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A B S T R A C T   

Large-scale land surface phenology (LSP) information has been developed from remote sensing-based vegetation 
indices (VIs) data. However, there are considerable discrepancies and uncertainties in the LSP data products for 
the start and end of growing seasons (SOS; EOS) as different vegetation indices and algorithms are used. Here, we 
used the TROPOspheric Monitoring Instrument (TROPOMI) solar-induced chlorophyll fluorescence (SIF) data to 
estimate SOS and EOS in the Tibetan Plateau, a global hotspot of vegetation response to climate change. We 
compared SIF-based phenological metrics to those derived from VIs (e.g., normalized difference vegetation index 
(NDVI), enhanced vegetation index (EVI), and near-infrared reflectance of vegetation (NIRv)), and gross primary 
production (GPP) simulated by the vegetation photosynthesis model (VPM). We found relatively small dis
crepancies in SOS between SIF and VIs, but large differences in EOS. Thus, the length of the growing season 
derived from VIs was as much as two months longer than that estimated by SIF. These results were consistent 
across three products, bidirectional reflectance distribution function (BRDF) adjusted (MCD43), standard MODIS 
(MOD09), and TROPOMI products. The EOS discrepancy remained after excluding two mismatches (solar illu
mination and viewing angle) between satellite sensors. We also found that VIs-based EOS occurred below the 
freezing point, while SIF-based EOS occurred above the freezing point, suggesting that SIF-based EOS is more 
physiologically meaningful. Our study proposed that the late VIs-based EOS was caused in part by the effect of 
changes in soil background on VIs and VIs-based EOS. Our results highlight the need to re-evaluate current LSP 
data products derived from reflectance-based VIs and to develop new vegetation phenology data products using 
emitted energy such as SIF.   

1. Introduction 

Vegetation phenology is the seasonal dynamics of plant canopy (e.g., 
leaf bud burst, leaf emergence, leaf senescence, leaf-off), and these 
various stages are sensitive to climate change and regulate carbon dy
namics in terrestrial ecosystems (Adole et al., 2019; Chang et al., 2019; 
Piao et al., 2019; Richardson et al., 2012). Time series data from 

satellites have been commonly used to study vegetation phenology 
including the start (SOS), end (EOS), peak (POS), and length (LGS) of the 
growing season (Gonsamo et al., 2013; Melaas et al., 2016; Piao et al., 
2019; Richardson et al., 2013; Zhang et al., 2003). Because individual 
pixels of satellite images often contain vegetation and non-vegetation 
components, land surface phenology (LSP) term is often used in the 
remote sensing community. LSP can be characterized from the 
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perspectives of vegetation structure (e.g., leaf emergence, canopy dy
namics, green-up) or the perspective of vegetation function or physi
ology (e.g., photosynthesis or GPP, net carbon exchange) (Chang et al., 
2019; Jeong et al., 2017; Walther et al., 2016; Yang et al., 2019; Yin 
et al., 2020; Zhang et al., 2020b, 2020c). In fact, only a biologically 
accurate LSP estimate, whether from a structural or functional 
perspective, is primarily important for understanding vegetation 
response to climate change and carbon-water interactions, as well as 
improving terrestrial models (Piao et al., 2019; Richardson et al., 2012, 
2013). 

From the perspective of canopy structure, greenness-based vegeta
tion indices (VIs), such as NDVI (Tucker, 1979), EVI (Huete et al., 2002), 
and NIRv (Badgley et al., 2017) (Eqs. 1–3), are calculated from two or 
more reflectance bands and are related to the fraction of absorbed 
photosynthetically active radiation (fPAR) (Jin and Eklundh, 2014; 
Badgley et al., 2017), and are used to delineate seasonal dynamics of 
canopy structure and photosynthetic capacity. NDVI has been widely 
used to monitor LSP from regional to global scales (Friedl et al., 2019; 
Piao et al., 2019; Tucker, 1979). From the perspective of canopy phys
iology, GPP and solar-induced chlorophyll fluorescence (SIF) data, 
referring to photosynthetic activity, have been used to estimate 
phenological metrics (e.g., SOS, EOS, LGS) (Garrity et al., 2011; Gon
samo et al., 2013; Joiner et al., 2013; Joiner et al., 2014; Sun et al., 2017; 
Xiao, 2004; Yang et al., 2019; Guanter et al., 2014; Wang et al., 2019). 
Spaceborne SIF has been shown to have a strong linear relationship with 
GPP (Sun et al., 2017, 2018; Zhang et al., 2016) at different spatial 
(Turner et al., 2020; Doughty et al., 2021b; Joiner et al., 2014; Lu et al., 
2018; Magney et al., 2019; Wang et al., 2020b; Jeong et al., 2017; 
Walther et al., 2016, 2019; Wang et al., 2019) and temporal scales 
(Magney et al., 2019; Yang et al., 2015; Zhang et al., 2016) and across 
biomes (Li et al., 2018; Xiao et al., 2019; Zhang et al., 2016), and even 
for climate extreme events (Song et al., 2018; Sun et al., 2015; Wu et al., 
2018b; Yin et al., 2020). 

Most phenology studies focused on attribution and consequences 
analyses of phenology changes, and limited attention was given to the 
discrepancies between the structural and physiological proxies on 
phenological retrievals (Cong et al., 2017; Keenan et al., 2014; Shen 
et al., 2015a). Several studies found that the VIs-based phenological 
metrics have large discrepancies from the physiology-based ones, such 
as in the SOS of the snow-covered forests (Chang et al., 2019) and the 
EOS of the northern hemisphere (Jeong et al., 2017; Walther et al., 
2016). In particular, the EOS estimates derived from NDVI are later than 
those derived from GPP or SIF for forests in the northern high latitude 
(Jeong et al., 2017; Walther et al., 2016). The seasonal decoupling be
tween photosynthesis and greenness dynamics in boreal evergreen for
ests has also been reported (Jeong et al., 2017; Walther et al., 2016). One 
recent global study found SOS and EOS of grasslands from GIMMS NDVI 
(8 km), GOME-2 SIF (50 km), and GPP from the eddy flux tower sites to 
be inconsistent (Wang et al., 2020c). Although comparisons of SOS and 
EOS from VIs-SIF-GPP datasets have been investigated at the site and 
grid levels, the conclusions may be affected by two intrinsic differences 
between the SIF and VIs datasets. The first is that SIF is the emitted 
energy by plant while VIs is calculated from reflected energy by land 
surface (plants plus other surface types) (Eq. 4; Baldocchi et al., 2020; 
Dechant et al., 2022; van der Tol et al., 2019; Walther et al., 2016). 
Second is the differences in the sun-sensor geometry between SIF and VIs 
among satellite sensors (Doughty et al., 2019). In practice, these issues 
should be removed first before direct comparison. It is not clear, how
ever, whether the discrepancy of phenological metrics from SIF and VIs 
datasets is related to these two factors. Recently, the near-infrared 
radiance of vegetation (NIRvR), was found strongly correlated with 
GPP and SIF during the growing season (Dechant et al., 2020, 2022; Wu 
et al., 2020; Zeng et al., 2022a). NIRvR is the product of NDVI and up
welling NIR radiance (NIRrad) (Eq. 5), thus it is more comparable with 
SIF than NDVI in terms of radiance. NIRvR integrates both canopy 
structure and incoming radiation (Dechant et al., 2020; Zeng et al., 

2019) and might be a better proxy for depicting photosynthetic seasonal 
dynamics than NDVI and EVI (Wu et al., 2020; Zeng et al., 2022a). 
However, there are limited studies on NIRvR for phenological charac
terization at the regional scale though previous studies have focused on 
the linear correlation of SIF and GPP and the slope of the SIF-GPP 
relationship (Dechant et al., 2022; Zeng et al., 2022a). 

Furthermore, those limited available studies related to SIF-VIs 
comparisons only pointed out discrepancies between greenness and 
physiology-based phenology but did not provide empirical data to 
explain the problems of NDVI in the characterization of phenology. 
Using the correlation of meteorological variables over a period of time 
(e.g., season or month) to explain differences in time points (phenology) 
does not effectively unravel the underlying mechanisms (Jeong et al., 
2017; Lu et al., 2018). In addition, previous studies that compared 
spaceborne SIF and VIs have several limitations, including coarse spatial 
and/or temporal resolutions of GOME-2 SIF data (Lu et al., 2018) and 
high uncertainties of GOME-2 SIF retrieval due to retrieval methods, 
instrument characteristics, overpass time, and viewing-illumination 
geometries (Wen et al., 2020). The new TROPOMI SIF data has 
brought unprecedented opportunities to monitor the seasonal dynamics 
of vegetation at higher spatial and temporal resolutions, which result in 
more observations and better data quality (Doughty et al., 2019; 
Guanter et al., 2021; Köhler et al., 2018). 

Moreover, the high-altitude Tibetan Plateau, known as the Third 
Pole of the Earth, is also a global climate change hotspot (Chen et al., 
2013; Wu et al., 2018a) where satellite-based phenology is important 
due to limited ground measurements. This region has experienced sig
nificant climate change and warming (Shen et al., 2013; Zhang et al., 
2017a), which has caused profound changes in the structure and func
tion of the alpine grasslands ecosystems (Chen et al., 2013; Wu et al., 
2018a). In recent years, the debate over the trend of phenology in the 
Tibetan Plateau has attracted much attention from the community 
(Chen et al., 2015; Yu et al., 2010; Zhang et al., 2013). Several studies 
suggested that the discrepancy could be associated with the varied data 
(or proxies) and algorithms used (Wang et al., 2013; Zhang et al., 2013). 
Recently, a study found the emergence/senescence of vegetation is 
strongly affected by the soil background (e.g., snow cover) (Huang et al., 
2021). As a result, the long-term trends in VIs-based phenology are 
likely to mirror changes in the phenology of snow cover and may be 
artifacts (Huang et al., 2021). Although previous studies have reported 
differences in phenology, which focused more on middle and high lati
tudes in Northern Hemisphere, these findings also need to be extended 
to high altitudes, such as in the alpine grasslands of the Tibetan Plateau. 
Therefore, a comprehensive and rigorous comparison of the phenolog
ical metrics from the VIs, SIF, and GPP data products is needed in alpine 
grasslands, which is of great significance for accurately delineating 
vegetation response to climate change. 

To solve the above knowledge gaps, we focus on the Tibetan Plateau 
as our study area and explore the phenological differences and the 
inherent mechanism. The objectives of this paper are (1) to examine the 
discrepancy of phenological metrics (SOS, EOS, LGS) from greenness- 
based (NDVI, EVI, NIRv) and physiology-based (SIF, GPP) datasets; (2) 
to evaluate the reasonability derived from greenness- and physiology- 
based phenology in terms of biology; and (3) to investigate the mecha
nism explaining the discrepancy in phenology for the two kinds of in
dicators (greenness vs. physiology). We compared the phenological 
metrics (SOS, EOS, and LGS) estimated from the three vegetation indices 
data products (NDVI, EVI, and NIRv), GPP (GPPVPM) from the Vegeta
tion Photosynthesis Model (VPM) (Xiao et al., 2004; Zhang et al., 
2017b), and the TROPOMI SIF data (SIFTROPOMI) (Guanter et al., 2021; 
Köhler et al., 2018) at the site and regional scales. Furthermore, we 
analyzed the reliability of phenological metrics from different proxies 
according to the relationship between phenological metrics (SOS and 
EOS) and air temperature in the Tibetan Plateau, as the air temperature 
is an important limiting factor controlling vegetation growth and 
phenology (Shen et al., 2016; Shen et al., 2015b). 
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2. Materials and methods 

All datasets were from satellite retrievals and were evaluated in 
2019–2021 (see Table. S1). They were all aggregated to 0.2◦ spatial 
resolution. It should be noted that the locations of the nine eddy 
covariance (EC) tower sites were only used for phenological compari
sons between SIF and VIs due to data unavailability during our study 
period in the Tibetan Plateau (see Text. S1, Table. S2 and Figs. S1-S2 for 
details). 

2.1. MODIS land cover data 

The MODIS Terra/Aqua Combined Land Cover Type product 
(MCD12Q1 V6) at 500 m spatial resolution was used, which includes 
grasslands and other land cover types, as defined by the International 
Geosphere-Biosphere Program (IGBP) classification scheme (Friedl and 
Sulla-Menashe, 2015) (Fig. S1). The alpine grasslands, dominated by 
alpine meadow and alpine steppe, were focused on in this study because 
they occupied about 50% of the Tibetan Plateau and 80% of the alpine 
ecosystems (Zhang, 1993). We aggregated the land cover map at 500 m 
spatial resolution into a new land cover map with a spatial resolution of 
0.2◦ by using the majority rule. We kept those pixels whose vegetation 
types remained unchanged (always grass) during 2001–2019 to ensure 
that results are not affected by the changes in land cover types over years 
(Friedl and Sulla-Menashe, 2015). 

2.2. MODIS surface reflectance and vegetation indices 

Two commonly used MODIS surface reflectance (SR) products, 
MOD09A1 V6 (Vermote, 2015) and MCD43A4 V6 (Schaaf and Wang, 
2015b) in 2019–2021 were used to generate 8-day VIs data. The native 
spatial resolution of both products is 500 m. We first identified and 
masked all pixels flagged as clouds, cloud shadows, aerosol, and snow by 
using the pixel quality assurance (QA) layers for MOD09A1, and BRDF/ 
Albedo MCD43A2 band-specific quality assessment products (Schaaf 
and Wang, 2015a) for MCD43A4, respectively (Zhang et al., 2017b). 
Second, for both SR products, we calculated the normalized difference 
vegetation index (NDVI) (Tucker, 1979), enhanced vegetation index 
(EVI) (Huete et al., 2002), and near-infrared reflectance of vegetation 
(NIRv) (Badgley et al., 2017) (Eqs. 2–4). Third, we applied a gap-filling 
procedure followed by Zhang et al. (2017b) to process the VIs data and 
generate the completed time series data. Fourth, we aggregated these 
VIs data from 500 m to 0.2◦ spatial resolution by using a simple average 
method. To avoid spurious estimation of phenological transition dates 
when the canopy was covered with snow in the nongrowing season 
which was undetected by the snow flag (Piao et al., 2019; Zhang et al., 
2013), those likely snow-contaminated VIs values for each pixel were 
replaced with a constant dormant background value, which was taken to 
be the median value of the all snow-free values of between November 
and the following March in the most recent 3 years. The daily MCD43A4 
data were sampled temporally to 8-day means consistent with 
MOD09A1 and GPP, and SIF data. 

NDVI =
NIRref − Redref

NIRref + Redref
(1)  

EVI = 2.5 ×
NIRref − Redref

NIRref + 6 × Redref − 7.5 × Blueref + 1 (2)  

NIRv = NDVI × NIRref (3)  

where NDVI is the normalized difference vegetation index, EVI is the 
enhanced vegetation index; Blueref, Redref, and NIRref are the reflectance 
values from the Blue, Red, and NIR bands, respectively; NIRv is near- 
infrared reflectance of vegetation. 

2.3. MCD12Q2 land surface phenology data product 

The land surface phenological metrics in 2019 were obtained from 
the MODIS Land Cover Dynamics (MCD12Q2 V6) product (Friedl et al., 
2019) because the data was only through 2019. The data product was 
derived from the time series of the 2-band Enhanced Vegetation Index 
(EVI2) calculated from MODIS Nadir Bidirectional Reflectance Distri
bution Function (BRDF)-Adjusted Reflectance (NBAR). The SOS and 
EOS dates (i.e., ‘Greenup’, and ‘Dormancy’ layers in the product) were 
defined as the date when EVI2 first and last crossed 15% of the EVI2 
amplitude in the growing cycle, respectively (Friedl et al., 2019). 

2.4. SIF and TOA reflectance data from TROPOMI 

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the 
Sentinel-5 Precursor satellite (Veefkind et al., 2012) was launched into 
low Earth orbit on 13 October 2017 with an equatorial crossing time of 
1:30 pm (local solar time) and a 17-day repeat cycle (Köhler et al., 
2018). TROPOMI was configured with four spectrometers covering the 
wavelength of ultraviolet-visible (UV-VIS, 270 nm – 495 nm), near- 
infrared (NIR, 675 nm – 775 nm), and shortwave infrared (SWIR, 
2305 nm – 2385 nm). The wide swath width of approximately 2600 km 
enables near-daily global surface coverage with a footprint size of 7 km 
along track and 3.5–15 km across track (i.e., 3.5 km at nadir and 15 km 
at the edge of the swath). Since a retrieval window ranging from 743 to 
758 nm of TROPOMI covers the SIF emission spectrum which is devoid 
of atmospheric absorption features, and thus it allows for SIF retrieval 
through quantifying the change in optical depth of Fraunhofer lines 
(Köhler et al., 2018). Therefore, the SIF retrievals are less sensitive to 
atmospheric scattering by aerosols and clouds compared to VIs (Frank
enberg et al., 2012). In addition, TROPOMI SIF could significantly 
improve the representation of the ground footprint compared with the 
other SIF datasets. The GOME-2 and OCO platforms are less suitable for 
phenological analyses at regional scales due to their lack of spatial 
coverage and infrequent revisit periods (Köhler et al., 2018). Specif
ically, the GOME-2 instruments have a coarse footprint of about 40 km 
× 40 km without detailed spatial patterns, although it provides 
continuous spatial coverage (Joiner et al., 2013). The OCO-2 SIF data 
does not have sufficient samples for continuous data over time with a 
maximum ~10 km-wide full swath, despite a better spatial resolution of 
single OCO-2 ground pixels (2 km × 1.3 km) (Sun et al., 2017). In 
contrast, TROPOMI provides near-daily spatially continuous global 
coverage as opposed to OCO due to its wide swath (Guanter et al., 2015; 
Guanter et al., 2021; Köhler et al., 2018) and has a higher spatial reso
lution as opposed to GOME-2 (Köhler et al., 2018). Köhler et al. (2018) 
produced the global ungridded TROPOMI SIF data by applying a sin
gular value decomposition method in a 743–758 nm spectrum window 
with a spectral resolution of ~0.4 nm and a signal-to-noise ratio of 
~2500 (Köhler et al., 2018). The comparison between TROPOMI and 
OCO-2 SIF shows excellent consistency (Köhler et al., 2018). 

A new TROPOMI SIF data product (SIFTROPOMI) from European Space 
Agency (ESA) was recently released (Guanter et al., 2021; NOVELTIS 
et al., 2021). This dataset provides two important variables along with 
SIF: one is the top of atmospheric (TOA) reflectance at atmospheric 
windows within 665–785 nm including the Red and NIR bands, which 
can generate NDVI; another is the mean TOA radiance (NIRrad) in 
743–758 nm fitting window. More details are described in Guanter et al. 
(2021). We used this data for 2019–2021. Since we now have SIF and 
NDVI acquired simultaneously at the sounding level using the same 
TROPOMI sensor, the differences in the seasonality of SIF and NDVI in 
this data will be completely independent of sun-sensor geometry effects 
and spatial and temporal sampling biases. We, therefore, conducted 
three experiments below. Exp-1: We first compared the phenological 
differences between MOD09A1-based NDVI, EVI, NIRv, and TROPOMI- 
based SIF. Exp-2: We then compared the phenological discrepancies 
between NBAR/MCD43A4-based NDVI, EVI, NIRv, and TROPOMI-based 
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SIF to minimize potential seasonal effects of the illumination geometry. 
Exp-3: We finally compared the phenological differences between 
NDVI, NIRv, and NIRvR (Eq. 5) all from the TROPOMI to remove po
tential intrinsic mismatches (solar illumination and sun-sensor geome
try) between SIF and VIs. 

In this study, soundings with a viewing zenith angle over 70◦ were 
excluded, as described for both SIF products by Köhler et al. (2018) and 
Guanter et al. (2021). The differences in viewing geometry are 
accounted for by taking 8-day averages at 0.2◦ spatial resolution as 
detailed by Doughty et al. (2021a). Coincidentally, 8-day mean SIF al
lows us to compare TROPOMI SIF to 8-day MODIS-based vegetation 
indices and GPP. We gridded 0.2◦ SIF data with an oversampling method 
(Doughty et al., 2021a; Turner et al., 2020). The method splits a foot
print via its corner coordinates into a set of sub-pixels within that 
footprint and finds in which grid box each sub-pixel of a footprint falls, 
and computes the average of all points in the 0.2◦ gridcell (Köhler et al., 
2018). To ensure the reliability of SIF data quality for analysis, we also 
filtered out those grid cells that contained only one single sounding or 
whose standard deviation was >0.6 mW m− 2 sr− 1 nm− 1. It should be 
pointed out that in order to weigh the cloud coverage against the 
number of soundings when gridding the SIF-related data (SIF retrievals 
and reflectance), we compared two strategies for spatial aggregation, i. 
e., filtering the soundings as cloud-free (clear sky) or selecting soundings 
with <20% cloudiness, respectively, before gridding. The satisfactory 
quality-check results confirmed that the SIF data are sufficient to 
analyze vegetation seasonal cycle and phenological metrics at 0.2◦

spatial resolution (see Text S2, Figs. S3, S4). 

SIFobs = PAR × fPAR × ФF × fesc (4)  

NIRvR = NDVI × NIRrad (5)  

where SIFobs is observed SIF, PAR is the photosynthetically active radi
ation, fPAR is the absorbed fraction of PAR, ФF is the fluorescence 
emission yield, and can be simply represented by SIFobs/NIRvR; and fesc is 
the canopy escape fraction; NIRvR is the near-infrared radiance of 
vegetation, and NIR radiance (NIRrad) is the observed upwelling NIR 
radiance by a satellite sensor. 

2.5. GPP data from the data-driven models 

We used the VPM GPP data (GPPVPM) in 2019–2020 with a spatial 
resolution of 500 m and a temporal resolution of 8 days (Zhang et al., 
2017b). The GPPVPM data was produced by simulations of improved 
light use efficiency (LUE)-based Vegetation Photosynthesis Model 
(VPM) model (Xiao et al., 2004), driven by the MODIS vegetation 
indices data and climate data from the NCEP (National Centers for 
Environmental Prediction) Reanalysis-2 dataset. We aggregated the 
GPPVPM data from 500 m to 0.2◦ spatial resolution using an average 
method. It needs to be noted that the GPPVPM data used in this study 
were model products instead of field-based measurements. 

2.6. Gridded air temperature data 

The 2-m daily mean air temperature, daytime mean air temperature 
(6 am – 6 pm), and nighttime mean air temperature (6 pm – 6 am) were 
calculated from the gridded hourly air temperature data with a spatial 
resolution of 0.25◦ in 2019–2021 which were obtained from the Euro
pean Reanalysis (ERA5) dataset (Hersbach et al., 2020). The ERA5 
dataset was the fifth generation of the European Centre for Medium- 
Range Weather Forecasts (ECMWF) atmospheric reanalysis of global 
climate which was archived in the Climate Data Store (https://cds.cl 
imate.copernicus.eu). All air temperature data were aggregated to 0.2◦

spatial resolution by using the nearest neighbor method. Given that the 
air temperature varies somewhat at a daily scale, we smoothed the air 
temperature by using a temporal moving average of a 3-day window. 

2.7. Retrievals of phenological metrics 

NDVI, EVI, NIRv, NIRvR, SIF (SIFTROPOMI), and GPP (GPPVPM) data 
were used to estimate four phenological metrics: start of the growing 
season (SOS), end of the growing season (EOS), length of the growing 
season (LGS), and the peak of the growing season (POS). For each data, 
>75% of the data must be available over the period pixelwise, and the 
missing/masked values were first filled using the cubic spline interpo
lation, and then the noisy data (outliers and spikes) which are likely 
caused by clouds and poor atmospheric conditions in the original time 
series were filtered out by the weighted Savitzky-Golay (S-G) filter 
(Chen et al., 2004; Yang et al., 2019). The central point of the three- 
point moving window was double-weighted if it is within ±25% of the 
median of the moving window (Walther et al., 2016). The filtering 
process makes the input data into the following fitting model more 
stable, especially for the high-noise fluctuant SIF values during the 
winter dormant period (Walther et al., 2016). Subsequently, a seven- 
parameter double logistic function smoothing method (Eq. 6) pro
posed by Gonsamo et al. (2013) was performed to objectively smooth 
and reconstruct the above gap-filled time-series data (with an 8-day 
interval) to the daily ones (Gonsamo et al., 2013; Yang et al., 2019). 

f (t) = α1 +
α2

1 + e− ∂1(t− β1)
−

α3

1 + e− ∂2(t− β2)
(6)  

where f(t) represents the NDVI observations at a given day of year (DOY) 
(t). α1 is the background NDVI value in the winter dormant period, α2 
and α3 are the amplitudes in the periods of ‘spring-early summer 
plateau’ and ‘late summer-autumn plateau’, respectively. β1 and β2 are 
the midpoints (in DOYs, similar to the first derivatives) of growth curve 
transitions for the green-up phase and brown-down phase, respectively, 
and ∂1 and ∂2 are the slope coefficients of the growth curve at β1 and β2 
transition dates, respectively. 

The phenological metrics of the time series were estimated by using a 
relative threshold method (Wu et al., 2013; Yang et al., 2019), that is, 
the SOS and EOS dates were defined as the first and last dates at which 
15% of the amplitude (maximum-minimum) of smoothed daily time 
series (SIF, GPP, and VIs) were reached. The 15% threshold is consistent 
with MCD12Q2 V6 phenology products. The POS was identified as the 
first day (DOY) at which the fitted daily time series reached its peak 
(Yang et al., 2019). The LGS was defined as the difference between the 
SOS and EOS dates (LGS = EOS – SOS). 

3. Results 

3.1. Phenology as indicated by SIF, GPP, NDVI, EVI, and NIRv relative to 
air temperature 

It should be noted that all results in the main text are illustrated for 
2019 as an example since the results are consistent for 2019–2021 (see 
Supplementary Figures). We analyzed the seasonal dynamics of SIF, 
GPP, NDVI, EVI, and NIRv which VIs are from the MCD43A4 dataset at 
the site-averaged level to examine their seasonal consistency (Fig. 1). 
We found that SIF has higher temporal consistency with GPP than NDVI, 
EVI, and NIRv, which is more pronounced in the normalized data (Fig. 1 
e). In the spring, NDVI started to rapidly rise on DOY 130, which was 
earlier than SIF (DOY 144), but in the fall, NDVI instantly dropped to its 
lowest value on DOY 305, which was later than SIF (DOY 275) (Fig. 1 a). 
The SOS and EOS dates from GPP and SIF were very close, also the LGS 
from GPP was similar to those from SIF (Fig. 1 d, e). Meanwhile, the SOS 
dates from VIs (NDVI, EVI, and NIRv) were slightly earlier than those 
from SIF (or GPP), but the EOS dates from VIs were substantially later 
than those from SIF (or GPP) (Fig. 1 b, c). 

We investigated the responses of SIF, GPP, NDVI, EVI, and NIRv to 
mean air temperature (i.e., daily, daytime, and nighttime, Figs. 1, S5-S6) 
at the site-averaged level to identify the threshold values of air 
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temperature, at which VIs (NDVI, EVI, NIRv), SIF, and GPP start to rise 
in spring (related to SOS) and drop to their lowest values in fall and 
winter (related to EOS) (Fig. 1 f-j). Fig. 1 f-j shows the data in two time 
periods: (1) data before the peak date of the growing season (hereafter, 
POS), and (2) data after the POS. SIF and GPP started to rise after the 
three temperature variables reached above 0 ◦C and dropped to their 
lowest values when nighttime air temperature approached 0 ◦C. In 
comparison, NDVI started to rise when the nighttime air temperature 
was still below 0 ◦C and all three vegetation indices did not drop to their 
lowest values when the three air temperature variables were already 
below 0 ◦C (Fig. 1 f-j). The scatter plots between the air temperature and 
SOS and EOS dates show that SOS and EOS dates from the vegetation 
indices are not physiologically reasonable, as plants stop photosynthesis 
when air temperature, particularly nighttime air temperature, is several 
degrees below freezing (Fig. 1 k, l). 

Similar results of seasonal dynamics of all indices and the responses 

of indices to mean nighttime air temperature at the region-averaged 
level were found for the MCD43A4 datasets (Fig. S7). Similar results 
were found for the MOD09A1 (Figs. S8-S11) and TROPOMI datasets 
(Fig. 2, Figs. S12-S14) at the site-averaged and region-averaged levels on 
the plateau, respectively. The results of the MOD09A1 product were 
very similar to those of MCD43A4. All data products showed consistent 
discrepancies between VIs and SIF/GPP. Compared to NDVI, smaller 
differences for NIRv and NIRvR in the TROPOMI dataset were shown 
(Fig. 2 a-d). 

3.2. Spatial distribution of phenological metrics in the Tibetan Plateau 
derived from SIF, GPP, and vegetation indices 

We calculated the differences of phenological metrics (SOS, EOS, 
LGS) between SIF and MCD43A4-based VIs and GPP for individual grid 
cells in the Tibetan Plateau and examined their spatial distributions and 

Fig. 1. The site-averaged seasonal dynamics of TROPOMI SIF, MCD43A4-based VIs (NDVI, EVI, NIRv), and VPM GPP and their relationships with nighttime mean air 
temperature in 2019 across nine eddy flux tower sites in the Tibetan Plateau, China. The dots and dashed curves in the left panel (a-d) represent the indices (SIF, VIs, 
and GPP) values and corresponding fitted curves, respectively, and vertical lines represent the start (SOS) and end (EOS) of the growing season. The indices (SIF, VIs, 
and GPP) values normalized using the annual maximum and minimum are fitted (e). The blue and red dots in the right panel (f-j) indicate the data (indices and air 
temperature) before the peak of the growing season (POS) and after POS, respectively, dashed curves represent the fitted curves. The scatter plots (k, i) indicate the 
relationships between the air temperature and SOS and EOS dates for individual indices. While NDVI, EVI, and NIRv are unitless quantities, GPP is shown in units of g 
C m− 2 day− 1, SIF in units of nW m− 2 nm− 1 sr− 1, SOS/EOS in units of day of year (DOY), and air temperature in units of ◦C. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

J. Yang et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 280 (2022) 113209

6

histograms of the difference values (Figs. 3-4, S15-S16). The differences 
of SOS, EOS, and LGS between SIF and GPP have normal distributions 
with a center around zero (Fig. 3). The differences of SOS between SIF 
and VIs also have a normal distribution with a center around zero, but 
that of EOS has a normal distribution with a large departure from zero 
(~15 days). The differences of LGS between SIF and VIs were more 
remarkable than those of SOS and EOS (up to 75 days) (Figs. 3, S15). 
Apparent differences in SIF- and VIs-derived phenological metrics (SOS, 
EOS, and LGS) occurred in over 90% of all the pixels in the study area, 
most of them distributed in the eastern and southwest Tibetan Plateau 
(Fig. 3). As a result, the LGSs derived from NDVI, EVI, and NIRv were 
much longer (even up to ~40 days) than those from SIF or GPP (Figs. 4, 
S15). 

Similar results on the phenological differences between SIF and VIs 
as well as GPP were found for the MOD09A1 (Figs. S17-S20) and 
TROPOMI datasets (Figs. 5, S21-S23) at the site-averaged and region- 
averaged level. The results for the years 2020 (Figs. S24-S26) and 
2021 (Figs. S27-S29) were consistent with the ones in 2019. Also the 
results of the soundings gridding from the clear sky and cloud fraction 
≤20% showed a very consistent pattern despite the slight differences 
(Figs. S30-S35). That evidence suggests our robust conclusion. There
fore, we only showed the results from the rule that the cloud fraction is 
<20% in the main text. 

We investigated the relationships between phenological metrics 
(SOS and EOS) and air temperature for all grid cells in the Tibetan 
Plateau in 2019 for the MCD43A4 dataset. In terms of SOS, the histo
grams of the three air temperature variables have similar distributions 

among the five indicate-derived SOS dates (Figs. 6, S36-S37). In terms of 
EOS, the histograms of the three air temperature variables from the 
vegetation indices (NDVI, EVI, and NIRv) differ substantially from those 
of SIF and GPP (Figs.7, S38-S39). For most of the gridcells (> 88%) in the 
study area, the air temperature at the VIs-derived EOS was several de
grees below 0 ◦C (Fig. 6). As the leaves of Tibetan Plateau grasses are 
likely to cease photosynthesis when the air temperature drops below 
0 ◦C, the VIs-derived EOS estimates are not consistent with our basic 
understanding of photosynthetic responses to temperature. In compar
ison, air temperature at the EOS dates from SIF and GPP data are mostly 
above 0 ◦C, which is more physiologically realistic (Figs.7, S40). Addi
tionally, we found that EOS dates from the MODIS standard phenology 
products (MCD12Q2 V6) are also in the dates with air temperature 
below zero (Figs. 7b). 

Similar results on these phenology-temperature relationships were 
found for the MOD09A1 (Figs. S41-S46) and TROPOMI datasets (Figs. 8, 
S47-S51). Both EVI and NIRv for all sensors have fewer pixels at sub-zero 
temperatures than NDVI; The TROPOMI-derived NIRv and NIRvR show 
fewer pixels at sub-zero temperatures compared to the other two sen
sors. Also, the results from the grided TROPOMI data from soundings 
with clear sky and cloud fraction ≤20% showed a consistent pattern 
(Figs. S52-S55). 

Fig. 2. Similar as Fig. 1 but for TROPOMI-based SIF, NDVI, NIRv, and NIRvR and their relationships with nighttime mean air temperature. While NIRvR is shown in 
units of nW m− 2 nm− 1 sr− 1. 
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4. Discussion 

4.1. SOS estimates and discrepancy 

A recent study compared SOS estimates from NDVI and GOME-2 SIF 
for forests in northern high latitudes and reported that NDVI-based SOS 
dates (SOSNDVI) were weeks earlier than SIF-based SOS dates (SOSSIF) 

(Jeong et al., 2017). The authors claimed that later SOSSIF dates were 
due to the delay associated with the photosynthetic activity. In our study 
of alpine grasslands in the Tibetan Plateau, we also found that SOSNDVI 
dates were two weeks earlier than SOSSIF dates (Figs. 1, 2, 3, 5). This 
could be attributed to the early rise of NDVI due to the dynamics of snow 
and/or soil moisture (wetness). 

During the transition from winter to spring, the land surface 

Fig. 3. Spatial distributions and histograms of the phenological differences between TROPOMI SIF and EVI2 (MCD12Q2 V6), MCD43A4-based VIs (EVI, NDVI, 
NIRv), and VPM GPP in 2019 in the Tibetan Plateau, China. The left, middle, and right panels indicate spatial distributions of phenological differences on the start 
(SOS, a-e), end (EOS, f-j), and length (LGS, k-o) of the growing season, respectively. The red and blue colors denote the percentage of positive (P) and negative (N) 
differences of phenological metrics between EVI2, EVI, NDVI, NIRv and GPP against SIF, respectively. The lower panel (p-r) indicates histograms of the phenological 
differences. The vertical dashed lines mean the difference of phenological date is zero (days). The Density denotes the probability density of the differences. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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dynamics in the Tibetan Plateau can be generally divided into four 
stages over time: (1) snow-covered soils and dead leaves, (2) wet soils 
and land surfaces and dead leaves after snowmelt, (3) dry soil surface 
and dead leaves, and (4) new leaf emergence and canopy green-up 
(Fig. 9). In stage 1, snow is observed by satellite sensors and NDVI 
values from satellites are very low. In stage 2, soil moisture starts to 
increase when snow melts and wet soil surface and dead leaves are 
observed by sensors, thus NDVI values remain low but higher than stage 
1 (Smith et al., 2019; Zhang et al., 2020a). In stage 3, when the air 
temperature rises, the soil surface and dead leaves dry up and have much 
higher NDVI values than stage 2, as dry soils have higher NIR and visible 
(VIS) reflectance than wet soils (Smith et al., 2019; Nagler et al., 2000; 
Lekner and Dorf, 1988; Tian and Philpot, 2015). In stage 4, new leaves 
emerge after air temperature rises above 0 ◦C (Figs. 1), and the chlo
rophyll of the canopy starts to absorb light, emit SIF, and conduct 
photosynthesis (GPP). Thus, the timing of leaf emergence (green-up), 

SIF, and GPP are consistent. We argue the SOSNDVI dates reflect the land 
surface changes from stage 2 to stage 3 (Fig. 9 b). Satellite observations 
at the landscape level are affected by soil background during the tran
sition from dormancy to the green-up phase (Walther et al., 2016; Wang 
et al., 2013), especially the snowmelt and drying processes, which cause 
an early rise of NDVI and early SOSNDVI estimates with the air temper
ature being below 0 ◦C (Chang et al., 2019; Ensminger et al., 2008). A 
recent study in the Tibetan Plateau found that an earlier SOSNDVI esti
mate is affected by earlier snowmelt, which would attribute to an 
advance in SOS estimate as an artifact of snow cover changes (Huang 
et al., 2021). In our study, the finding that VIs-based SOS of about half 
the area occurred below the freezing point also proves the bias of land 
surface SOS estimates. Thus, the effects of soil background, especially 
soil moisture, could be an important reason for the earlier SOS dates 
from the VIs-based approach. 

Fig. 4. Spatial distributions and histograms of the length 
of the growing season (LGS) in 2019 in the Tibetan 
Plateau, China. Each row represents individual indices, 
TROPOMI SIF (a, b), MCD12Q2 V6 (c, d), MCD43A4- 
based NDVI (e, f), EVI (g, h), NIRv (i, j), and VPM GPP 
(k,l), respectively. The left and right panels indicate the 
spatial and frequency density distribution of the LGS 
derived from individual indices. Blue vertical dashed lines 
and gray curves in the right panel indicate mean values 
and the cumulative distributions of LGS, respectively. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   
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4.2. EOS estimates and discrepancy 

Several studies analyzed GOME-2 SIF and NDVI data for various 
forests and reported that SIF-based EOS dates (EOSSIF) are weeks (to 
months) earlier than NDVI-based EOS dates (EOSNDVI) (Jeong et al., 
2017; Wang et al., 2020c). Our study of alpine grasslands in the Tibetan 
Plateau also shows that EOSSIF is two months earlier than EOSNDVI 
(Fig. 1). During the transition from fall to winter, the land surface dy
namics in the Tibetan Plateau can also be generalized into four stages 
over time (Fig. 9): (1) green vegetation, (2) senescent vegetation (dead 
but most of the leaves still in the canopy), (3) leaf fall and exposed wet 
soil surface, and (4) snow-covered dead leaves and soils (Fig. 9). In stage 

1, green leaves are observed by satellite sensors and NDVI values are 
high. In stage 2, dry and dead leaves in the canopy are observed by 
satellite sensors and NDVI values are lower than stage 1 while GPP and 
SIF approach 0. In stage 3, wet soil surface and dead leaves on the 
ground are observed by satellite sensors and NDVI values are much 
lower than stage 2. In stage 4, snow cover results in the lowest NDVI 
values. 

We assume that the EOSSIF dates reflect the land surface in stage 2, 
but EOSNDVI dates are likely to relate to the land surface changes be
tween stages 2 and 3 (Fig. 9). The difference in EOS between VIs and SIF 
datasets is mostly related to the mathematical models that use VIs to 
estimate EOS. Plant senescence is a natural and slow-process, and dead 

Fig. 5. Similar as Fig. 3 but for TROPOMI SIF and EVI2 (MCD12Q2 V6), TROPOMI-based VIs (NIRvR, NDVI, NIRv), and VPM GPP.  
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plants/standing litter have similar spectral properties as the soils, thus it 
is hard to determine EOS from VIs dataset (Smith et al., 2019; Fig. 9). 
The effects of plant senescence and soils on surface reflectance could be 
an important reason for the later EOS dates from the VIs datasets. Pre
vious studies only pointed out the differences between SIF and NDVI 
(Jeong et al., 2017; Lu et al., 2018; Wang et al., 2020c), and attributed 
later EOSNDVI than EOSSIF to the fact that photosynthesis shut down 
before leaf senescence in response to biophysical constraints (Jeong 
et al., 2017; Wang et al., 2020c), but this explanation is still insufficient 
to justify EOSNDVI. Our work states that EOSNDVI is not reasonable when 
the air temperature is considered. The senescence timing of annual 
plants and deciduous plants is controlled by their life clock or environ
ment (e.g., air temperature). Air temperature in EOSSIF and EOSGPP dates 
is close to 0 ◦C, and the leaves have stopped photosynthesis at this time, 
indicating that EOSSIF and EOSGPP are reasonable in terms of biology. Air 
temperature before EOSNDVI date is already below zero for many days, 
indicating that EOSNDVI is not reasonable in terms of biology. 

This study investigated both vegetation phenology and land surface 
phenology, which are two concepts that are relevant but not identical. 
SIF is the energy emitted by plants, and it is not or little affected by other 
land surface types (Badgley et al., 2017; Zeng et al., 2022b) and is less 
sensitive to thin clouds (Dechant et al., 2022). SIF and GPP are mostly 
about vegetation phenology. Currently, most attention has been given to 
the rapid use of SIF to calculate GPP, but the use of high spatiotemporal 
SIF (e.g., TROPOMI) in vegetation phenology has been neglected 
(Dechant et al., 2022; Zeng et al., 2022a). Our findings show that the 
TROPOMI SIF product has the potential to serve as a proxy for alpine 
grassland photosynthetic phenology with high spatiotemporal resolu
tion. However, air temperatures were below 0 ◦C for VIs-derived EOS 
dates suggesting that the use of remotely sensed greenness indices for 
identifying vegetation phenology is likely to deviate from actual 
photosynthetic activity (Figs. 6-8). Given that both NDVI and EVI data 
are widely used to produce local, regional, and global-scale LSP data 
products (e.g., MCD12Q2 V6) (Joiner et al., 2014; Piao et al., 2019; 

Fig. 6. Summary of the start of the growing season (SOS) from six indices and their relationships with nighttime mean air temperature in 2019 in the Tibetan 
Plateau. The nighttime mean air temperature (Nighttime Temp) represents the nighttime mean air temperature at the SOS date derived from TROPOMI SIF (a), 
MCD12Q2 V6 (b), MCD43A4-based NDVI (c), EVI (d), NIRv (e), and VPM GPP (f), respectively. In each subplot, the lower-right and upper plots represent 1-D 
histograms of SOS and corresponding nighttime mean air temperature across all 0.2◦ grid cells, respectively, while the lower-left plot represents a 2-D density 
heatmap indicating the distributions/relationships between SOS and corresponding nighttime mean air temperature. Red and blue dashed lines indicate mean values 
of SOS and corresponding nighttime mean air temperature, respectively, while gray curves indicate the cumulative distributions of nighttime mean air temperature. 
Black vertical dashed lines indicate 0 ◦C of nighttime mean air temperature. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Richardson et al., 2012), the combination of later EOS and longer LGS 
derived from VIs datasets with some arithmetic-based phenology 
extraction algorithms (at least ≤15% dynamic threshold) may hinder 
efforts to model terrestrial productivity and predict climate change 
impacts on vegetation and carbon balance (Anav et al., 2015; Richard
son et al., 2012; Xia et al., 2015; Sun et al., 2017). Therefore, there is an 
urgent need to re-evaluate these VIs-based phenology data products and 
re-assess their effects on our understanding of the spatiotemporal 
changes in vegetation carbon and water fluxes in the past four decades. 
SIF can be used as a caliber and/or reference for the remote sensing 
community to re-evaluate and validate the phenological data products 
derived from VIs (Magney et al., 2020). 

4.3. Temperature control of land surface phenology (vegetation 
phenology) 

The SOS and EOS need to be within the time period with air tem
peratures higher than 0 ◦C to avoid damage to plants from frozen tem
peratures (Noormets, 2009; Wu et al., 2014; Pierrat et al., 2022; Chang 
et al., 2019). If a plant is continuously exposed to a cold air temperature 
below the freezing point for many days, the liquid water in the leaves 
will be in the form of an ice-water mixture or ice, and the hydraulic 

system in the plant is thus blocked and photosynthesis is unable to take 
place. Many studies based on in situ EC flux observations (Chang et al., 
2019; Pierrat et al., 2022), agree with our study (Figs. 1, S40), and they 
found that photosynthesis does not start until the air temperature ex
ceeds the freezing point. Moreover, the temperature threshold (e.g. 0 ◦C) 
has been adopted by light-use-efficiency models (e.g., VPM) (Zhang 
et al., 2017a, 2017b), and process-based models like the Terrestrial 
Ecosystem Model (TEM) studies (Aber et al., 1996; McGuire et al., 1992; 
Raich et al., 1991). In accordance with the above empirical evidence, we 
found that both TROPOMI SIF and GPPVPM were suitable indicators of 
the start and end dates of photosynthesis in alpine grasslands (Figs. 1, 2, 
S5-S14, S40). Our study assessed the phenological transition dates 
retrieved from SIF and VIs and showed that the EOS dates from VIs data 
need to be evaluated with air temperature data over a larger area and 
across vegetation types in combination with in-situ EC flux and SIF 
observations to make it robust. 

In theory, SIF contains unique physiological information in the form 
of fluorescence quantum yield (ФF) (Magney et al., 2019). ФF is thought 
to explain the faster and stronger stress response of SIF compared to 
structural variables such as APAR, NDVI, or EVI (Dechant et al., 2020; 
Wang et al., 2020a; Zeng et al., 2022a). Dividing SIF by NIRvR results in 
a calculation of SIF yield (NIRvR-derived SIFYield; Eq. 5) and is an 

Fig. 7. Similar as Fig. 6 but for the nighttime mean air temperature at the end of the growing season (EOS) derived from TROPOMI SIF (a), MCD12Q2 V6 (b), 
MCD43A4-based NDVI (c), EVI (d), NIRv (e), and VPM GPP (f), respectively. 

J. Yang et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 280 (2022) 113209

12

approximation of ФF. Interestingly, in this study, the NIRvR-derived 
SIFYield indirectly confirms that the SIF-estimated phenology is reason
able. The seasonal variation of SIFYield in the Tibetan Plateau grasslands 
is obvious, although the magnitude is small (Figs. 10, S56-S57). SIFYield 
is <0 when MODIS-based SOSNDVI/EOSNDVI occurs, while SIFYield >

0 when TROPOMI-based SOSSIF/EOSSIF occurs. We found that SIFYield 
was very close to the air temperature during the senescence (Fig. 10). 
SIFYield represents physiological photosynthetic activity related to light 
energy efficiency, which can partially reflect the influence of air tem
perature on photosynthesis. The seasonal variance of SIFYield, especially 
on EOS, implies that SIFYield plays an important role at 8-day time scales, 
which is likely sensitive to air temperature through the dynamics 
changes relative to plant abiotic stresses, such as low temperature or 
short photoperiod (Wang et al., 2020a; Zeng et al., 2022a). Our results 
illustrate that the TROPOMI satellite could capture the signal of alpine 
grassland ФF, that is, NIRvR-derived SIFYield can capture the rapid 
response of vegetation to environmental stress, highlighting its unique 
ability to track the seasonality of photosynthesis, when in particular, 
instantaneous PAR measurements are not available. Thus, in addition to 
NIRvR, SIFYield is also crucial for the phenological characterization of 
alpine grasslands. It is also worth noting that the current method of 
calculating SIFYield is still subject to significant uncertainty, which is 

directly influenced by the NDVI. SIFYield fluctuates greatly in the spring 
green-up period, which is mainly due to the relatively high SIF noise 
related to the low signal quality of SIFobs (Wang et al., 2020a). There
fore, reliable estimation of SIFYield would be a key step in establishing a 
better link between SIF and GPP as well as delineating biome-specific 
phenology at leaf and canopy levels across vegetation types and under 
different abiotic stresses (Zeng et al., 2022a, 2022b). 

4.4. Potentials of TROPOMI-based NIRvR on vegetation phenology 

Interestingly, the MODIS-related EVI and NIRv yielded similar 
phenological patterns to NDVI (both MOD09A1 and MCD43A4), 
showing that EVI or NIRv did not show a significant advantage over 
NDVI in the Tibetan Plateau, although there is a slight improvement 
(Figs. 1, 3, S5-S11, S18). That is, there are still EOS differences between 
SIF and NDVI-like VIs (EVI or NIRv) on MODIS-like sensors. Also, these 
nearly identical results between MCD43A4 and MOD09A1 datasets 
suggest that the SOS/EOS discrepancy between SIF and VIs may not be 
due to the absence of view angle effect (BRDF) correction in MOD09A1. 
Similar to SIF, NIRvR based on TROPOMI outperforms NDVI (Figs. 2, 5, 
S12-S14), which means that radiation-involved NIRvR on the TROPOMI 
sensor can largely depict the EOS date (Eqs. 3–5), and TROPOMI-derived 

Fig. 8. Similar as Fig. 6 but for the nighttime mean air temperature at the end of the growing season (EOS) derived from TROPOMI SIF (a), MCD12Q2 V6 (b), 
TROPOMI-based NDVI (c), NIRvR (d), NIRv (e), and VPM GPP (f), respectively. 
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NIRvR yields key insight into phenological discrepancy between VIs and 
SIF. The difference between SIF and NDVI is the NIR radiance × ΦF (Eq. 
5). The smaller difference (NIRvR still later) between SIF and NIRvR on 
EOS compared to NDVI suggests that NIR radiance (NIRrad) largely ex
plains the SIF-NDVI discrepancy, which implies that the canopy struc
ture and radiation component of SIF (i.e. APAR × fesc) can constrain the 
slow change in NDVI before it enters dormancy in the fall (Eq. 5, Figs. 2, 
5, S12-S14). Our finding also suggests the potential of NIRvR on EOS 
retrievals and unraveling SIF-VIs discrepancy, which is consistent with 
several recent studies that show that NIRvR is a robust proxy for SIF 
across ecosystems, spatial and temporal scales, and instrument plat
forms (Dechant et al., 2020, 2022; Zeng et al., 2022a). Combining the 
NIRvR and ФF that depicts the plant's response to temperature, SIF more 
accurately characterizes the phenological period of alpine grasslands. 
This is important because the current phenological retrievals based on 
NDVI show a greater divergence in autumn phenology compared with 
spring phenology. 

From the perspective of SIF applications, the SIF/NIRvR ratio 
(SIFYield) can be used to estimate the physiological component of SIF 
(ΦF), but ΦF estimation amplifies the retrieval noise of SIF (Dechant 
et al., 2020). Notably, while the difference between SIF and NIRvR in 
SOS was not significant in 2020–2021 (Figs. 26, 29), TROPOMI data 
showed a positively skewed distribution of SIF-NIRvR difference in SOS 
in 2019 (Fig. 5 p) at the pixel scale, indicating that, unlike croplands, 
NIR radiance (NIRrad) in alpine grasslands had a large variation in SOS 
and thus result in SOSNIRvR does not approach SOSSIF well (Eq. 5; 
Dechant et al., 2020). This is probably due to the complicated effects of 
the change of soil background on the NIR radiance (NIRrad) before leaf 
emergence. Therefore, air temperature (Jeong et al., 2017; Lu et al., 
2018) or soil moisture (Wang et al., 2019) may explain the phenological 
difference between SIF and NDVI. There is still a gap in time between SIF 
and NIRvR, with NIRvR being later. This may be because, alpine 
grassland photosynthesis is controlled by air temperature, and NIRvR 

should not contain temperature information except for radiation, which 
also leads to the SIF-NIRvR gap. We should note that although many 
studies have reported on the linearity of SIF and NIRvR at monthly 
timescales and coarse spatial resolutions, for NIRvR to be a reliable 
proxy of SIF, ΦF would need to remain constant. Nevertheless, all evi
dence indicates that SIF and NIRvR could be complementary, and we 
confirm that in the alpine grasslands of the Tibetan Plateau, NIRvR is a 
reliable proxy on EOS for satellite-retrieved SIF at an 8-day temporal 
scale. 

Moreover, to test whether TROPOMI NDVI (especially Red reflec
tance) without atmospheric correction causes a significant bias in NIRvR 
results, we further compared the seasonal dynamics and phenology of 
two NIRvRs at the site and regional scales. NIRvR was calculated using 
NDVI from MCD43A4 SR and TROPOMI TOA datasets, respectively, 
keeping the NIR radiance all from the TROPOMI sensor. Note that the 
MCD43A4-based NDVI is atmospherically corrected, while the NDVI of 
TROPOMI is not. The results of NIRvRs based on TROPOMI and 
MCD43A4 consistently show that the absence of atmospheric correction 
has a greater impact on the difference in NIRvR magnitude than on the 
difference in the seasonality (phenology) (Fig. S58-S60). Using the 
MCD43A4-based NIRvR leads to higher NIRvR values, but makes SOS 
earlier and EOS later, apparently not as close to SIF as the TROPOMI- 
based NIRvR. Setting aside the differences related to signal quality 
among sensors, the NIRvR discrepancies between TROPOMI and 
MCD43A4 are most likely because the two satellite sensors use different 
bandwidths to calculate NDVI (Guanter et al., 2021) and have differ
ences in sun-sensor geometry (Dechant et al., 2022). A previous study 
found that TROPOMI-based NIRv (NDVI × NIR reflectance) out
performed MODIS-based NIRv. They also found that NIRvR from TRO
POMI NIR radiance showed a higher spatial and temporal correlation to 
SIF than NIRvR from MODIS (Dechant et al., 2022). These results are in 
agreement with our findings. Overall, atmospheric corrections do not 
appear to have a significant impact on the NIRvR-retrieved phenological 

Fig. 9. The four phases (stages) of land surface dynamics 
during winter to spring transition (P1-P4) and from fall to 
winter transition (P5-P8) at one grid cell (0.2◦) in the Tibetan 
Plateau, China. (a) LSWI (Land Surface Water Index, indicating 
the surface moisture status) (Xiao et al., 2002) and NDSI 
(Normalized Difference Snow Index, indicating the presence of 
fresh snow when larger than 0.4) (Riggs et al., 2017). (b) Time 
series of NDVI, EVI, and NIRv are derived from MOD09A1 V6 
data product while (c) SIF and GPP are derived from TROPOMI 
SIF and VPM-based GPP data products, respectively. While 
LSWI, NDSI, NDVI, EVI, and NIRv are unitless quantities, GPP 
is shown in units of g C m− 2 day− 1, SIF in units of nW m− 2 

nm− 1 sr− 1, SOS/EOS in units of day of year (DOY), and air 
temperature in units of ◦C.   
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transition dates, and more importantly, keep the NDVI and NIR radiance 
from the same sensor so that potential geometric correction, spatial 
resolution and band windows mismatches between SIF and NIRvR can 
be minimized. Our result indicates that it is a good practice to use SIF 
and NIRvR acquired from the same satellite sensor with the same sun- 
sensor geometry. This study is the first to evaluate the phenological 
characterization of NIRvR at the pixel scale, though there have been 
several studies to look at SIF-NIRvR space-time relationships. In fact, 
only NIRvR is comparable with SIF because they have the same unit, 
while reflectance-based VIs and radiance-based SIF with different units 
are not directly comparable before their normalization by SIF / PAR or 
VIs × PAR. More direct comparisons between SIF and NIRvR and NIRvR- 
relevant studies on phenological characterization and sensitivity are 
needed across vegetation types and spatial-temporal scales. 

Although the VIs datasets exhibit large uncertainties in EOS 

estimations, we need to note that, indeed, matching the two VIs- and 
SIF-retrieved phenology is still challenging. Given that VIs have long- 
time records of satellite observations with high signal quality and high 
spatiotemporal resolution (Badgley et al., 2017), further studies are 
needed to develop better VIs-specific phenology extraction algorithms to 
eliminate the influence of soil background. And similarly, a composite 
indicator, like NIRvR, coupled with vegetation indices should be further 
tested and applied. We call for the integration and sharing of in-situ 
canopy-level SIF, phenoCam, EC flux tower, and surface reflectance 
data across the Tibetan Plateau and broader region, as well as the 
development of more robust algorithms that will refine our determina
tion of phenological timings at the landscape level. Meanwhile, SIF can 
be used to estimate GPP and its seasonality, therefore, very high-quality 
and high-resolution SIF products to determine phenological metrics 
should not be ignored. Here, the SIF soundings from TROPOMI were 

Fig. 10. The seasonal dynamics of the site-averaged and region-averaged fluorescence yield (SIFYield) and night-time mean air temperature in the year 2019. The red, 
purple, and black vertical lines are SOS and EOS estimated from TROPOMI SIF, TROPOMI NDVI, and MCD43 NDVI, respectively. The blue horizontal dashed line 
depicts a temperature of 0 ◦C, while the gray horizontal dashed line represents a SIFYield of 0. SIFYield is unitless. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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aggregated within each 0.2◦ grid cell with robust quality control of the 
data, although there may still be a small amount of SIF retrievals with 
high uncertainties (Fig. S3), suggesting that the ultimate SIF products 
should avoid the need for aggregation to coarser scales in terms of 
sounding footprints, viewing geometry, and signal quality (Ryu et al., 
2019; Dechant et al., 2022). Future spaceborne missions with finer 
spatial and temporal resolutions, including the upcoming FLuorescence 
EXplorer (FLEX) onboard the Sentinel-3 satellite and the Geostationary 
Carbon Cycle Observatory (GeoCARB) (Drusch et al., 2017; Polonsky 
et al., 2014), should be utilized to further improve our understanding of 
vegetation phenology at the global scale. 

5. Conclusions 

In this study, we utilized the state-of-the-art TROPOMI SIF data with 
high spatial and temporal resolutions to compare the SIF-based pheno
logical metrics against vegetation indices-based ones at sites and pixel 
scales from 2019 to 2021 in the Tibetan Plateau. Our results show the 
systemic inconsistency in phenological metrics between the SIF and VIs. 
Specifically, the LGS derived from the NDVI, EVI, and NIRv is more than 
two months longer than the one from SIF and GPP, which is mainly 
determined by the later EOS. Furthermore, we confirm that TROPOMI 
SIF can match well with GPP in tracking the seasonal variances of alpine 
grasslands that revealing satellite-derived TROPOMI SIF and GPP can 
synergistically characterize the seasonality of photosynthesis. Further
more, air temperature analysis at the time when SOS/EOS occurs shows 
that SIF-based SOS and EOS dates occur after air temperatures exceed 
the freezing point, but greenness-based SOS and EOS dates occur even 
air temperature is already below zero. These results revealed that VIs 
with most phenology extraction methods has a large uncertainty in 
terms of biology, and thus our study highlights the need to re-evaluate 
the current SOS and EOS data products derived from the vegetation 
indices and develop new SOS and EOS data products from optical sat
ellite sensors. It is necessary to utilize physiology-based SIF to constrain 
the terrestrial ecosystem model in addition to the traditional canopy 
structure-related indicators. 
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Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., Zhang, Y., 
Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y., Frankenberg, C., Berry, J. 
A., 2022. NIRVP: a robust structural proxy for sun-induced chlorophyll fluorescence 
and photosynthesis across scales. Remote Sens. Environ. 268. 

Doughty, R., Kohler, P., Frankenberg, C., Magney, T.S., Xiao, X., Qin, Y., Wu, X., 
Moore 3rd, B., 2019. TROPOMI reveals dry-season increase of solar-induced 
chlorophyll fluorescence in the Amazon forest. Proc. Natl. Acad. Sci. U. S. A. 116, 
22393–22398. 
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