainable development cities
(Chen et al., 2020; Yang et al., 2020).
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UHIs can be divided into four categories, namely, boundary-
layer heat islands (BLHIs), canopy-layer heat islands (CLHIs), sur-
face heat islands (SHIs), and subsurface heat islands (SBHIs) (Oke,
1976; Voogt and Oke, 2003; Zhan et al., 2014; Zhou et al., 2016).
Land surface temperature (LST) is an important indicator when
measuring the scale of SHIs, given that it controls near-surface
energy balance and affects the surface heat distribution process,
which exhibits the most significant effect on urban climates (Li
et al., 2019). Owing to the combination of the UHI effect and
extremely high-temperature weather, there has been a degradation
of the thermal environment in urban human settlements, which
has resulted in higher health risks to urban residents (Bao-Jie He,
2018). Previous studies on the heat island effect have been pri-
marily focused on three aspects, i.e., the observation of the heat
island effect, the analysis of the driving mechanism, and research
on mitigation strategies. Alleviating the UHI effect in human set-
tlements via the rational adjustment and configuration of land-
scapes is of great significance to urban thermal environment-
related research and planning (Manteghi Golnoosh and Mostofa,
2020; Yin et al., 2018). Based on existing literature, the strategies
that can be employed to mitigate existing UHI effects can be
roughly divided into two categories. The first category includes
strategies that seek to improve the internal ventilation of cities via
the adjustment of urban form and the use of natural ventilation
(Jhaldiyal et al., 2018; Wong et al., 2010; Yao et al., 2018), while the
second category includes strategies that focus on the use of green
spaces, water, and other landscapes that have a cooling effect based
on a reasonable arrangement (Brans et al., 2018; Du et al., 2019;
Fahmy et al., 2018; Yan et al., 2018).

The local climate zone (LCZ) is an effective approach by which
UHIs and urban thermal environments can be investigated. It
combines buildings and surfaces, and generates a classification
system that is suitable for urban thermal environment-related
research (Stewart and Oke, 2012). Auer (1978) performed one of
the earliest studies on urban climate zones (UCZs). To improve the
surface indicator system that was previously sensitive to the ther-
mal environment, and provide an objective and standardized
classification system for urban thermal environment research
Fig. 1. The location o
based on the UCZs, Stewart (Stewart et al., 2014; Stewart and Oke,
2012) divided a city into built and natural environments known
as the LCZ, and reportedly, there is a significant correlation between
LCZs and SHIs. Previous studies on LCZs have been primarily
focused on LCZ mapping (Quan et al., 2017; Shi et al., 2018; Unger
et al., 2014; Xu et al., 2017a; Zheng et al., 2018), LCZ modification
(Kotharkar and Bagade, 2018; J. Wang et al., 2015a,b; Wang and
Ouyang, 2017), and the determination of the temporal and spatial
variations of the thermal environment characteristics in different
LCZs (Beck et al., 2018; Geleti�c et al., 2018; Y. Wang et al., 2017b; X.
Yang et al., 2018a,b, 2017a,b).

Finding the balance between the urban thermal environment
and human activities is a key issue in the heat island effect miti-
gation strategy. Under the current urban scale (built-up zone scale
and population scale), the reasonable combination of the distri-
bution of LCZs can enhance the reduction of the UHI effect, which
can provide a reference basis for urban scientific planning and
management. Taking Dalian city as an example, multi-source data
was used to extract human settlements, analyze the thermal
environment characteristics of different LCZs within the human
settlements, and propose the most suitable local climate zone
layout model based on certain population and human settlement
size limits. The results obtained could serve as data that can be used
to support scientific and rational urban landscape planning and
decision making so as to alleviate the UHI effect and improve the
quality of the human living environment in cities.
2. Data and methods

2.1. Study area

The downtown area of Dalian City is located between 121.275�

and 121.750� E and 38.813�e39.087� N. It consists of four admin-
istrative districts, including Zhongshan, Xigang, Shahekou, and
Ganjingzi, which cover an area of 620 km2 (Fig. 1). Based on 2018
data, Dalian City has a resident population of 2.06 million.
f the study area.



Table 1
Data sources and descriptions.

Types Description Data sources Display

Remote Sensing
data

Luojia 1-01 (130-m resolution NTL data,
2018-9-9)

www.hbeos.org.cn

NPP-VIIRS (500-m resolution NTL data,
2018-9)

ngdc.noaa.gov/eog

DMSP/OLS F18 (1-km resolution NTL data,
2013)

ngdc.noaa.gov/eog

Sentinel-2 (10-m resolution multispectral, 2018-8-2, cloud cover: 0.1%) Sci-Hub.copernicus.eu

Landsat8 TIRS (100-m resolution thermal, 2018-8-9, cloud cover: 0.4%)
Landsat8 OLI (30-m resolution multispectral, 2018-8-9, cloud cover: 0.4%)

earthexplorer.usgs.gov

MODIS 11 L2 (1-km resolution LST product,
2018-8-9)

lpdaac.usgs.gov

Meteorological
data

Meteorological site observation data (air temperature and humidity data. From July 2018 to
September 2018)

rp5.ru e

Building data Building outline, height, floor and types. Baidumap

Population Dalian Statistical Yearbook (2018) Dalian Municipal Bureau of
Statistics

e
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2.2. Data sources

Themain sources of the data used in this study included: remote
sensing imagery, in-situ meteorological data, building vector data,
and demographic data (Table 1). Fig. 2 shows the distribution of the
building data.
2.3. Methods

2.3.1. LCZ mapping
The LCZs could be classified via the combination of urban sur-

face properties and urban morphology using two main
classification methods, namely, the direct interpretation of high-
resolution imagery, such as the WUDAPT work fellow (He et al.,
2018; Zheng et al., 2015), or integrated classification using multi-
source data (Kotharkar and Bagade, 2018; Perera and Emmanuel,
2018). With Szeged (Hungary) as the study area, G�al et al. (2015)
evaluated and compared the accuracy of these two methods.
They found that integrated classification based on multi-source
data had a higher accuracy than the direct interpretation of high-
resolution imagery. Therefore, in this study, the LCZs of the study
area were classified based on multi-source data via a classification
process that could be divided into two steps as follows:

https://www.hbeos.org.cn


Fig. 2. Distribution of buildings in the study area.

Table 2
Local climate zone classification system.

Types Description Types Description

LCZ1 Compact high-rise buildings LCZA Dense trees
LCZ2 Compact mid-rise buildings LCZB Scattered trees
LCZ3 Compact low-rise buildings LCZC Bush, scrub
LCZ4 Open high-rise buildings LCZD Low plants
LCZ5 Open mid-rise buildings LCZE Bare rock and road
LCZ6 Open low-rise buildings LCZF Bare soil
LCZ7 Spare high-rise buildings LCZG Water body
LCZ8 Spare mid-rise buildings
LCZ9 Spare low-rise buildings
LCZ10 Industrial buildings

Fig. 3. HSCI in different areas.
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2.3.1.1. Nature zone classification. Nature zones were classified us-
ing the modified normalized difference water index (MNDWI) (Xu,
2006), normalized difference vegetation index (NDVI), the
normalized difference impervious surface index (NDISI) (Xu, 2013),
and the bare soil index (BSI) (Li and Chen, 2014). MNDWI was used
to extract water bodies; NDVI and NDISI were used to distinguish
vegetation and impervious surfaces, and BSI and NDVI were used to
distinguish shrubs, low vegetation, and trees.
2.3.1.2. Building zone classification. Building zones were classified
following building morphology. Even though numerous parame-
ters are associated with the measurement of building morphology,
in this study, two morphological indicators, building density (BD)
and average building height (H), were selected to achieve objec-
tivity and high efficiency (Yin et al., 2018).
2.3.1.3. LCZ classification system. Based on Oke et al. (2014) and
Bechtel et al. (2016), we proposed a modified LCZ classification
system (Table 2), which takes into account the actual building
distribution and land cover conditions of a specific study area.
Making reference to previous studies on LCZ grid sizes, in this study
a 30 m grid was used as the basic LCZ mapping unit (J. Yang et al.,
2019a, 2019b).
2.3.2. Mapping of human settlements
There is a significant quantitative relationship between night-

time light (NTL) radiation and several spatiotemporal parameters
that are related to human population and socio-economics. To
extract human settlements, previous studies have primarily relied
on the extraction of impervious surfaces and the analyses of
building aggregation patterns (Jochem et al., 2018; Maly, 2000). In
several studies, artificial NTL data has often been used to estimate
human activities that are related to urban expansion and socio-
economic development (X. Yang et al., 2019; Ye et al., 2019). Ur-
ban NTL is a direct visual representation of the spatial



Fig. 4. Human settlements mapping results.
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heterogeneity of urban human activity. Therefore, by combining
multi-source data, such as remote sensing and land use data, it is
possible to realize the efficient extraction of human settlements (Lu
et al., 2008; Ma et al., 2018). Thus, NTL data is being increasingly
used in the estimation of human activities that are related to urban
expansion and socio-economic development. Using a combination
of land cover and NTL data can lead to the efficient extraction of
human settlements. Ma et al. (2018) proposed the human settle-
ment composite index (HSCI), which combines vegetation, imper-
vious surfaces, and NTL to realize the efficient extraction of human
settlements. By combining the NDVI and the percentage imper-
vious surface (PISA) with NTL data, the HSCI significantly improves
accuracy when dividing human settlements. Additionally, it also
reduces the effects of diffusion and saturation, while enhancing the
heterogeneity of multi-source signals. The HSCI is calculated using
Fig. 5. LCZ mapp
the following equation:

HSCI¼
�
NTL�PISA�NDVI2

�
=½ðNTLþNDVIÞðPISAþNDVIÞ�:

(1)

Fig. 3 illustrates the distribution of HSCI in different regions.
Type A regions, where the HSCI tends towards 1, represent urban
areas that are primarily characterized by strong brightness signals
and impervious surfaces. Type B regions, where the HSCI is
generally between 0 and 0.5 represent the areas surrounding cities,
which have NTL signals, but no impervious surface. Type C regions,
where the HSCI tends toward �0.5, represent rural areas with low
human activity density, which have impervious surface coverage
and has either no or low NTL signal. Type D regions represent areas
with little human activity, where the HSIC trend to �1 and no NTL
ing results.



Fig. 6. The LCZ compositions in human settlements.

Fig. 7. Retrieved land surface temperatures.
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signals or impervious surfaces. Compared with the DMSP/OLS data
used when the HSCI was first proposed, Luojia 1-01 data is char-
acterized by a higher spatiotemporal resolution without saturation
effects (Jiang et al., 2018). Therefore, in this study, it was used to
calculate the HSCI with a higher spatial resolution, offering the
possibility of improving the precision of human settlement
mapping.
2.3.3. LST inversion
In this study, Landsat8 band 10 and the mono-window algo-

rithm were used to invert LST. The mono-window algorithm
included various parameters, such as land surface emissivity (ε),
atmospheric transmittance (t), brightness temperature (T), and
mean atmospheric temperature (Ta). LST was calculated using the
following equations:



Fig. 8. Verification of the land surface temperature accuracy.

J. Yang et al. / Journal of Cleaner Production 275 (2020) 123767 7
Ts ¼fa*ð1� C� DÞþ ½b*ð1� C� DÞþCþD�T� D*Tag; (2)

C ¼ t*ε (3)

D¼ð1� tÞ*½ð1� εÞ � t�; (4)

Ts (K) represents the LST, a and b are the fitting coefficients
obtained from the relationship between the heat radiation in-
tensity and the brightness temperature (i.e., when the latter was
between 10 and 40 �C, a ¼ �67.355351 and b ¼ 0.458606), T rep-
resents the sensor brightness, and Ta (K) represents the average
atmospheric operating temperature. The estimation of ε and twere
established according to Qin and Wang (Qin et al., 2001; F. Wang
et al., 2015a,b).
Fig. 9. The thermal environment ch
3. Results

3.1. Human settlements and LCZ mapping

The HSCI values of the study areawere calculated using Luojia 1-
01 NTL image data at recorded 02:35 (GMTþ8) on September 9,
2018, and Landsat 8 OLI image data recorded at 02:35 (GMTþ8) on
August 9, 2018. In accordance with Ma et al. (2018) areas with HSCI
values above 0.65 were extracted as human settlements, as shown
in Fig. 4.

The average HSCI value of the study areawas 0.549, and the total
human settlement area was 351.976 km2. Additionally, the average
HSCI values of each district, i.e., Zhongshan, Xigang, Shahekou, and
Ganjingzi were 0.726, 0.861, 0.912, and 0.488, respectively, and the
settlement area in each of these four administrative districts were
18.261, 28.454, 33.565, and 271.696 km2, corresponding to 59.125%,
81.005%, 71.726%, and 55.570%, respectively.

The classification of the LCZs could be regarded as a combina-
tion of land cover and building morphology classifications. The
LCZs, AeG were classified using the Sentinel-2 dataset and layer
classification methods, after which the results obtained were then
combined with the building classification results based on the
building vector dataset to obtain the final LCZ classification results
(Fig. 5).

In total, there were 16 LCZs in the human settlements, i.e., LCZA,
LCZC, LCZD, LCZE, LCZF, LCZG and LCZ1e10, which accounted for
4.530, 0.087, 17.975, 41.474, 0.180, 2.278, and 33.476%, of the total
settlement area, respectively (Fig. 6).

3.2. Thermal environment characteristics of the LCZs

Landsat8 thermal infrared data and MODIS water vapor data
(MOD), recorded at 02:35 and 02:05 (GMT) on August 9, 2018, were
used to invert LST (Fig. 7) via the mono-window algorithm. To
verify the effectiveness of the LST inversion, the MODIS LST product
aracteristics of different LCZs.



Table 3
The total floor area and population capacity (in 30m*30m pixel area).

LCZ Total floor area Population capacity (person) Per capita floor area (m2/person)

LCZ1 �7200 m2 �105 68.571
LCZ2 2700e7200 m2 40e105
LCZ3 0e2700 m2 0e40
LCZ4 �2880 m2 �42
LCZ5 1080e2880 m2 16e42
LCZ6 0e1080 m2 0e16
LCZ7 �1440 m2 �21
LCZ8 540e1440 m2 8e21
LCZ9 0e540 m2 0e8

Table 4
UHIAaverage and population capacity in LCZs (Before optimization).

LCZ Area (km2) Population capacity (person) UHIAaverage (�C)

LCZ1 3.371 346363 12.441
LCZ2 11.317 442971
LCZ3 5.763 112788
LCZ4 4.535 186385
LCZ5 16.813 263238
LCZ6 9.067 70980
LCZ7 8.172 167931
LCZ8 24.070 400414
LCZ9 19.475 76229
LCZ10 15.243 e

LCZA 15.944 e

LCZC 0.308 e

LCZD 63.268 e

LCZE 145.980 e

LCZF 0.632 e

LCZG 8.018 e

Total 351.976 2067300

Table 5
UHIAaverage and population capacity in LCZs (After optimization).

LCZ Area (km2) Population capacity (person) UHIAaverage (�C)

LCZ1 e e 11.654
LCZ2 e e

LCZ3 e e

LCZ4 e e

LCZ5 28.585 508173
LCZ6 57.170 508173
LCZ7 57.170 1333955
LCZ8 28.585 539934
LCZ9 e e

LCZ10 e e

LCZA 54.236 e

LCZC 54.236 e

LCZD 54.236 e

LCZE 8.959 e

LCZF e e

LCZG 8.801 e

Total 351.976 2890236
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(MOD11L2), which was recorded at 02:25 (GMT) on August 2, 2018,
was used (Fig. 8). To analyze the correlation between the Landsat
LST results andMODIS11L2, the Landsat LST results were resampled
to 1 km. Thus, a significant correlation was observed between the
LST inverted via the mono-window algorithm using Landsat8 data
and the product of the MOD11L2 LST (correlation coefficient,
R ¼ 0.815), indicating the reliability of the LST inversion results.

For the LCZs, AeG (A, C, D, E, F, G), the average LST values were
31.176, 32.507, 34.115, 36.681, 36.016, and 30.496 �C, respectively.
LCZE and LCZG had the highest and lowest LSTs at 36.681 and
30.496 �C, respectively. For LCZ1e10, their average LST values were
37.797, 38.718, 38.002, 36.779, 38.125, 37.739, 36.688, 38.078,
37.726, and 38.102 �C, respectively. Fig. 9 shows the UHIA results for
the different LCZs. For LCZAeG (A, C, D, E, F, G), the UHIA values
were, 7.616, 8.947, 10.554, 13.121, 12.456, and 6.936 �C, respectively,
and for LCZ1e10, theywere,14.23661,15.158,14.441,13.220,14.565,
14.183, 13.126, 14.519, 14.167, and 14.370 �C, respectively, with LCZ2
and LCZG showing the highest and lowest UHIA values at 15.158
and 7.616 �C, respectively. A comparison of the UHIA values of the
LCZs at different heights showed that for compact building LCZ
classes (LCZ1e3), compact mid-rise buildings (LCZ2) had the
highest UHIA value, while that of compact high-rise building (LCZ1)
was lowest. For open building LCZ classes (LCZ4e6), open mid-rise
buildings (LCZ5) had the highest UHIA value, while that of open
high-rise buildings (LCZ4) was less than that of open low-rise
buildings (LCZ6). For the sparse building LCZ classes (LCZ7e9),
sparse high-rise buildings (LCZ8) had a UHIA value of 14.519 �C,
which was slightly higher than that of sparse low-rise buildings. A
comparison of the UHIA values of the LCZs at different building
densities for high-rise building (LCZ1,4,7), mid-rise building
(LCZ2,5,8), or low-rise building (LCZ3,6,9) LCZs showed that the
UHIA values of compact building LCZs were significantly higher
than those of open and spare building LCZs. It was also observed
that the UHIA values of the building LCZs were significantly higher
than those corresponding to natural land cover LCZs. Additionally,
the UHIA values of the compact building LCZ classes (LCZ1e3) were
significantly higher than those in the open building (LCZ4e6),
sparse/lightweight building (LCZ7-9), and industrial building
(LCZ10) LCZs, while the UHIA values of the mid-rise building LCZs
(LCZ2,5,8) were always higher than those of low-rise building and
high-rise building LCZs.
3.3. Obtaining optimal solutions

The different LCZs had different thermal environment charac-
teristics and population capacities. In the case of limited urban
construction land and population growth, the combination of the
different LCZs could reduce the negative impact of the UHI effect. A
detailed evaluation of the thermal environment characteristics of
the LCZs has been presented in Section 3.2. The population ac-
commodation feature represents the number of people per unit
area in the LCZs (particularly for building type LCZ1e10), and it is
calculated from the building area of the LCZs and the number of
permanent residents per unit area, as shown in Table 3. The LCZ
population and thermal environment characteristics of the study
area were as shown in Table 4.

By constructing a nonlinear solver model in LINGO, it was
possible to obtain the global optimal solution (Table 5). With the
current population size and human settlement area, the layout
model:
LCZ5 þ LCZ6 þ (LCZ7þLCZ8þLCZA þ LCZC þ LCZD þ LCZE þ LCZG)



Fig. 10. HSCI index calculations based on the different nighttime lighting data.

Fig. 11. HSCI index statistics based on different nighttime lighting data.
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with areas 28.585, 57.170, 57.170, 28.585, 54.236, 54.236, and
54.236 km2, respectively, which accommodated a total population
of 2.890 � 106 persons, with LCZ5, LCZ6, LCZ7, and LCZ8 accom-
modating 508172, 508174, 1333955, and 539934 persons, respec-
tively. This optimization process resulted in a decrease in
UHIAaverage values from 12.486 to 11.654 �C.
4. Discussions

4.1. Human settlements mapping

In this study, the Luojia 1-01 NTL dataset was used to calculate
HSCI values, which significantly improved spatiotemporal resolu-
tion, compared with the DMSP/OLS and NPP-VIIRS datasets used in
previous studies (Lu et al., 2008; Ma et al., 2018, 2015). This resulted
in the enhancement of the accuracy of the extraction of the human
settlements. Given that there was an offset between the Luojia1-01
images and actual objects, a preliminary geometric correction of
the Luojia1-01 images was performed during data preprocessing
using objects with clear features.

To visually clarify any enhancements of the HSCI calculation
results, the HSCI results based on the different NTL datasets were
compared, and the results (Fig. 10) showed that the HSCI values
calculated based on the Luojia1-01 dataset had a superior spatial
resolution, i.e., 130 m, compared with that calculated based on the
DMSP/OLS and NPP-VIIRS NTL datasets. Additionally, the compar-
ison also showed that the HSCI values calculated based on the
Luojia 1-01 dataset ranged from 1.00 to �0.98 (Fig. 11), while those
calculated based on the NPP-VIIRS dataset ranged from 1.00
to �0.52, and those calculated based on the DMSP/OLS dataset
ranged from 1.00 to �0.87. Thus, the use of the Luojia 1-01 dataset
enhanced the range of the HSCI values, making it possible to further
identify urban human settlements. In summary, the calculation of
HSCI using the Luojia 1-01 dataset resulted in the enhancement of
the spatial resolution as well as the range of the HSCI values from
the threshold.
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4.2. LCZ mapping

In this study, multi-source datasets, such as remote sensing
imagery and building vector datasets, were used for LCZ mapping.
Compared with the LCZ mapping methods used in most previous
studies, in which remote sensing images were employed to realize
supervised classification, such as WUDAPT work flow (Brousse
et al., 2016; R. Wang et al., 2017a; Xu et al., 2017b), the use of
multi-source datasets for LCZ classification mapping provided
higher classification accuracy (G�al et al., 2016). Compared with the
landsat images used in previous studies, the higher resolution
Sentinel-2 data used in LCZ mapping in this study significantly
brought about an improvement in the spatial resolution of the LCZ
classification. Additionally, when classifying LCZ10 (industrial
zone), certain data were corrected based on small-scale field in-
vestigations, which further improved data reliability as well as the
classification results.

4.3. UHI effect intensity calculation

In this study, UHIA is proposed as an index for the measurement
of the thermal environment characteristics of LCZs. UHIA involves
the calculation of the average heat island effect intensity in
different LCZ ranges based on the LCZ and UHI concepts. The UHIA
calculation process employed in this study is different from the
original UHI calculation process, which uses the difference in the
average surface temperature of different regions as the intensity of
the calculation. In this study, the UHIA calculation process first
involved the determination of the difference between the surface
temperature and the reference temperature (the average surface
temperature of LCZD). Thereafter, the average value was calculated
as the intensity result of the different LCZs. The UHI intensity em-
phasizes the temperature difference between the different LCZs. In
studies related to the remote sensing of thermal environments, the
pixel is the smallest temperature observation unit. Thus, the UHI
intensity could be calculated using the pixel as the basic unit, and
thereafter, the characteristics of the calculation results can be sta-
tistically analyzed to reflect the thermal environment characteris-
tics of the different LCZs. In summary, UHIA is more suitable
indicator for the analysis of the heat island effect than UHI.

4.4. Obtaining optimal solutions

Previous studies on the LCZ have been primarily focused on
three aspects: the construction and improvement of the LCZ clas-
sification system (Wang et al., 2016; Wang and Ouyang, 2017), LCZ
mappingmethods (Brousse et al., 2016; Danylo et al., 2016; R.Wang
et al., 2017a), and empirical studies of the LCZ thermal environment
(Beck et al., 2018; Unger et al., 2018; Verdonck et al., 2017; Y. Wang
et al., 2017b; X. Yang et al., 2018a,b). Previous studies that used LCZs
to study the characteristics of the thermal environment involved
temperature observations (Beck et al., 2018; X. Yang et al., 2018a,b,
2017a,b) and remote sensing monitoring (Unger et al., 2018; Y.
Wang et al., 2017b; J. Yang et al., 2019a). However, this study focuses
on the thermal environment of LCZs and describes the use of the
UHIA index to measure the differences in the thermal environ-
mental characteristics of different LCZs. It also explores the most
suitable urban LCZ layout strategy with population size and resi-
dential area as limits. Compared with previous studies on heat is-
land effect mitigation strategies, which provided strategies solely
from the perspective of thermal environment characteristics, the
results of this study provide a more macroscopic and comprehen-
sive countermeasure for heat island effect mitigation, i.e., based on
the current urban human settlement and population density, these
results offer the possibility to adjust the area ratio of various types
of LCZs in the current city to achieve countermeasures for the
alleviation of the intensity of the heat island effect. Additionally, it
also provides a more scientific basis for urban environmental
planning.

4.5. Limitations

This study had the following limitations. Only a single phase of
data was used for analysis owing to poor data quality (cloud cover).
Further, the Landsat8 TIRS dataset reflects thermal infrared features
with a resolution of 100 m, which is different from the resolution of
actual objects. Furthermore, the meteorological data used for cal-
culations were derived from several meteorological stations, such
that the details of the associated meteorological parameters can be
improved in future studies. Additionally, the urban thermal envi-
ronment is associated with a variety of influencing factors, such as
the climate background, land topography, green space, and
anthropocentric heat (B.J. He, 2018; He et al., 2019; Imran et al.,
2018; Qi et al., 2019; Qiao et al., 2017; Sun et al., 2019; J. Yang
et al., 2019b; Yue et al., 2019), which were not considered in this
study. Therefore, it is necessary that future studies on the urban
thermal environment should be performed using long-term high-
resolution multi-source datasets (Verdonck et al., 2018).

5. Conclusions

Using the Luojia 1-01 NTL, Sentinel-2A, Landsat8, and building
vector datasets, in this study, the thermal environment of different
LCZs in human settlements was analyzed by constructing the cu-
mulative index of the heat island effect intensity. Additionally, a
new method for obtaining the most suitable LCZs, which have the
lowest heat island effect intensity under the current urban popu-
lation size and built-up area size was proposed. Based on our
analysis and the results obtained, the following conclusions were
arrived at.

In this study, the total human settlement area was 351.976 km2.
The Ganjingzi District had the largest human settlement area, while
the Zhongshan District had the smallest. In the Shahekou and
Ganjingzi Districts, 81.005 (highest) and 55.005% (lowest) of the
total area was occupied by human settlements, which contained a
variety of LCZ classes, including 33.476% building zones (LCZ1e10)
and 66.524% natural zones (LCZAeG).

The different LCZs had different UHIA values, particularly, the
LCZ2 had the largest UHIA value at 15.158 �C, while the LCZG had
the smallest UHIA at 6.936 �C. The UHIA values of the building LCZs
were significantly higher than those of the natural LCZs. Mid-rise
building LCZs (LCZ2,5,8) had higher UHIA values than low-rise
(LCZ3,6,9) and high-rise LCZs (LCZ1,4,7) buildings. Additionally,
compact building LCZs (LCZ1e3) had higher UHIA values than open
(LCZ4e6) and spare building LCZs (LCZ7e9).

With the current human settlements and population size, the
LCZ combination with the smallest UHIA in the study area was the
LCZ layout model:
LCZ5 þ LCZ6 þ (LCZ7þLCZ8þLCZA þ LCZC þ LCZD þ LCZE þ LCZG),
which had areas 28.585, 57.170, 57.170, 28.585, 54.236, 54.236, and
54.236 km2, respectively. With the LCZ layout model, UHIA value
reduce from 12.441 to 11.654 �C, indicating a decrease in the UHI of
the city.
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