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Convergence of a Discrete-Time Age-Structured
Population Toward a Given Steady State Through
Controlled Immigration

Li Xu
Qingguo Zhang
Department of Mathematics, Anhui Agricultural University,
Hefei, China

Xiangming Xiao
Complex Systems Research Center, Institute for the Study of Earth,
Oceans and Space, University of New Hampshire, USA

To explore the concept of stability in an age-structured population with migration, a
Markov transition matrix model is built, where age classes can be of different length,
and the time step is not necessarily equal to the length of the age class. The conditions
under which a vector of the model has a steady population structure are identified, as
well as those under which the age structure converges to a given steady state, through
a series of decisions or controls of letting immigrants in or forbidding them entry into
the country. The decisions are expressed as vectors of proportions of immigrants. In
the steady state, when the increment of population is proportional to its size, the
age- or stage-structure remains unchanged between transitions.
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1. INTRODUCTION

Immigration in age-structured populations was mainly investigated in
continuous time (Ackleh and Deng, 2005; Chen, 1988; He, Wang and
Ma, 2004; Norhayati and Wake, 2003; Skakauskas, 2004) and less fre-
quently in discrete-time (Caswell, 2001; Jensen, 1997; Levin,1998;
Logofet and Klochkova, 2002; Pollard, 1973; Rogers, 1968; Wikan,
2004). Here, we consider a population open to migration and use
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Markov chain theory. We avoid the assumptions that age classes have
equal length and that stages should be of equal duration. We explore
the existence of a sequence of controls on immigration to reach a target
of a given age- and stage-structure using a matrix model with migration.

2. POPULATION DYNAMICS WITH MIGRATION

2.1. Definition of Variables

The population is divided into k age classes, not necessarily equal in
length, and stages (t ¼ 0, 1, 2, . . .) not necessarily of the length of
the age classes. We need:

1. The age-structured population xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xkðtÞÞ, where
xiðtÞ is the population size of age class i, NðtÞ ¼

Pk
i¼1 xiðtÞ is the

population size.
2. The age-structure pðtÞ ¼ ðp1ðtÞ;p2ðtÞ; . . . ;pkðtÞÞ with piðtÞ ¼ xiðtÞ=

NðtÞ; piðtÞ � 0;
Pk

i¼1 piðtÞ ¼ 1.
3. The semi-transition matrix

Q ¼ ðpijÞk�k ¼

p11 p12 � � � p1k

p21 p22 � � � p2k

� � � �
� � � �

pk1 pk2 � � � pkk

2
66664

3
77775

where pij is the proportion of individuals moving from age class
i to age class j. The pijs are either transition probabilities or
reproductive outputs, including the reproduction of the native
populations and individuals in age class i surviving and remaining
in age class i or ageing into age class j. Q is not a stochastic
matrix, taking more general forms and not constrained byPk
j¼1

pij ¼ 1; i ¼ 1; 2; : . . . ;k.

4. The emigration structure e ¼ ðe1; e2; � � � ; ekÞ, where ei is the pro-
portion in age class i of the population emigrated from or died in
age class i at every stage. An estimate is the average value over
a past period. The total population emigrated from or died at stage
t is WðtÞ ¼

Pk
i¼1 eixiðtÞ ¼ xðtÞeT.

5. The vector r ¼ ðr1; r2; . . . ; rkÞ of proportions ri of immigrants in age
class i whatever the stage attained. It is estimated as the average
value over a past period. riR(t) is the total number of individuals
immigrating into age class i at stage t, where R(t) is the total
number of immigrants at stage t.

194 L. Xu et al.
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From this definition pij; ei; and ri satisfy

pij � 0; ei � 0;
Xk

j¼1

pij þ ei ¼ 1 ð1Þ

ri � 0;
Xk

i¼1

ri ¼ 1: ð2Þ

The transition between age classes is represented on Figure 1.

2.2. The Model

The matrix model of the age-structured population is given by the
recursion in N(t) and xi(t):

Nðtþ 1Þ ¼ NðtÞ þ RðtÞ �WðtÞ ð3Þ

xjðtþ 1Þ ¼
Xk

i¼1

pijxiðtÞ þ rjRðtÞ

j ¼ 1; 2; . . . ;k: ð4Þ
Expressed in a vector form, Eq. (4) becomes

xðtþ 1Þ ¼ xðtÞQþ RðtÞr ð5Þ
Let MðtÞ ¼ Nðtþ 1Þ �NðtÞ, the increment of the total number of indivi-
duals in the stage from t to tþ 1. From Eq. (3) and WðtÞ ¼ xðtÞeT, we obtain

RðtÞ ¼WðtÞ þMðtÞ ¼ xðtÞeT þMðtÞ: ð6Þ
Replacing R(t) of Eq. (5) with Eq. (6) and simplifying Eq. (5), we get the
recursion

xðtþ 1Þ ¼ xðtÞðQþ eTrÞ þMðtÞr ð7Þ

Consider the matrix P ¼ Qþ eTr. From Eqs. (1) and (2), the sum of the
rows of P equals the vector 1. Hence P is stochastic, which is a condition

FIGURE 1 Transition between age classes with migration.
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of the Markov chain. Eq. (7) is written as

xðtþ 1Þ ¼ xðtÞPþMðtÞr: ð8Þ
Eqs. (5) and (8) are matrix population models with in- and out-migration.
With the transition matrix Q, the vector r of proportions of immigrants,
the initial age-structured population x(0), the total number R(t) of immi-
grants, or the increment M(t) of population size, we obtain the changes of
x(t) by Eq. (5) or Eq. (8), respectively.

Case I: When the total number of individuals at every stage
increases of a fixed percent a, or MðtÞ ¼ aNðtÞ, we get Nðtþ 1Þ ¼
ð1þ aÞNðtÞ. Replacing x(t) in Eq. (8) by p(t), we rewrite Eq. (8) as
pðtþ 1Þ ¼ ð1þ aÞ�1ðpðtÞPþ arÞ.

Case II: If out-migration counterbalances in-migration, the popu-
lation size N(t) should be unchanged, or M(t) ¼ 0 (or a ¼ 0). Eq. (8)
is reduced to the simple recursion

pðtþ 1Þ ¼ pðtÞP ð9Þ
where P ¼ Qþ eTr.

2.3. Results

For the Markov chain (9), which is regular (Bartholomew, 1973; Gour-
ley and Wu, 2004), the first right hand eigenvector of P is an age struc-
ture a ¼ ða1; . . . ; akÞ satisfying

a ¼ aP; ð10Þ
The vector a is the steady population structure.

Proposition 1: a is a steady population structure if and only if a3aQ
where Q ¼ ðpijÞk�k is a semi-transition matrix.

Proof. From Eq. (10) and P ¼ Qþ eTr;

r ¼ ða� aQÞ=aeT; aeT > 0: ð11Þ
r satisfies

Pk
i¼1 ri ¼ 1

From Eq. (1):

Xk

j¼1

rj ¼
Xk

j¼1

aj �
Xk

j¼1

Xk

i¼1

aipij

 !
=aeT

¼
Xk

j¼1

aj �
Xk

i¼1

ai

Xk

j¼1

pij

 !
=aeT

¼
Xk

j¼1
aj �

Xk

i¼1
aið1� eiÞ

� �
=aeT ¼ 1

196 L. Xu et al.
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From Eq. (2), r still needs to satisfy ri � 0. From (11), a is the steady
population structure if and only if a3aQ.

Proposition 2: a is a steady population structure if and only if
a ¼

Pk
i¼1 bisi, where bi � 0,

Pk
i¼1 bi ¼ 1; si is a vector, si ¼ mi=ui, mi

is the ith row vector of (I–Q)�1, ui is the sum of the elements of mi

Proof: From Eq. (1),
Pk

j¼1 pij < 1 so that (I–Q) is invertible, I is the
unit matrix.

Take M ¼ (mij)k�k ¼ (I–Q)�1. From Eq. (10), a is a steady popu-
lation structure if and only if

a ¼ aeTrM ð12Þ

Denote mi ¼ (mi1, mi2, . . . , mik) and ui ¼
Pk

j¼1 mij. Then
rM ¼

Pk
i¼1 rimi:

From Eq. (12), a1T ¼
Pk

i¼1 ai ¼ 1, mi1
T ¼ ui, 1 ¼ (1, 1, . . . , 1) and

aeT ¼ 1Pk
i¼1

riui

ð13Þ

HenceEq. (12) is rewrittenasa ¼
Pk

i¼1 ðrimi=
Pk

j¼1 rjujÞ.Denotebi ¼ riui=Pk
j¼1 rjuj and si ¼ mi=ui. Then a ¼

Pk
i¼1 bisi, where

Pk
i¼1 bi ¼ 1, M ¼

ðI�QÞ�1 ¼ IþQþQ2 þ � � � is a non-negative matrix and the ele-
ments mij of M are also non-negative, which implies that ui is nonne-
gative. In addition, from Eq. (13)

Pk
i¼1 riui ¼ ðaeTÞ�1 > 0. So ri > 0 if

and only if bi30.
The si are steady population structures, too. Given the transition

matrix Q, we get the range and the expression of the steady population
structure a by Propositions 1 and 2, respectively.

3. CONVERGENCE OF THE AGE-STRUCTURED
POPULATION UNDER A SEQUENCE OF CONTROLS
ON A VECTOR OF PROPORTIONS OF IMMIGRANTS

Assume that the age-structured population is open to migration. The
vector r(t) ¼ (r1(t), r2(t), . . . ,rk(t)) of proportions of immigrants is a
function of stage t. Assume that the vector r(t) of proportions of immi-
grants can be controlled so as to have the age-structure converging to
a steady structure a�. We shall find such controls.

Theorem: Given the initial age-structure x(1), the vector e of pro-
portions of emigrants and the semi-transition matrix Q, there exists

Convergence of a Discrete-Time Age-Structured Population 197
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a sequence of vectors of proportions of immigrants {r�(t)} such that the
population open to migration converges to a steady structure a�.

Proof. Consider a steady structure a�. From Eq. (10) there is a vector
r0 of proportions of immigrants such that

a� ¼ a�ðQþwTr0Þ ¼ a�P0

Using dynamic programming, an vector r�(t) is obtained such that
ka� � a�ðtÞP�ðtÞk � ka� � a�ðtÞP0k (Zhang, 1998). With the age-struc-
ture a�(tþ 1) at the (tþ 1)th stage obtained after moving between
stages and after immigration,

a�ðtþ 1Þ ¼ a�ðtÞP�ðtÞ

where P�(t) ¼ QþwTr�(t), r�(t) is the vector of proportions of immi-
grants. Zhang (1998) proved that if A ¼ (aij)n�n is a complex matrix,
jAj � max

i

P
j jaijj and jAj � max

j

P
i jaijj, where jAj ¼ maxfjkjg and

where the ks are the eigenvalues of the matrix. jAj is the spectral
radius of the matrix A. From the definition of r�(t), a lemma in the
Appendix, and the fact that the matrix P0 is stochastic,

ka� � a�ðtþ 1Þk ¼ ka� � a�ðtÞP�ðtÞk
� ka� � a�ðtÞP0k
¼ kða� � a�ðtÞÞP0k
� ka� � a�ðtÞjjjP0j
� ka� � a�ðtÞk

for any stage t. The population structure a�ðtÞ converges to the steady
population structure a� under a sequence of controlled vectors {r

�
(t)} of

proportions of immigrants.

4. CONCLUSION

The determination of the elements pij of the semi-transition matrix Q
plays an important role in prediction. pij includes survival probabilities
and birth rates and should be a function of t (Davydova, Diekmann and
van Gils, 2003; Grant and Benton, 2000; Takada and Nakajima, 1998).
The elements of matrix Q depend on the contrast between the duration
of observation and the lengths of the age classes (Cushing, 1998;
Behncke, 2000; Hiebeler, 1998; Neubert and Caswell, 2000). If pij are
constant and the increment of population is proportional to its size,
the discrete-time matrix model describes the dynamics of an age-
structured population in case I and II. Propositions 1 and 2 give the

198 L. Xu et al.
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necessary and sufficient conditions that a vector of the model has a
steady population structure. The expression and range of the steady
population structure are also provided. We prove that, for case I, there
is a sequence of controls on immigration letting the population converge
to a given age- or stage- structure, a steady state which satisfies the
conditions of Propositions 1 and 2.
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APPENDIX

Lemma 1.Let k1 . . . kn be the eigenvalues of the square matrix A,
x ¼ (x1, x2, . . .,xn)T. Then

kAxk � jAjjjxk

where kxk ¼ ðx2
1 þ x2

2 þ . . .þ x2
nÞ

1=2 is the norm of the vector x, the
spectral radius of the matrix A is jAj ¼ maxðjkijÞ with the kis the eigen-
values of the matrix A.

Proof. The eigenvalues of ATA are k2
1; k2

2; . . . k2
n. ATA is symmetric,

then there exists an orthogonal matrix P, P�1 ¼ PT such that

P�1ATAP ¼

k2
1 0

. .
.

. .
.

0 k2
n

2
66664

3
77775

or

ATA ¼ QT

k2
1 0

. .
.

. .
.

0 k2
n

2
66664

3
77775Q
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where Q ¼ P�1. Consider y ¼ Qx ¼ (y1, y2, . . . . . . , yn)T, then

kAxk2 ¼ xTATAx ¼ yT

k2
1 0

. .
.

. .
.

0 k2
n

2
66664

3
77775y:

Because Q is orthogonal, kxk ¼ kyk, and

kAxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1y1 þ k2
2y2 þ � � � þ k2

nyn

q
� jAjjjyk

so that

kAxk � jAjkxk:

Because the transposed matrix AT has the same eigenvalues as A and
thanks to lemma 1,

kxTAk � kxTkjAj:
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