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A B S T R A C T

Most studies on vegetation phenology along the urban–rural gradient (URG) have focused on inland cities, with a
comparative lack of research on coastal cities despite their different climatic background. We used the nor-
malized difference vegetation index (NDVI), land surface temperature (LST), and land cover data to determine
spatiotemporal patterns in vegetation phenology with respect to LST along the URG in China’s coastal Dalian
sub-province, with a focus on the main city of Dalian and three sub-cities (Pulandian, Wafangdian, and
Zhuanghe). Our results were well-correlated with MODIS Land Cover Dynamics Product (MCD12Q2) reference
data and matched patterns found in previous studies, indicating that the amplitude method of TIMESAT for
obtaining vegetation phenology is practical. Start of growing season (SOS) and end of growing season (EOS) of
urban areas were earlier and later than rural areas, respectively. The four urban areas had dissimilar vegetation
types and urbanization levels leading to different changes in SOS and EOS along the URG; the average △SOS
(the difference in SOS along the URG) and △EOS (the difference in EOS along the URG) of the main and sub-
cities were 7.4 and 5.0 d, respectively. Changes in LST along the URG exhibited a non-linear relationship, with
the maximum usually appearing 6–8 km from the urban areas. There was a strong linear relationship between
vegetation phenology and LST along the URG. The winter–spring and yearly LSTs were negatively correlated
with SOS, with both having roughly similar effects. The fall and yearly LSTs had significantly positive corre-
lations with EOS, with the latter having a stronger effect. This study will be helpful for understanding climatic
changes arising from urbanization in coastal areas and improving the management and productivity of the
ecological environment.

1. Introduction

Vegetation plays an important role in controlling energy flow and
other processes in terrestrial ecosystems (Richardson et al., 2013).
Vegetation phenology directly reflects the growth cycle of plants and its
effects on ecosystem productivity, climate, the carbon balance, and
human health. Phenology is affected by precipitation, insolation, lati-
tude and longitude, topography, temperature, and other factors, of
which temperature is the most directly important factor while also
serving as an indicator of climate change (Cui, 2013; Forkel et al., 2015;
Geerken, 2009; Gill et al., 2015; Jeganathan et al., 2014; Jochner et al.,
2012). Increasing urbanization in recent decades has resulted in rising
urban heat island (UHI) effects and related ecological issues (He et al.,
2019; Hu et al., 2019; Liu et al., 2020; Wang et al., 2019a,b,c,d; Xie

et al., 2020). As vegetation helps to mitigate the UHI effect, it is im-
portant to study differences in vegetation phenology along the ur-
ban–rural gradient (URG) to determine ways to mitigate the effects of
climate change and ecological problems related to urbanization
(Bounoua et al., 2015; Mariani et al., 2016; Weng et al., 2004; Yang
et al., 2017; Zhong et al., 2019).

Determining vegetation phenology can involve ground observa-
tions, remote sensing data, and modeling. The first method is based on
fixed-point observations of individual plants belonging to one or more
species, but cannot provide accurate large-scale data due to inherently
uneven sampling distribution and excessive time and labor costs (Gazal
et al., 2008; Luo et al., 2007; Schaber and Badeck, 2005; Zheng et al.,
2013). The development of remote sensing has allowed the collection of
data with better spatiotemporal coverage and continuity. Depending on
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the study area, vegetation type, and other factors, data with different
temporal or spatial resolutions can be used for monitoring variations in
vegetation indexes such as normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), and leaf area index (LAI) that
reflect changes in phenology (Chen et al., 2019; Garrity et al., 2011;
Hanes and Schwartz, 2011; Verger et al., 2016; Zhang et al., 2004). The
modeling approach uses temperature, precipitation, insolation, and
latitude and longitude as driving factors to forecast vegetation phe-
nology based on empirical relationships (Chen et al., 2016; Liu et al.,
2017; Senf et al., 2017; Villa et al., 2018). Such methods reflect only the
“greenness” of vegetation and cannot truly reflect periodic changes in
photosynthesis (Jeong et al., 2017; van der Tol et al., 2016; Walther
et al., 2016; Wang et al., 2019a,b,c,d). To overcome this issue, re-
searchers have used high-spatial-resolution solar-induced chlorophyll
fluorescence (SIF) data to assess the photosynthetic phenology and
physiological processes involved more directly and accurately.

Many studies have used remote sensing data to explore the re-
lationship between vegetation phenology, climate change, and urba-
nization by quantitatively describing differences in vegetation phe-
nology along the URG (Chen and Xu, 2012; Fu et al., 2018; Ren et al.,
2018; Wang et al., 2019a,b,c,d; Yao et al., 2017; Zhang et al., 2018).
Such studies have shown that urban areas have an earlier start of
growing season (SOS) but a later end of growing season (EOS) com-
pared with rural areas and these have generally been attributed to the
influence of the UHI effect on vegetation phenology along the URG.
Furthermore, vegetation phenology has a significant correlation with
land surface temperature (LST). For example, Zhou et al. (2016) used
data from 32 major Chinese cities to show that SOS came 9–11 d earlier
and EOS 6–10 d later when LST increased by 1 °C. Urban scale also
affects vegetation phenology; Li et al. (2016) reviewed 4500 urban
areas of various sizes in the United States and showed that SOS came
1.3 d earlier and EOS 2.4 d later when the urban area expanded by a
factor of 10.

Previous research on vegetation phenology along the URG has fo-
cused on inland cities, but it is not clear whether the different climatic
conditions (smaller temperature differences between day and night, and
abundant precipitation) of coastal cities could produce different phe-
nological patterns, such as the research of Yao et al. (2017). For ex-
ample, the sub-province of Dalian in China has undergone rapid urba-
nization in the past two decades, increasing building surface area and
complex morphology (Guo et al., 2020; Yang et al., 2019), and its lo-
cation on a peninsula within the Bohai Sea makes it a useful re-
presentative case study for examining the spatiotemporal responses of
vegetation phenology along the URG in coastal cities. We used MODIS
NDVI time series data to obtain vegetation phenology, and then used a
land cover dynamics product (MCD12Q2) to verify the accuracy of the
obtained vegetation phenology. Finally, we used vegetation phenology
and MODIS LST data to determine the spatiotemporal patterns of ve-
getation phenology and LST in Dalian and along the URG and assess the
response of vegetation phenology to LST in this region. The results in-
crease our understanding of coastal urban ecosystems and the role of
temperature in regulating the vegetation growth cycle.

2. Data and methods

2.1. Study area

The sub-province of Dalian is located in China’s Liaoning Province,
at the southern end of the Liaodong Peninsula that partially defines the
Bohai Sea (120°58′–123°31′ E, 38°43′–40°12′ N) (Fig. 1). The region has
a total land area of 1.26 × 105 km2 (excluding islands), including the
main city (also called Dalian (city)) and three sub-cities (Pulandian,
Wafangdian, and Zhuanghe). It has a warm temperate continental
monsoon climate with maritime characteristics; annual average tem-
perature and precipitation are 10.5 °C and 550–950 mm, respectively,
with a dominant vegetation type represented by warm temperate

deciduous broad-leaved forests.

2.2. Data sources and processing

Over the past 20 years, Dalian has experienced rapid urbanization
and the development of complex human activity. The data sources in-
cluded: China’s Land Use/Cover Datasets (CLUDs; data with a high
spatiotemporal resolution), MOD13Q1 (Collection 6) (NASA LP DAAC,
2015a), MOD11A2 (Collection 6) (NASA LP DAAC, 2015b), and
MCD12Q2 (Collection 6) (NASA LP DAAC, 2019) as shown in Table 1.

The intersections of contiguous developed land in the CLUDs were
used to define the urban area for the four cities studied. The center of
each city was then used to establish 10 concentric buffer zones of 1 km
each that defined the URG for each urban area (the outer buffer is
shown in Fig. 1). The LST data were extracted from the QA layer of the
MOD11A2 product, using data with mandatory QA flags of 00. These
data were combined with known physiological demands (such as tem-
perature accumulation) of vegetation growth with reference to LST to
supplement deficiencies in existing research, which has not compre-
hensibly defined the impacts of LST on vegetation phenology during the
day, night, and different time periods (Deng et al., 2019; Wang et al.,
2019a,b,c,d; Yuan et al., 2018). Next, the diurnal and nocturnal LSTs
(LSTD and LSTN, respectively) were calculated along with the mean LST
(LSTMean, average of LSTD and LSTN). Our analysis covered the winter-
spring (LSTWS, from December of the previous year to May of the fol-
lowing year) and fall (LSTF, from September to November) of each year
studied and the full year (LSTY) periods; the subscripts here were also
used to distinguish time periods for different data, e.g., LSTF_N for
nocturnal fall and LST or LSTY_MEAN for annual mean. To verify the
feasibility of the proposed method, we extracted the effective greenup
and dormancy layers from the QA_Overall layer of MCD12Q2 data
based on QA Overall Class values ≤ 1, as per the previous definitions of
SOS and EOS (Sakamoto, 2018), which were designated as SOSMCD12Q2

and EOSMCD12Q2, respectively.

2.3. Research method

2.3.1. Obtaining phenology using the amplitude method
The Savitzky–Golay (S–G) filtering method can describe complex

and small changes in NDVI time-series data while suppressing noise
from clouds and atmospheric change (Cao et al., 2018; Chen et al.,
2004; Jönsson and Eklundh, 2004; Tan et al., 2011). We used TIMESAT
software to apply this method for a smooth reconstruction of the MODIS
NDVI time-series data based on the amplitude method, which uses the
difference between annual maximum and minimum NDVI to determine
SOS and EOS based on the date when the fitted curve rises or falls to a
certain amplitude ratio. We used a 30 % amplitude as this has been
shown to best match ground observations; an adaptive intensity of 2.0
and an S–G window size of 2 were used to extract vegetation phenology
(Yu et al., 2014; Zhao et al., 2016). Given that human activity can
create outliers in vegetation phenology, the effective ranges of SOS and
EOS were set to 50–180 and 240–330 d, respectively, to ensure data
accuracy (Cong et al., 2012; White et al., 2009; Zhang et al., 2006).

2.3.2. Calculating differences in vegetation phenology and LST along the
URG

After comprehensively considering differences in climatic environ-
ment, urbanization level, and data quality (Zhou et al., 2016), we se-
parately calculated the average SOS and EOS of the four urban areas
and their rural buffer zones from 2001 to 2017, then compared dif-
ferences in vegetation phenology along the URG using the following
equations:

= −ΔSOS SOS SOSi ub ri (1)

= −ΔEOS EOS EOSi ub ri (2)
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where SOSub, EOSub and SOSri, EOSri represent the average SOS and
EOS of the urban and ith buffer zone, respectively, and ΔSOSi, ΔEOSi
represent the difference in SOS and EOS along the URG. When ΔSOSi
and ΔEOSi are negative, the urban SOS and EOS occur earlier than rural
ones, and vice versa.

Differences in LST along the URG were calculated in the same
manner:

= −ΔLST LST LSTi ub ri (3)

where LSTub and LSTri represent the average LST of the urban and rural
areas’ ith buffer zone, respectively, and ΔLSTi represents the difference
in LST along the URG. When ΔLSTi is negative, the urban LST is lower
than the rural, and vice versa.

3. Results

3.1. Verification of the vegetation phenology results

We verified our vegetation phenology results by comparison with
other research and MCD12Q2 data. As shown in Table 2, we found that
the spatial characteristics of vegetation phenology were consistent with

previous research (Fu et al., 2018; Hou et al., 2014; Li et al., 2014; Yao
et al., 2017; Yu et al., 2017, 2014; Zhao et al., 2016), but our inter-
annual variations differed to a certain extent from comparable work
(Ren et al., 2018; Zhao et al., 2015). The difference was likely due to
general differences in study area/period, data sources, climatic setting,
urban scale, and vegetation type as well as specific factors affecting the
influence of Dalian’s urbanization on local vegetation phenology during
the study period (Krehbiel et al., 2016; Liang et al., 2016; Stewart and
Oke, 2012; Zipper et al., 2016).

The SOS and EOS obtained from MOD13Q1 were verified against
SOSMCD12Q2 and EOSMCD12Q2, respectively (Fig. 2a and b). SOS differ-
ences ranged from−23 to 35 d (with an average difference of 6.7 d). Of
the total SOS pixels, 15 % were earlier relative to SOSMCD12Q2, while 85
% were delayed. EOS differences ranged from −32 to 31 d (average
difference −0.6 d) with the largest difference occurring in the northern
woodlands. Of the total EOS pixels, 51 % were earlier relative to
EOSMCD12Q2 and 49 % were delayed. As for temporal patterns (Figs. 2c,
d), the correlation between SOSMCD12Q2 and SOS was significant (r =
0.74, p< 0.01), although the root mean square error (RMSE) of SOS
was smaller than that of SOSMCD12Q2. Compared with our SOS,

Fig. 1. Location of the sub-province of Dalian and 2015 land-use classification; urban area and rural area used for analysis are marked for the main city and three sub-
cities.

Table 1
Description and sources of data.

Data product Attributes Source Layers Temporal coverage

MOD13Q1 250 m/16 d https://lpdaac.usgs.gov/ 250 m 16 days NDVI,250 m 16 days VI Quality detailed QA 2001−2017
MOD11A2 1000 m/8 d https://lpdaac.usgs.gov/ LST_Day_1 km,QC_Day, LST_Night_1 km,QC_Night 2001−2017
MCD12Q2 500 m/yr https://lpdaac.usgs.gov/ Greenup, Dormancy, QA_Overall 2001−2016
China’s Land Use/Cover Datasets (CLUDs) 100 m http://www.resdc.cn/ 2000,2005, 2010,2015

Table 2
Vegetation phenology compared with other studies.

This Study Fu et al. (2018) Hou et al. (2014) Li et al. (2014) Yao et al. (2017) Yu et al. (2017) Yu et al. (2014) Zhao et al. (2016)

SOS (Day of year) 110−170 110−170 131−140 112−161 100−140 100−140 110−160
EOS (Day of year) 280−330 285−325 240−300 255−264 273−300 280−320 265−300 295−345
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SOSMCD12Q2 showed an overall earlier trend that generally shifted its
peak forward, consistent with previous studies (Vintrou et al., 2014;
Wang et al., 2017; Xin et al., 2015). Similarly, there was a good cor-
relation between EOSMCD12Q2 and EOS (r = 0.68, p< 0.01), with an
RMSE for the latter of 4.03 d.

The differences between vegetation phenology in this study and
MCD12Q2 can be explained by the fact that SOSMCD12Q2 and
EOSMCD12Q2 were calculated based on EVI whereas we used NDVI. In
addition, the amplitude ratio for SOSMCD12Q2 and EOSMCD12Q2 was 15 %
as compared to 30 % in this study. Overall, the comparison with prior
research and MCD12Q2 data verified the accuracy of our results, in-
dicating that the proposed method for obtaining vegetation phenology
was feasible and could serve as a reference for the study of vegetation
phenology in other coastal cities.

3.2. Spatiotemporal patterns of vegetation phenology along the URG

The average SOS for the entire Dalian sub-province from 2001 to
2017 ranged from 110 to 170 d with an overall average of 145.8 d,
while the average EOS ranged from 280 to 330 d with an overall
average of 307.7 d (Fig. 3). Dalian (city) had the earliest average SOS
(137.8 d), followed by Zhuanghe (143.9 d), Wafangdian (146.2 d), and
Pulandian (153.3 d). Similarly, Dalian (city) also had the latest EOS
(313.2 d), preceded by Wafangdian (308.7 d), Zhuanghe (307.8 d), and
Pulandian (302.8 d). The SOSs in the coastal areas of Pulandian,
Zhuanghe, and Wafangdian were 9.2 d later than in the northern
woodlands. The EOSs in Dalian (city) and the northern woodlands were
the latest, 1.9 d after the EOSs in the coastal areas of Pulandian,

Zhuanghe, and Wafangdian. Over time, the overall SOS clearly came
earlier by 0.56 d/yr (r2 = 0.48, p<0.01), though this varied sig-
nificantly from year to year; the overall EOS arrived later by 0.57 d/yr
(r2 = 0.41, p<0.01) with similar year to year fluctuations.

Within the urban buffer zones, SOS grew gradually later with in-
creasing distance from three of the four urban centers (Fig. 4), with a
delay of 5.4 d for Dalian (city) (r2 = 0.93, p< 0.01), 11.1 d for Pu-
landian (r2 = 0.82, p<0.01), and 13.1 d for Zhuanghe (r2 = 0.86,
p<0.01); the effect was particularly pronounced within 2–4 km.
However, Wafangdian showed a very different trend, with an average
delay of 0.7 d for 1–7 km followed by an abrupt earlier trend to 1.5 d
for 8–10 km. EOS grew gradually earlier with distance from urban
areas—11.4 d for Pulandian (r2 = 0.71, p<0.01) and 7.9 d for
Zhuanghe (r2 = 0.94, p<0.01). For Dalian (city), there was a gradual
delay in EOS for 1–6 km, followed by an abrupt earlier trend for 7–10
km. For Wafangdian, EOS grew earlier with distance—1.7 d for 1–7 km
to 0.2 d for 8–10 km.

3.3. Spatiotemporal patterns in LST along the URG

The spatial patterns of LSTY_D, LSTY_N, and LSTY_Mean were all similar
in being higher closer to urban areas (Fig. 5). From 2001–2017, annual
overall LSTY_D ranged from 13 to 17 °C (average 14.7 °C), LSTY_N ranged
from 2 to 5 °C (average 2.5 °C), and LSTY_Mean ranged from 7 to 11 °C
(average 8.4 °C). In all cases, the temperatures in Dalian (city) were the
highest and those in the northern mountainous areas were the lowest.
All cases experienced annual increases at an overall rate of 0.03 °C/
year.

Fig. 2. Spatial comparison of (a) SOS and SOSMCD12Q2 and (b) EOS and EOSMCD12Q2 and temporal relationship between (c) SOS and SOSMCD12Q2 and (d) EOS and
EOSMCD12Q2.
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The △LST along the URG showed a significant non-linear re-
lationship (Fig. 6). There was an initial trend of gradual decline in LST
with increasing distance from the urban center, with △LST reaching its
maximum at 6–8 km, after which it gradually decreased with further
distance. The △LSTWS_D, △LSTWS_N, and △LSTWS_Mean were 2.1, 3.0,
and 2.6 °C, respectively, peaking at 6, 7–8, and 7 km, respectively. The
△LSTF_D, △LSTF_N, and △LSTF_Mean were 2.5, 4.2, and 3.2 °C, re-
spectively, peaking at 8, 6, and 8 km, respectively. The △LSTY_D,
△LSTY_N, and △LSTY_Mean were 2.3 °C, 2.7 °C, and 2.6 °C, respectively,
peaking at 7 km for the first two; LSTY_Mean peaked at 7 km for the city
of Dalian but at 6 km for Pulandian, Wafangdian, and Zhuanghe.

3.4. Relationship between vegetation phenology and LST along the URG

SOS had a significantly negative correlation with LSTWS and LSTY;
the correlation between SOS and LSTY_D was highest at Zhuanghe (r =
-0.95, p< 0.01) (Table 3). EOS was positively correlated with LSTF and
LSTY; the correlation between EOS and LSTY_D was highest at Pulandian
(r = 0.96, p<0.01).

As shown in Fig. 7, when LSTWS_D, LSTWS_N, and LSTWS_Mean in-
creased by 1 °C, SOS occurred 3.6, 2.5, and 2.8 d earlier, respectively
(average 3.0 d). LSTY_D, LSTY_N, and LSTY_Mean had negative correlations
with SOS; an increase of 1 °C in LST caused SOS to occur 3.2, 2.7, and
2.9 d earlier (average 2.9 d). LSTWS and LSTY had similar effects with
regard to earlier SOS. When LSTF_D, LSTF_N, and LSTF_Mean increased by
1 °C, EOS was delayed by 2.0, 1.2, and 1.6 d, respectively (average 1.6
d). EOS was positively correlated with LSTY_D, LSTY_N, and LSTY_Mean:
when LST increased by 1 °C, these were delayed by 2.2, 1.9, and 2.0 d,
respectively (average 2.0 d). The delay effect of LSTY on EOS was

significantly greater than that of LSTF.

4. Discussion

4.1. Impact of LST on vegetation phenology

This study’s focus on differences in LST along the URG in the win-
ter–spring, fall, and annual periods in terms of day, night, and mean
values was intended to address the existing lack of understanding re-
garding the comprehensive impact of LST on vegetation phenology. LST
was consistently and significantly higher with increasing proximity to
urban areas, following a clear non-linear relationship; this was con-
sistent with Han and Xu (2013). Peng et al. (2012) assessed 419 global
cities and showed that the average annual surface UHI intensity was
higher during daytime than nighttime (1.5±1.2 °C and 1.1± 0.5 °C,
respectively), which contradicts our finding that △LSTY_D (2.3 °C) was
lower than △LSTY_N (2.7 °C). This conflict may relate to differences in
the respective delineations of urban versus rural areas, urban scale, and
climatic backgrounds between the two studies (Busetto et al., 2010; Fu
and Weng, 2018; Liu et al., 2016; Wu et al., 2016; Yu et al., 2010). Our
SOS showed a significantly negative correlation with △LSTWS and
△LSTY, whereas EOS showed a strong positive correlation with △LSTF

and △LSTY; these results are consistent with previous research.
The LSTs exhibited a non-linear relationship along the URG, with

the maximum △LST difference appearing at 6–8 km from urban areas
in most cases. This had a direct impact on the vegetation phenology.
Unlike the other urban areas, the SOS and EOS for Wafangdian did not
show any clear trend along the URG. Fitting by segments along the URG
from Wafangdian identified the segmentation of the fitting line for

Fig. 3. Temporal and spatial patterns of average (a) SOS and (b) EOS in Dalian sub-province from 2001–2017.

Fig. 4. Change in SOS and EOS within the URGs of the four studied cities.
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△SOS to a point at 7 km while the maximum difference for both
△LSTWS and △LSTY appeared at 6 km; the segmentation point of the
△EOS fitting line appeared at 7 km while the maximum differences for
△LSTF and △LSTY appeared at 7 and 6 km, respectively. These results
matched those of Han and Xu (2013), who determined that

urbanization affected vegetation phenology for up to 6 km from urban
areas. The lack of clear trends in vegetation phenology for Wafangdian
can be explained in several ways. First, its urban/rural delineation re-
sults in large amounts of forest contained in the latter, for which SOS
and EOS are earlier and later, respectively. Second, its location close to

Fig. 5. Temporal and spatial patterns of land surface temperature (°C) from 2001–2017 for (a) LSTY_D, (b) LSTY_N, and (c) LSTY_Mean.

Fig. 6. Differences in land surface temperature along the URG for winter-spring (top row), fall (middle row), and annual (bottom row) with respect to diurnal (left
column), nocturnal (middle column) and mean (right column) periods.

Table 3
Correlation between vegetation phenology and land surface temperature along the URGCorrelation.

SOS/LSTWS SOS/LSTY EOS/LSTF EOS/LSTY

Day Night Mean Day Night Mean Day Night Mean Day Night Mean

Dalian (City) −0.53 −0.92 −0.84 −0.40 −0.84 −0.75 −0.15 −0.25 −0.09 −0.22 −0.07 −0.10
Pulandian −0.83 −0.80 −0.84 −0.62 −0.90 −0.84 −0.31 0.71 0.90 0.74 0.96 0.93
Wafangdian −0.25 −0.10 −0.36 0.13 0.06 −0.06 0.23 0.45 0.30 0.25 0.38 0.48
Zhuanghe −0.80 −0.92 −0.54 −0.95 −0.90 −0.83 0.92 0.87 0.92 0.91 0.86 0.75

J. Yang, et al. Urban Forestry & Urban Greening 54 (2020) 126784

6



Pulandian and the higher LSTs of Pulandian has a stronger influence on
the vegetation phenology of Wafangdian.

4.2. Uniqueness of vegetation phenology along the URG in coastal cities

Studies on the differences in vegetation phenology along the URG
have had different final results due to differences in selected data, re-
gions, study periods, urbanization levels, and statistical methods
(Table 4). For example, the △SOS and △EOS determined for Dalian
were smaller than those for Beijing and northeastern China. Comparing
the results of 32 major cities in China, the differences in vegetation
phenology along the URG in inland cities were evident, and more in line
with the fitted curve than coastal cities. Moreover, along the eastern
coast of the United States, △SOS by latitude was −15–0 d and △EOS
was 0–20 d; △SOS in New York was 7 d, similar to the 7.4 d de-
termined for Dalian. Such comparisons of our results and those of other
studies show that differences in vegetation phenology along the URG in
coastal cities show a smaller trend than for inland cities, which is

closely related to the unique climate background of coastal cities.
Dalian sub-province was selected as the study area to assess the

uniqueness of vegetation phenology in coastal cities with a different
climatic background than the more commonly studied inland settings.
Vegetation phenology in such cities is more sensitive to temperature,
meaning that a given increase in LST has a greater impact than for
inland cities (Wang et al., 2015, 2017; Workie and Debella, 2018;
Zhang et al., 2006). In addition, past research has shown that LST has a
stronger impact on SOS than EOS (Wang et al., 2017; Yuan et al., 2018;
Zhao et al., 2015), which is consistent with the findings of this study.
Second, Dalian is greatly affected by the maritime monsoon, resulting
in higher precipitation than inland cities. Vegetation growth is closely
related to precipitation amount, with an obvious lag effect on vegeta-
tion phenology (Du et al., 2019; Sohoulande Djebou et al., 2015;
Workie and Debella, 2018). Consequently, the SOS in coastal cities
tends to be later than that in inland cities. Third, a coastal city’s climatic
environment is jointly determined by its proximity to the ocean, its
vegetation structure, and its urbanization level, which then indirectly

Fig. 7. Relationships between vegetation phenology (SOS or EOS) and land surface temperature for various combinations of conditions along the URG.
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affects its vegetation phenology (Balica et al., 2012; Tarawally et al.,
2018).

LST increases may cause coastal areas to face more ecological pro-
blems (Zikra and Suntoyo, 2015), indirectly affecting vegetation phe-
nology. For example, earlier SOSs and later EOSs prolong the growing
season, increasing the gross primary productivity (GPP) and net pri-
mary productivity (NPP) of the vegetation. Therefore, studying reasons
behind differences in vegetation phenology between inland and coastal
cities can improve agricultural management in coastal regions while
better quantifying the impact of urbanization on the ecological en-
vironments of coastal cities.

4.3. Uncertainties

Although our results provided a strong basis for predicting the im-
pact of urbanization on the ecological environment of a coastal setting
like Dalian, there were several limitations to our approach. First, the
MOD13Q1 data had a spatial resolution of 250 m, meaning that each
pixel represented 6.25 × 104 m2, such that details of land use or ve-
getation status could be mixed or obscured, affecting the accuracy of
the results (Chen et al., 2018). Second, vegetation phenology is affected
by many factors not considered here, such as the water cycle, insola-
tion, altitude, and temperature (Du et al., 2019; Jochner et al., 2012;
Shen et al., 2011). Future studies should use high-resolution remote
sensing data to further assess changes in vegetation phenology along
URGs with respect to the comprehensive impact that multiple factors
have on vegetation phenology.

5. Conclusions

We used MOD13Q1, MCD12Q2, and MOD11A2 data for 2001–2017
to analyze the differences in vegetation phenology and land surface
temperature along the URG in coastal Dalian sub-province, China. The
results show that the marine monsoon climate caused coastal cities to
have lower surface temperature and more precipitation than inland
cities, resulting in vegetation phenology variations along the URG in
coastal cities to be significantly smaller than for inland cities; △SOS
was 7.4 d earlier and △EOS was 5.0 d later. These patterns reflect
factors such as city size and ecological context (Walker et al., 2015;
Wang et al., 2019a,b,c,d).

Our results provide a reference for studying long-term spatio-
temporal change trends in vegetation phenology and LST along the
URG in coastal cities. We show that it is possible to quantify the impact
of coastal urbanization on the ecological environment, and to provide a
strong basis for better understanding the agricultural development of
coastal cities, but some uncertainties remain that need to be explored in
future research.
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