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A B S T R A C T

Due to rapid urbanization, China's urban morphology has undergone tremendous changes, re-
sulting in an increased urban heat island (UHI) effect and negative impact of thermal environ-
ment, especially in summer. Studying the scale effect between urban wind and thermal en-
vironment can provide the best scale for the wind environment planning on mitigating UHI
effect. Taking Dalian as an example, using multi-source data, a nonlinear correlation analysis was
used to analyze the correlation between the frontal area index (FAI) and land 77uuyyhsurface
temperature (LST) under different grids. The results show that first, FAI is sensitive to grid-size
changes. When the grid size increases from 25×25m to 150× 150m with a step size of 25m, in
July, the numbers of grids with FAI > 1 are 19,992, 1538, 153, 20, 4, and 0 (0%) accounting for
2.106%, 0.645%, 0.081%, 0.019%, 0.006%, and 0% of the total, respectively. In September, the
numbers of grids with FAI > 1 are 17,633, 1643, 164, 22, 8, and 0, accounting for 1.849%,
0.689%, 0.155%, 0.037%, 0.021%, and 0% of the total, respectively. When the grid size is greater
than or equal to 150× 150m, there is no grid with FAI > 1. Second, the most effective grid size
to study the relationship between FAI and LST is 25m. When the grid size increases from 25m to
300m with a step size of 25m, the correlation between FAI and LST shows a significant decrease.
When the grid size is 25m, the correlation is the strongest.

1. Introduction

Urban thermal environment refers to the physical environment related to heat affecting the human body's perception of cold and
warmth, health level, and human survival and development. The urban heat island (UHI) effect refers to the phenomenon where the
temperature in urban areas is significantly higher than that in the surrounding rural areas (Rizwan et al., 2008). UHI is a concentrated
expression of urban thermal environment. Rapid urbanization leads to changes in building morphology, surface properties, and
increasing crowds in cities(Yang et al., 2018b, 2018a; Liu et al., 2018). These factors have changed the energy balance dramatically,
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and they make UHI more intense. UHI can strengthen heat waves, which in turn enhance the negative impact of UHI, leading to a
deterioration of the quality of urban thermal environment (Clarke and Bach, 1971). This results in urban residents facing a higher
health risk (Jandaghian and Akbari, 2018; Tan et al., 2010), a higher energy cost (Konopacki and Akbari, 2000) and affacting human
acitvities (Chen et al., 2017a). UHI can be divided into surface heat island (SUHI), canopy heat island (CUHI), and boundary heat
island (BUHI). SUHI has been proved to be an important factor for thermal environment (Li et al., 2018b). It can be measured by land
surface temperature (LST), which has been widely applied in UHI studies (Qiao et al., 2013; Voogt and Oke, 2003; Zhou et al., 2014).

Rapid urbanization has changed urban landscape patterns by increasing building surface area and complex morphology. The
complex structure and spatial pattern directly cause obstacles and disturbances to the wind (Allegrini and Carmeliet, 2017; Qiao
et al., 2017; Yang et al., 2019). Due to the blocking effect of wind, heat and pollutants accumulate in densely populated areas, thereby
affecting urban thermal environment (Estoque et al., 2017) and urban air pollution (Li et al., 2018a). In addition, buildings can affect
radiation transfer processes, indirectly influencing UHI (Li et al., 2019). The urban wind environment, which refers to the wind field,
is dependent on the distribution of non-mechanical ventilation and generated by gradients in urban wind and thermal pressure.
Ventilation allows heat to diffuse and reduce pollutant concentration (He et al., 2019). Therefore, it is important to study wind
environment and urban space thermal environment to reduce the negative impact of the UHI effect. Previous research on urban wind
environment mainly involves two layers: urban boundary layer and urban canopy layer. Some studies have further divided the urban
canopy layer. Ng et al. (2011) sampled and calculated the heights of buildings in Hong Kong and further divided the urban canopy
layer (0–60m) into podium layer (0–15m) and building layer (15–60m). The methods used in urban wind environment studies
include wind tunnel model (Brunet et al., 1994; Gromke, 2018), computational fluid dynamics (CFD) simulation (Dhunny et al.,
2018; Wang et al., 2018), and urban morphological parameters. Compared with others, urban morphological parameters, which are
widely used, can accurately describe the aerodynamic characteristics of cities and explain most urban climate phenomena and
processes with a lower cost. Frontal area index (FAI) is an important indicator of the blocking effect of buildings and is usually used to
study urban wind environment. It refers to the ratio of the projected area along the fixed wind direction to the area of the calculation
unit (Lettau, 1969). It has a similarity with the roughness parameter as both can describe urban morphology and the blocking effect
of wind in cities (Macdonald et al., 1998). However, the influence of wind direction considered in FAI calculation makes FAI more
objective in evaluating urban wind environment. Bottema and Mestayer first calculated and made an FAI map (Bottema and
Mestayer, 1998). FAI was used to construct a model for predicting wind speed ratio (Ikegaya et al., 2017) and evaluating urban wind
environment (Chen et al., 2017b,c; Yuan et al., 2014). By affecting wind environment, FAI has an impact on both urban thermal
environment and atmospheric pollution (Cariolet et al., 2018). In order to improve wind environment and alleviate various negative
environmental problems in an urban area, a method of applying an FAI map and least cost path (LCP) analysis is widely used to
evaluate ventilation corridors inside a planned dense city (Chen et al., 2017b; Hsieh and Huang, 2016; Peng et al., 2017a; Wong et al.,
2010). Furthermore, the relationship between urban morphology and UHI could be different in different periods (Zhang et al., 2016).
However, cities are facing the impact of a higher temperature during summer. The existence of the UHI effect exacerbates the much
higher temperature in urban areas, creating a high health risk. Therefore, the study of UHI in summer by urban form plays an
important role in improving urban ventilation and easing high temperatures.

The landscape pattern is scale-dependent (Wu, 2004). At a certain scale, the correlation among elements may be stronger.
Generally, the ideal scales are different in different regions (Lan and Zhan, 2017). Scale dependence is widely discussed in studies on
LST and FAI. Scale dependence studies on LST include the optimal scale for correlation between landscape structure and LST (Song
et al., 2014; Wang et al., 2016), and the measurement of vegetation–temperature correlation (Fan et al., 2015). The scale dependence
of FAI stems from calculation units. There are two types of calculation units: polygonal blocks occupied by buildings (Burian et al.,
2002; Gál and Unger, 2009), and the regular-shaped grid of certain areas dividing the study area. Existing research mainly uses
regular-shaped grids as calculation units. The mentioned grid size or scale of FAI is the size of this defined regular-shaped grid.
Previous studies have various perspectives on the choice of grid size (Table 1).

Studies considering the scale effects of the connection between urban wind and thermal environment are sparse. Taking Dalian as
an example, this study analyzes the correlation between FAI and LST under different grid sizes based on multi-source data, such as
building and remote sensing data. It also examines the scale dependence of FAI calculation, determines the most effective grid size for
FAI calculation in studies on urban issues, clarifies the scale effect between wind environment and urban thermal environment, and

Table 1
Grid sizes of frontal area index in previous studies.

Year Researcher Study Area Grid Size

1998 Bottema Strasbourg, France 150×150m
2010 M.S.Wong Kowloon Peninsula, Hong Kong, China 100×100m
2011 Edward Ng Kowloon Peninsula, Hong Kong, China 200×200m
2013 M.S.Wong Kowloon Peninsula, Hong Kong, China 100×100m
2013 J.Y.Liu Yuexiu District, Guangzhou City, Guangdong Province, China 250×250m
2016 S.L.Chen Renhuai, Zunyi City, Guizhou Province, China 100×100m
2016 F. Peng Kowloon Peninsula, Hong Kong, China 30× 30m
2017 F. Peng Kowloon Peninsula, Hong Kong, China 10× 10m
2017 Y.Xu Kowloon Peninsula, Hong Kong, China 10× 10m
2017 Y.C.Chen Tainan, Taiwan, China 50× 50m
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provides the best scale reference for wind environment planning strategies on mitigating the UHI effect.

2. Data and methods

2.1. Study area

Dalian is located between 121.275°–121.750° E and 38.813°–39.087° N, and experiences a monsoon-influenced humid continental
climate. According to the distribution of buildings, we choose the downtown area of Dalian as the study area, including four

Fig. 1. Location of the study area.

Fig. 2. Average temperature in summer (June to August) from 2005 to 2018.
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administrative districts—Zhongshan, Xigang, Shahekou, and Ganjingzi—(Fig. 1), covering an area of 620 km2. As shown in Fig. 2, the
average temperature in Dalian in summer (June–August) from 2005 to 2018 has been increasing year by year. The average tem-
perature in summer in 2018 is the highest, at 24.7 °C.

2.2. Data sources

The research data include Landsat-8 OLI/TIRS, building data, and meteorological record, as shown in Table 2. According to the
acquisition time of the building data and the cloud amount of the remote sensing image, two Landsat 8 images were selected and
band 10 was used to invert the land surface temperature. The building data contains building outlines and floors and types, as shown
in Fig. 3. FAI calculation requires the height of each building; therefore, a method for calculating the building height using floor
information and average floor height was used in this study. Different types of buildings have different average floor height; ac-
cording to the Dalian City Planning and Architectural Design Regulations (Bureau of Urban Planning Dalian China, 2004), the
residential building floor average height is set at 3m, and the public building floor average height is set at 5m, as shown in Table 3.

2.3. Research methods

2.3.1. Frontal area index
The equation for calculating FAI (Wong et al., 2010) is as follows:

=λ A(θ)/Af(θ) plane (1)

θ represents the wind direction angle, A(θ) represents the projected area of the building in a specific wind direction, and Aplane

represents the area of the calculation unit. The larger is the value of λf(θ), the greater is the hindrance to the wind. The value of λf(θ)
varies with different wind directions. In order to objectively reflect the obstructive effect of buildings on the wind, we adopted wind
directions for the months when the remote sensing images were taken, that is, from 2005 to 2017. We calculated the wind frequency
and added weights to FAI. The equation is as follows:

∑=
=

λ λ ·Pf n 1

16
f(θ) θ (2)

Pθ represents the wind frequency in the θ direction. This study adopted the 16 compass orientation method. The FAI calculation
methods can be divided into grid and vector algorithms according to the data used. Grimmond and Oke (1999) and Burian et al.
(2002) proposed a well-developed FAI algorithm using vector data. Similarly, Wong (Wong et al., 2010) considered the occlusion of
buildings. Chen et al. (2017c) examined the local terrains affecting wind environment. Ratti et al. (2002) first proposed an FAI
algorithm using raster data. Peng et al. (2017b) and Xu et al. (2017) extracted the FAI algorithm based on Lidar and SAR data,
respectively. Using building vector data and recorded data from the weather station, we calculated FAI and weighted it with wind
frequency.

Table 2
Data sources and descriptions.

Type of data Descriptions Source

Remote sensing data Landsat8 OLI (Spatial resolution 30m)
Landsat8 TIRS (Spatial resolution 100m)
2016-7-2 02:34:00 GMT+
2017-9-23 02:34:00 GMT+

http://gscloud.cn

Meteorological data Observation data of meteorological stations (air temperature and wind direction data from 2005 to 2017 in
July and September)

http://rp5.ru

Building data Building outline, floor and type Baidumap
Administrative division data Administrative division data of the country, province, city, county (district), township (town, street)

Fig. 3. 3D display of building data.
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2.3.2. LST inversion
This study used a single-window algorithm proposed by Qin et al. (2001) and Wang et al. (2015), which has been proven to

provide good results for the inversion of surface temperature (Hu et al., 2015). The specific equations are as follows:

= − − + − − + + −T a C D b C D C D T DT C{ (1 ) [ (1 ) ] }/S a (3)

= τεC (4)

= − −τ ε τD (1 )[(1 ) ] (5)

Ts represents LST (K), and a and b represent coefficients obtained by fitting the relationship between heat radiation intensity and
brightness temperature. When brightness temperature is 10 °C to 40 °C, a=−67.355351, b=0.458606; ε is land surface emissivity;
τ is atmospheric transmissivity in thermal infrared band; T is at-sensor brightness temperature; and Ta is the mean atmospheric
temperature (K), which can be calculated by the parameter estimation method proposed as follows:

1) Brightness temperature: TIRS band 10 data are thermal infrared bands with corresponding pixel brightness temperatures as
follows:

= +ln K LλT K2/ ( 1/ 1) (6)

where Lλ represents radiation intensity received by the sensor; K1 and K2 represent prelaunch preset constants found in the Landsat 8
header files; and K1=774.89, K2= 1321.08.

2) Mean atmospheric temperature: Mean atmospheric temperature (Ta) generally depends on the profile of atmospheric air tem-
perature distribution and atmospheric conditions. Qin et al. (2001) demonstrated that mean atmospheric temperature (Ta) has a
linear relationship with near-surface temperature (T0). We obtain T0 from the same period of meteorological data. Given that the
study area is located in the mid-latitudes and that the images were acquired during July and September, mean mid-latitude
summer atmospheric conditions were therefore used:

= +Ta 16.0110 0.9262T0 (7)

2.3.3. Correlation analysis and trend test
Correlation analysis was used to test the grid size corresponding to the strongest correlation between LST and FAI. Because FAI

has a complex relationship with wind speed and LST, it is more appropriate to use a nonlinear correlation coefficient than a linear one
(e.g., the Pearson correlation coefficient). This study used maximal information coefficient (MIC) (Reshef et al., 2011) to characterize
the correlation. MIC can be used to find not only linear relationships but also nonlinear relationships between variables, and not only
function relationships but also non-function relationships (e.g., the superposition of function relationships). The equation is as fol-
lows.

= <max I x y log min x yMIC [ ; ]/ ( (| |, | |))x y B| | | | 2 (8)

The Mann–Kendall trend test (Kendall, 1975) was used to analyze the changing trend of the correlation with the change of grid
size. The process is as follows. Define the test statistic S:

∑ ∑= −
= =

−
sign X XS ( )

i

n

j

i
i j2 1

1

(9)

In Eq. (9), the values of sign (Xi – Xj) are as follows:

− =
⎧

⎨
⎪

⎩⎪

− − <
− =
− >

X
X

X
X

sign( X )
1 ( X ) 0

0 ( X ) 0
1 ( X ) 0

i j

i j

i j

i j (10)

Given n≥ 10, when S is greater than, equal to, or less than zero, the M-K statistic is as follows, respectively.

Table 3
Standard for floors classification of buildings.

Type Floors classification Average floor height(m)

Residential buildings 0–3 Low-rise buildings 3m
4–6 Middle-rise buildings
7–9 High-rise buildings
10–12 Middle-high rise buildings
> 12 Super-high rise buildings

Public buildings 0–4 Low-rise buildings 5m
>4 High-rise buildings
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⎧

⎨
⎪
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− >
=

+ <

S

S
Z

(S 1)/ Var( ) S 0
0 S 0
(S 1)/ Var( ) S 0 (11)

A positive value for Z indicates an increasing trend and a negative value indicates a decreasing trend. When the absolute value of
Z is greater than or equal to 1.65, 1.96, and 2.58, it indicates that the significance level is 90%, 95%, and 99%, respectively.

3. Analysis of results

3.1. Frontal area index distribution

This study calculated the observations of wind directions at the meteorological site in the study area in July and September from
2005 to 2017, and the wind frequency in each direction using the 16 compass positions, as shown in Fig. 4. The main prevailing wind
directions in the study area were south (18.30%), south-south-west (14.7%), and south-south-east (13.9%) in July, and south-south-
west (14.3%), north (14.0%), and south (13.7%) in September. In order to verify the grid sizes used in previous studies (Table 1), the
grid was divided into 12 scales from 25m to 300m with a step size of 25m. The wind direction-weighted FAI was calculated under
different grid sizes, as shown in Fig. 5.

According to Figs. 5, 6a, and b, when the grid size increases from 25m to 300m, the maximum FAI values in July are 13.850,
5.651, 2.878, 1.634, 1.091, 0.932, 0.871, 0.822, 0.480, 0.422, 0.531, and 0.335, respectively, and the maximum FAI values in
September are 13.849, 5.789, 2.827, 1.723, 1.308, 0.981, 0.987, 0.847, 0.577, 0.518, 0.359, and 0.359, respectively. In areas with
FAI > 1, urban morphology has a strong hindrance to the wind, resulting in a poor ventilation environment. When the grid size
increases from 25m to 150m, in July, the numbers of grids with FAI > 1 are 19,992, 1538, 153, 20, 4, and 0, accounting for
2.106%, 0.645%, 0.081%, 0.019%, 0.006%, and 0% of the total, respectively. In September, the numbers of grids with FAI > 1 are
17,633, 1643, 164, 22, 8, and 0, accounting for 1.849%, 0.689%, 0.155%, 0.037%, 0.021%, and 0% of the total, respectively. When
the grid size is greater than or equal to 150m, there is no grid with FAI > 1. FAI is sensitive to changes in grid size. With increasing
grid size, FAI tends to average out. With decreasing grid size, it tends to detect areas with excessive hindrance to the wind.

3.2. Land surface temperature distribution

We used a single-window algorithm to invert LST and normalized it using the extreme value method. The results are shown in
Figs. 7 and 8.

According to Figs. 7 and 8, in July 2016, 98% of the pixels had a temperature between 295 K and 332 K, with an average
temperature of 314 K. In September 2017, 98% of the pixels had a temperature between 297 K and 306 K, with an average tem-
perature of 301 K. The average LST in Shahekou District and Xigang District was higher than the average. In July, the average
temperatures in the two districts were 318.2 K and 318.4 K, respectively. In September, the average temperatures in the two districts
were 303 K and 302 K, respectively. The spatial distribution of high temperature pixels is similar to that of buildings. The buildings in
Shahekou District and Xigang District are dense; the low ventilation efficiency in the area leads to heat accumulation and temperature
rise.

3.3. Correlation analysis and trend test

The normalized LST is resampled based on grid sizes. We calculated the nonlinear correlation coefficient between FAI and LST
under different grid sizes. The results are shown in Fig. 9.

As shown in Fig. 9 and Table 4, when the grid size increases from 25m to 300m with a step size of 25m, the 12 correlation
coefficients are 0.305, 0.301, 0.287, 0.275, 0.242, 0.227, 0.208, 0.181, 0.193, 0.192, 0.191, and 0.190 in July, and 0.340, 0.318,
0.302, 0.286, 0.285, 0.288, 0.238, 0.288, 0.290, 0.268, 0.262, and 0.255 in September. When the grid size is 25m, the correlation
coefficients are the maximum, that is, 0.305 in July and 0.340 in September. Although the correlation coefficients are between 0.2
and 0.3, considering the complex and diverse factors affecting the urban LST, this single-element correlation analysis can be used to

Fig. 4. Wind direction frequencies (a. July, b. September).
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explain the correlation between FAI and LST. The Mann–Kendall test was performed, and both sets of data passed the 99% sig-
nificance test. The results show that as the grid size increases, the correlation between FAI and LST significantly decreases at the 0.01
significance level.

4. Discussions

4.1. Scale effect of FAI

There are various opinions on the scale selection for FAI calculation. Bottema and Mestayer (1998) adopted a grid size of 150m.
Wong et al. (2013, 2010) considered 100m as the most effective grid size. Frey and Parlow (2010) believed that a grid size between

Fig. 5. FAI in different grid sizes (a. July, b. September).
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75 and 125m is the effective grid size for FAI calculation. Ng et al. (2011) considered 200m to be an effective grid size through grid
sensitivity test. Chen et al. (2017b) adopted a grid size of 50m. Peng et al. (2017a) and Xu et al. (2017) used raster data for FAI
calculation and obtained the same grid size with raw data resolution (30m and 10m). In this study, FAI calculations were performed
under different grid sizes and it was found that there were differences in the threshold and distribution of FAI under different grid
sizes. When the grid size is 25m, the proportion of pixels with FAI > 1 is the largest. It shows that FAI is sensitive to changes in grid
size. Under different grid sizes, the effectiveness of FAI is different; small-sized grids can better identify situations in which the local
wind hindrance is large. A grid size of 25m is likely to be more effective to determine areas with strong wind resistance, which is
significantly different from the conclusions in other studies. The spatial distribution of buildings and the combination of buildings of
different heights and form are potential influencing factors in these results.

4.2. Scale effect of correlation between FAI and LST

Most studies on LST have analyzed the correlation between LST and other factors at different resolutions, and have attempted to
determine the correlation with grid size changes to find the best resolution, such as analyzing the correlations between LST and
landscape pattern (Song et al., 2014; Wang et al., 2016) and LST and vegetation (Fan et al., 2015) at different resolutions. Urban
morphology disturbs the local climate by disturbing ventilation. Good ventilation helps decrease heat and alleviates the high tem-
perature caused by UHI. Previous studies have combined FAI with LST to analyze the correlation between the two using different grid
sizes. Wong and Nichol (Wong et al., 2013) used the Kowloon Peninsula as an example to study the correlation between FAI and UHI.
They found that the correlation between the two was the strongest when the grid size was 100m. Owing to high building density and
high-rise buildings, Kowloon Peninsula is significantly different from most cities in China. The architectural patterns and surface
features of different cities are different, and therefore the scale effects show different results. In contrast, Dalian has a diverse building
form and it is similar to those in most cities in China; therefore, the results of the scale effect study in Dalian has greater reference
value for cities in China. Moreover, Dalian, as the study area is much larger than the study areas in previous studies, thereby
providing much more samples to make the study results more reliable. Furthermore, since the relationship between FAI and LST is
complex, a nonlinear correlation analysis was used instead of the linear correlation analysis to improve the study results.

4.3. Limitations

Due to limited availability of data, the data recorded from the meteorological site were used in this study to reflect the climatic
background and there is room for further improvement regarding the accuracy of reflecting the wind environment inside the city.
Wind speed has little influence on surface temperature and heat island (Yao et al., 2018) and the correlation analysis may have
exhibited different results at different wind speed levels. The building data was derived from Baidu Maps, and since buildings, such as
portable dwellings in urban and rural fringe areas, are not accurate, underestimating the buildings weakened the results of the
correlation analysis. The building data only contains building outlines and floors and types, using floors and average floor height to
calculate height of the buildings which may have a deviation with the actual height of the building and a uncertainty impact on FAI
value. The Landsat-8/TIRS infrared remote sensing data with a resolution of 100m is not accurate enough to reflect the infrared
characteristics of buildings. Factors affecting the urban wind and heat environment are complex, such as topography, meteorology
(He, 2018), vegetation (Yang et al., 2017; Yuan et al., 2017; Zhou et al., 2016), building materials (Erell et al., 2014), underlying
surface properties, and man-made heat. Therefore, these factors should be considered in future studies. Moreover, the effect of grid
size on the relationship between urban morphology and the heat environment needs to be further studied and analyzed using high-

Fig. 6. Static of FAI in different grid sizes (A. maximum of FAI b. Area ratio of FAI > 1 cells).
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precision multivariate data sets.

5. Conclusions

Taking Dalian as an example, a nonlinear correlation analysis was used to study the correlation between FAI and LST under
different grid sizes based on multi-source data, such as urban architecture and Landsat-8/TIRS thermal infrared remote sensing. The
results of the study are as follows:

(1) FAI is sensitive to changes in grid size. Compared with larger grid sizes, a smaller size is more likely to detect changes in building
form with strong wind hindrance. The grid size increases from 25m to 300m with a step size of 25m, resulting in a total of 12
different sizes. There is a significant decreasing trend in the number and ratio of grids with FAI > 1. When the grid size is greater
than or equal to 150m, there is no grid with FAI > 1.

(2) FAI of the city is related to LST, and the correlations under different grid sizes are different. The correlation is strongest when the
grid size is 25 m, indicating that a grid size of 25×25m is the most effective grid size. The grid size increases from 25m to 300m
with a step size of 25m. The 12 correlation coefficients between LST and FAI were 0.305, 0.301, 0.287, 0.275, 0.242, 0.227,
0.208, 0.181, 0.193, 0.192, 0.191, and 0.190 in July, and 0.340, 0.318, 0.302, 0.286, 0.285, 0.288, 0.238, 0.288, 0.290, 0.268,
0.262, and 0.255 in September. When the grid size was 25m, the correlation coefficients were the maximum, that is, 0.305 in
July and 0.340 in September, respectively. The Mann–Kendall test showed that as the grid size increased, the correlation between
FAI and LST decreased at the 0.01 significance level.
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Fig. 9. Correlation between FAI and LST under different grid sizes.

Table 4
Results of the Mann–Kendall test.

Significant level in hypothesis test Mann–Kendall generated Z-value Accept/reject
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