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A B S T R A C T

High demand for tea has driven the expansion of tea plantations in the tropical and subtropical regions over the
past few decades. Tea plant cultivation promotes economic development and creates job opportunities, but tea
plantation expansion has significant impacts on biodiversity, carbon and water cycles, and ecosystem services.
Mapping the spatial distribution and extent of tea plantations in a timely fashion is crucial for land use man-
agement and policy making. In this study, we mapped tea plantation expansion in Menghai County, Yunnan
Province, China. We analyzed the structure and features of major land cover types in this tropical and sub-
tropical region using (1) the HH and HV gamma-naught imagery from the Advanced Land Observation Satellite
(ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) and (2) time series Landsat TM/ETM+/OLI
imagery. Tea plantation maps for 2010 and 2015 were generated using the pixel-based support vector machine
(SVM) approach at 30m resolution, which had high user/producer accuracies of 83.58%/91.67% and 87.50%/
90.83%, respectively. The resultant maps show that tea plantation area increased by 33.56% (∼9335 ha), from
∼27,817 ha in 2010 to ∼37,152 ha in 2015. The additional tea plantation area was mainly converted from
forest (32.50%) and cropland (67.50%). The results showed that the combination of PALSAR and optical data
performed better in tea plantation mapping than using optical data only. This study provides a promising new
approach to identify and map tea plantations in complex tropical landscapes at high spatial resolution.

1. Introduction

The tea plant (Camellia sinensis (L.) O. Kuntze), an evergreen broad-
leaved perennial shrub, is widely cultivated in the mountains of tropical
and subtropical zones and is important commercial crop (Duncan et al.,
2016; Wang et al., 2016). As one of the three most popular manu-
factured beverages (tea, coffee, and cocoa) consumed in the world
(Kumar et al., 2013), tea is a major economic crop in many developing
countries, including China, India, Kenya, and Sri Lanka. Due to the
rapid development of the global tea industry since the beginning of this
century, tea plantation area and tea production have increased sig-
nificantly. According to International Tea Commission statistics, the
global tea plantation area reached 4.37 million hectares in 2014, and
the tea plantation area increased by 64.9% between 2000 and 2014.
China is the largest tea-planting and production country in the world,

spanning 20 southern provinces (Wang et al., 2016) and accounting for
37.9% of the global total tea production (FAO, 2014; Su et al., 2017). In
2014, tea plantation area in China was 2.65 million hectares, an in-
crease of 143% from 2000 (Lee et al., 2017).

Tea plantations have rapidly expanded in some regions of China and
other countries due to economic incentives (Xue et al., 2013). There-
fore, marginal quality croplands and natural forests with steeper slope
and higher elevation have been converted into tea plantations (Su et al.,
2017, 2016). Deforestation due to tea plantation expansion has caused
habitat fragmentation, reduced landscape connectivity, and losses of
ecosystem services (Liu et al., 2017). As perennial agroecosystems, tea
plantation management is less intensive than other croplands and its
vegetation coverage can reach 80%–90% of the area planted
(Kibblewhite et al., 2014; Zhang et al., 2017b). It is difficult to map tea
plants for the following reasons: 1) tea plants always grow in tropical
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and subtropical regions; and 2) spectral characteristics of tea planta-
tions are similar to tropical forests.

Synthetic aperture radar (SAR) sensor data has been regarded as an
alternative to data obtained using visible and near-infrared sensors in
subtropical and tropical zones, which often suffer from frequent cloud
cover and shadow problems (Jin et al., 2014; Li et al., 2012a; Negri
et al., 2016; Sinha et al., 2016; Yusoff et al., 2017). Recent research
results indicate that the dual-polarized (HH+HV) image can achieve
similar results compared to multi-polarized (i.e., HH+HV+VV) data
for land cover classification in tropical environments when adopting the
maximum likelihood classifier (MLC) and support vector machine
(SVM) approaches for classifying land cover with SAR data (Negri et al.,
2016). Optical data (e.g. Landsat and MODIS) provide information
about vegetation canopy (leaf area index) and PALSAR data provide
information on vegetation structure (trunk and branch), thus both op-
tical and PALSAR data have recently been integrated to improve clas-
sification accuracy. Several studies have evaluated the use of MODIS,
Landsat and PALSAR data to map forests (Qin et al., 2015, 2016b),
rubber plantations (Chen et al., 2016; Dong et al., 2013), forest and
land cover in the Brazilian Amazon (Qin et al., 2017a; Walker et al.,
2010), paddy rice in Myanmar (Torbick et al., 2017) and China (Wang
et al., 2015; Zhang et al., 2017a), oil palm (Cheng et al., 2016), de-
forestation and degradation (Reiche et al., 2015, 2013), woody plant
encroachment (Wang et al., 2018, 2017), and estimate forest biomass
(Basuki et al., 2013; Shen et al., 2016; Zhao et al., 2016).

As for tea plantations, many classification algorithms have been
reported in previous studies (Dutta et al., 2009; Ghosh et al., 2000; Li
and He, 2008; Rao et al., 2007). A study by Dihkan et al. (2013) ex-
tracted the multidimensional, textural, and spectral features of tea
plantations using a support vector machine (SVM) algorithm and multi-
spectral airborne digital images, which resulted in high producer’s
(92.09%) and user’s accuracies (94.68%) (Dihkan et al., 2013). Another
study integrated full-waveform LiDAR and hyperspectral data and used
SVM to enhance tea and areca classification, which had excellent pro-
ducer’s accuracy (99.10%) and user’s accuracy (100%) (Chu et al.,
2016). Airborne LiDAR and hyperspectral data have high spatial re-
solution, but obtaining the data is time-consuming, expensive, and does
not provide data at high temporal resolution, which is not appropriate
for mapping or monitoring tea plantation at high temporal frequency.
The tea plant is a perennial evergreen, so time series data must be
available when using a phenological approach to classify vegetative
cover. Tea plantations are cultivated continuously and at large spatial
scales, so PALSAR 25-m mosaic data and Landsat time-series images are
effective for tea plantation detection and classification.

The objectives of this study were to: a) develop an algorithm to
classify tea plantations in sub-tropical and tropical zones by integrating
PALSAR 25-m mosaic data and time-series vegetation indices from
Landsat images (such as NDVI, EVI, and LSWI, mDNWI); and b) verify
the accuracy of our classification algorithm. We applied the algorithms
to map tea plantations in Menghai County, Yunnan Province, which is a
typical tea-plantation region in China. Then, we evaluated the resultant
maps by using randomly chosen ground reference data. The resultant
algorithms and maps are likely to be useful for tea plantation man-
agement and ecological assessment.

2. Materials and methods

We built a detailed workflow for tea plantation mapping in 2010
and 2015 (Fig. 1). This workflow included three major components.
First, we produced the 25-m PALSAR/Landsat tea plantation maps in
2010 and 2015, based on the integration of PALSAR and time series
Landsat data. Second, we analyzed the area and spatial differences in
tea plantation 2010 and 2015. Third, we compared the tea plantation
area changes from our remote sensing approach and the official sta-
tistics data.

2.1. A brief description of the study area

Menghai County is in the Xishuangbanna Dai Autonomous
Prefecture of Yunnan Province China (Fig. 2), and is about 5511 km2 in
area. Mountains account for 93.5% of the county’s area, with elevation
ranging from 535m to 2429m. The latitude and longitude of the
southwestern and northeastern corner of the study area is 99°56′N,
21°28′E and 100°41′N, 22°28′E, respectively. Menghai County has a
typical monsoon climate with three distinct seasons: a foggy, cool and
dry season (November–February), a hot and dry season (March–April),
and a hot and wet (rainy) season (May–October) (Lu et al., 2010). The
average annual temperature is 18.7 °C, average annual precipitation is
about 1341mm, and the county receives 2088 sunshine hours annually
on average.

Tea harvest occurs from the end of February to the end of
November, and tea plantations enter a dormant period from the end of
November to the end of February. Most of the tea harvest (40–45%)
occurs during the hot and dry spring season. During these months,
farmers typically pick young leaves from tea trees three times, because
young, spring tea leaves are more profitable than summer and autumn
tea. Menghai County is famous for Pu-erh tea production with more
than 800 years of history in tea cultivation. The tea industry has played
an important socio-economic role in the region for hundreds of years. In
2015, the primary output value of the tea industry was US$152 million
dollars and the industrial output value was US$554 million dollars. The
tax revenue contributed by the tea industry accounted for 45.37% of
the total revenue of Menghai County. Tea income accounted for 50% of
the rural per capita income, and 82.4% of the population engaged in
tea-related work (Network, 2017).

2.2. 25-m PALSAR dataset and pre-processing

The ALOS PALSAR L-band HH and HV orthorectified mosaic data
(25-m spatial resolution) was obtained from the Earth Observation
Research Center, JAXA (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/
data/index.htm). PALSAR HH and HV backscatter data are slope cor-
rected and radiometrically calibrated, and are geo-referenced to lati-
tude and longitude coordinates (Shimada et al., 2014). The PALSAR
raw data was divided into individual 500 km×500 km processing
units, with consideration of orbit inclination and pass overlaps. Each
raw image was calibrated using published coefficients (Shimada and
Ohtaki, 2010) and output with 16-looks to reduce speckle noise. Cor-
rections of geometric distortions specific to SAR (ortho-rectification) as
well as topographic effects on image intensity (slope correction) have
been applied using the SRTM-90 Digital Elevation Model (Shimada,
2010). The mosaics were given in geographical (latitude/longitude)
coordinates, using the GRS80 ellipsoid, and provided in 1° by 1° rec-
tangular tiles. The pixel spacing was 0.8 arc seconds, corresponding to
25m at the Equator.

The Digital Number (DN) values (amplitude values) were converted
into gamma-naught backscattering coefficients in decibels (γ°) using a
calibration coefficient (see Eq. (1)).

° = × +γ 10 log (DN) CF10
2 (1)

where CF is the absolute calibration factor of−83. The difference value
(HH-HV) and ratio value (HH/HV) of backscattering coefficients of HH
and HV in decibel are widely applied for classification (Dong et al.,
2013; Qin et al., 2017b, 2016b).

We downloaded all PALSAR HH and HV data that covered our study
area in 2010 and 2015, then converted the backscattering coefficients
to decibel. PALSAR images and all Landsat images described below
were re-projected into the WGS-84/UTM zone 47N coordinate system
by nearest-neighbor resampling method.
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2.3. Time-series Landsat data pre-processing

The time-series Landsat images used in this study were processed
using the Google Earth Engine (GEE) platform (Dong et al., 2016; Qin
et al., 2017c, 2016b; Wang et al., 2017). All available Landsat 5/7/8
TM/ETM+/OLI images covering the study area (Table 1) were used.
The study area is located within the Worldwide Reference System 2
(WRS-2) Landsat scene paths 130 and 131, and row 045. Due to the 3-
season characteristics of the study area’s climate, we selected Landsat
5/7 images from November 1, 2008 to October 31, 2011 for mapping
tea plantations in 2010, and used Landsat 7/8 images from November
1, 2013 to October 31, 2016 for mapping tea plantations in 2015. The
surface reflectance data was generated from the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS), which includes the
calibration from at-sensor radiance to the top of atmosphere (TOA)
reflectance and the atmospheric correction from TOA reflectance to
surface reflectance (Claverie et al., 2015; Vermote et al., 2016). The bad
observations from clouds, cloud shadows, snow/ice, and the scan-line
corrector (SLC)-off gaps were identified as NODATA according to the
Fmask and metadata (Zhu and Woodcock, 2012).

2.4. Vegetation indices and modified Normalized Difference Water index

For individual Landsat images, three vegetation indices (VIs) were
calculated: the Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979), Enhanced Vegetation Index (EVI) (Huete et al., 2002),
and Land Surface Water Index (LSWI) (Xiao et al., 2005a). Both NDVI
and EVI indices complement each other in vegetation studies and im-
prove upon the detection of vegetation changes and extraction of ca-
nopy biophysical parameters (Huete et al., 2002). LSWI is sensitive to
the vegetation water content. The times series data of these three VIs
mentioned above are useful to analyze the vegetation phenology (Xiao

et al., 2006). We also calculated the modified Normalized Difference
Water Index (mNDWI) for all images, which can accurately be used to
identify open surface water body without using sophisticated proce-
dures (Xu, 2006), and was widely applied for open surface water body
mapping (Chen et al., 2013; Nandi et al., 2017; Wu et al., 2016; Xie
et al., 2016; Zou et al., 2017).
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where the ρnir , ρswir, ρred, ρblue, ρgreen are the land surface reflectance of
near infrared, shortwave-infrared, red, blue, and green bands, respec-
tively, in Landsat 5/7/8 images. L is the canopy background adjustment
that addresses non-linear, differential NIR, and red radiant transfer
through a canopy. C1 and C2 are the coefficients of the aerosol re-
sistance term, which uses the blue band to correct for aerosol influences
in the red band. G is the gain factor. The coefficients are: L= 1, C1=6,
C2= 7.5, and G=2.5.

2.5. Ground references site (GRS) data for algorithm training and product
validation

2.5.1. Geo-referenced field photos
Ground-based, in-situ samples are often the most reliable observa-

tions in determining vegetative cover and land classification (Xiong

Fig. 1. Workflow of tea plantation mapping in Menghai County using 25-m PALSAR and 30-m Landsat.
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et al., 2017). In-situ data are utilized for algorithm training or product
validation. Such geo-referenced, in-situ observations can be recorded
with a GPS camera or the smartphone Field Photo App, which is freely
available for both iOS and Android mobile platforms (Xiao et al., 2011).
We utilized about 1000 geo-referenced field photos from the Global
Geo-referenced Field photo Library to develop our algorithm
(Xiangming et al., 2011). These photos were collected in our study area
in 2017. To identify the historical (2010) land-cover types, we used
publicly available photos that had been shared to Google Earth by other

Google Earth users. For example, Fig. 3(a) shows a field photo uploaded
on November 26, 2010, and Fig. 3(b) shows the satellite imagery of the
same location taken two days prior. These geo-referenced field photos
were available in Google Earth and were digitalized into a series region
of Interest (ROIs) as a ground reference sites for algorithm training and
data product validation.

Fig. 2. The study area is Menghai County Xishuangbanna Dai Nationality Autonomous Prefecture, Yunnan, China. This region has a humid climate that is typical of
tropical forests, a high density of tea plantations, and is famous for Pu-erh tea production with more than 800 years of tea cultivation. The red star in the inset map
marks the location of the study area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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2.5.2. Ground reference sites (GRS) data for algorithm training and product
validation

Google Earth provides very high-resolution images with high geo-
metric accuracy (e.g., 0.61-m QUICKBIRD images), which are effective
for validating land cover classification results (Qin et al., 2015; Senf
et al., 2013). Based on high spatial resolution images available in
Google Earth in 2010 and 2015, we digitized 386 GRS (a total of 11,117
PALSAR pixels) for mapping tea plantations in 2010 and 2015. These
GRS were used for phenological analysis and classification sample
training for different land cover types (built-up, cropland, forest, tea
plantation, water body and others). The GRS data were detailed in
Table 2 and the distribution are described in Fig. 4.

A total of 3000 pixels were created randomly to validate the product
accuracy, but only 1739 and 1834 pixels were selected to validate tea
plantation map in 2010 and 2015, respectively, because some locations
did not have high resolution Google Earth imagery. Ground reference
sites were listed in Table 3. The spatial distribution of validation pixels

in 2010 and 2015 were described in Fig. 5.

2.6. Digital elevation model (DEM) data

We used the 30-m DEM data (SRTMGL1: NASA Shuttle Radar
Topography Mission Global 1 arc second V003) (NASA, 2013) in this
study. We included the 30-m DEM data as a variable to identify and
map the tea plantations. We also analyzed the spatial distribution of tea
plantation expansion at different elevation gradients from 2010 to
2015.

2.7. Tea plantation mapping algorithms

2.7.1. Selection of variables for classification
Many studies showed that PALSAR data had a promising potential

for land cover classification, because the SAR sensor is not affected by
clouds, weather, and other atmospheric constraints, which usually af-
fect optical sensors, particularly in moist tropical regions. HH polar-
ization images were used to identify water body (e.g., river and sea)
(Thapa et al., 2014). HV polarized images may be one of the best
choices for forest mapping in mountainous regions as it was less sen-
sitive to variations in slope, and HV polarized images have been used to
distinguish forest and non-forest (Shimada et al., 2014). HH-HV and
HH/HV were used to exclude the commission errors from cropland and
built-up lands (Qin et al., 2015). Hence, HH, HV, HH-HV, HH/HV were
selected as variables for classification. Fig. 6 showed the HH, HV, HH-
HV, and HH/HV profiles of six land types.

NDVI is closely related to leaf area index (LAI), which has been
successfully implemented to determine vegetation cover (Dihkan et al.,

Table 1
Summary of the number of Landsat images (path/row 130/045 and 131/045) used for each year during the 2008–2016 study period.

Path/Row 130/045 Path/Row 131/045

Year Landsat-5/TM Landsat-7/ETM+ Landsat-8/OLI Landsat-5/TM Landsat-7/ETM+ Landsat-8/OLI Total

2008 4 2 0 1 1 0 8
2009 14 10 0 14 10 0 48
2010 5 10 0 7 11 0 33
2011 5 6 0 4 12 0 27
2013 0 3 4 0 4 4 15
2014 0 15 18 0 13 17 63
2015 0 12 16 0 14 19 61
2016 0 11 12 0 11 14 48
Total 28 69 50 26 76 54 303

Fig. 3. An example of field photos and tea plantation Ground References Site selection. (a) a field photo taken on November 26, 2010 and uploaded by a Google Earth
user; (b) a high-resolution satellite image from Google Earth taken on November 24, 2010 (21°42′31.45″N, 100°23′38.15″E). The white circle was the location of field
photo, and the red polygon was a tea plantation GRS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article).

Table 2
Ground reference sites (GRS) by land cover type for algorithm training.

Land types Polygons Pixels

Build-up 72 424
Forest 58 5900
Tea plantation 37 214
Cropland 183 3700
Water body 20 795
Others 16 84
Total 386 11,117
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2013; Xiao et al., 2005b). EVI is more responsive to canopy structure,
including leaf pigment, canopy type, plant physiognomy, and canopy
architecture (Jiang et al., 2008). After the launch of MODIS sensors
aboard the Terra and Aqua satellites by NASA, EVI became popular due
to its ability to not saturate at high canopy densities, and to eliminate
background and atmosphere noise. There is strong light absorption by

liquid water in the SWIR, thus LSWI is sensitive to liquid water in ve-
getation and its soil background (Chandrasekar et al., 2010; Dong et al.,
2014; Xiao et al., 2002, 2005a). The mNDWI is one of the most popular
methods for open surface water body mapping because it overcomes the
shortcomings of NDWI by using Shortwave Infrared band to replace the
Near Infra-red band used in NDWI, it has been widely applied to

Fig. 4. Distribution of Ground reference sites (GRS) for algorithm training.
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produce water body maps at different scales in the last few decades
(Singh et al., 2015; Xu, 2008; Zou et al., 2018, 2017).

We analyzed temporal data of individual pixels for several land
cover types. Fig. 7 depicts the temporal profiles of time series NDVI.
The Fig. 7 showed that NDVI is not only sensitive to vegetation (crop-
land, forest, tea plantation) and non-vegetation (built-up, water body),
but also shows good performance for making a distinction in cropland,
forest, and tea plantation. Moreover, as shown in Fig. 8, EVI also have
good performance to distinguish vegetation and non-vegetation. Fig. 9
shows the separability between tea plantation and forest on LSWI,
especially in foggy cool and dry season and hot and dry season. Fig. 10
shows the temporal profiles of time series mNDWI. The mNDWI value
of open surface water body is obviously higher than non-water land
types, so mNDWI is useful for identifying open surface water body in
this study.

Therefore, based on the previous results generated by using the
three vegetation indices (VIs) and mNDWI mentioned above, and the

three-season climate of our study area, these four indices were selected
to distinguish tea plantation from other land cover types. Twenty-one
variables were chosen (Table 4) for SVM classification, including 4
variables derived from PALSAR data, and 16 variables calculated from
Landsat images and the DEM.

2.7.2. SVM-based classification
Support vector machine (SVM) is a supervised, non-parametric

statistical learning technique developed in the 1970s and was in-
troduced as a machine learning method based on a non-probability
binary function in the 1990s (Shao and Lunetta, 2012; Vapnik, 1995,
1998). Due to the ability of SVMs to successfully handle small training
data sets, SVMs are widely used in the remote sensing studies, which
often give higher classification accuracies than do other methods (Li
et al., 2015a). Compared an accuracy assessment of SVM versus three
other classifier approaches, a maximum likelihood classifier (MLC), a
neural network classifier (NN), and a decision tree classifier (DTC). The
result indicated that SVM has the highest classification accuracy, fol-
lowed by DTC and then MLC, which was attributed to SVM’s ability to
locate an optimal separating hyperplane. In previous studies, four
classifiers were applied for moderate resolution observation and mon-
itoring of land cover using Landsat TM and ETM+ data (Chen et al.,
2015; Li et al., 2015b; Otukei and Blaschke, 2010). The SVM produced
the highest overall classification accuracy, followed by Random Forest
(RF), J48 decision tree classifier (DTC), and maximum likelihood
classifier (MLC) (Gong et al., 2013). Recently, some studies reported
that SVM methods were adopted to perform the land cover classifica-
tion in tropical environments (Negri et al., 2016; Okoro et al., 2016;
Sameen et al., 2016). In particular, a review of SVM in remote sensing

Table 3
Ground reference sites (pixels) from high resolution images in Google Earth in
2010 and 2015.

Land types Pixels (2010) Percent (2010) Pixels (2015) Percent (2015)

Build-up 10 0.58 16 0.87
Forest 910 52.33 888 48.42
Tea plantations 67 3.85 108 5.89
Cropland 741 42.61 810 44.17
Water body 8 0.46 9 0.49
Others 3 0.17 3 0.16
Total 1739 100 1834 100

Fig. 5. Distribution of Ground reference sites (GRS) from high spatial resolution images in Google Earth. The pixels selected for the validation of the tea plantation
map in (a) 2010 (1739) and (b) 2015 (1834). No high-resolution images were available after 2012 in the southern region of the study area, so pixels could not be
selected in that area for validation in 2015.
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by Mountrakis et al. (2011) summarized results from over 100 pub-
lications that used SVM image classification. The review demonstrated
that SVM had superior performance compared to most other image
classifiers with limited training samples, despite that SVMs have lim-
itations in parameter selection and computational requirements.

In this study, we classified six land cover types: built-up, cropland,
forest, tea plantation, water body and others. According to the

International Geosphere-Biosphere Programme Data and Information
System (IGBP-DIS) (Loveland and Belward, 1997), built-up lands were
defined as land covered by buildings and other man-made structures,
croplands were defined as lands covered with temporary crops followed
by harvest and a bare soil period (including single and multiple crop-
ping systems, and perennial woody crops, and water bodies included
oceans, seas, lakes, reservoirs, and rivers. We used the same definitions
in our study when classifying built-up, cropland, and waterbodies. For
forest, we used the FAO (2012) definition for forest as land (0.5 ha or
more) with tree canopy cover larger than 10% with a minimum height
of five meters at tree maturity.

Tea plants can grow freely into a multi-stemmed tree of about 6m
height (Selvendran, 1970), but in commercial practice, tea plant are
periodically cut from the top (pruned) to rejuvenate the bush and tea
workers often keep the plucking table at a convenient height
(Goodchild, 1968; Pramanik et al., 2017). Tea plants are commonly
pruned to 80 cm in height and 100–120 cm in crown diameter (Zhang
et al., 2017b). Tea canopy coverage ranges from 60% to 100% of the
plantation area while height ranges from 60 cm to 110 cm (Li et al.,
2011). We defined tea plantations as lands dominated by tea plants
with a percent cover ≥50% and an average height of 80 cm based on
field samples in study area.

The SVM algorithm was implemented with ENVI 5.1 software. We
chose the radial basis function (RBF) as the kernel function, because
RBF has been observed to work well in many studies (Erener, 2013; Li
et al., 2015a; Schwert et al., 2013). For the RBF kernel, the parameters
such as Gamma in Kernel function, Penalty parameter, and Pyramid
levels were set as default in the ENVI 5.1 software. The Gamma default
value was the inverse of the number of bands in the input image. In this
study, the Gamma values were 0.048 (21 bands listed in Table 4) and
0.059 (17 bands from optical only data). The Penalty parameter was a
floating-point value greater than zero, and the default value was 100.

Fig. 6. PALSAR data profiles of six land types.

Fig. 7. Intra-annual variation of NDVI for five major land cover types. The
NDVI, EVI, LSWI, mNDWI annual time series of major land cover types from
MOD09A1 product in 2013. Sites include built-up (21.9563°N, 100.4423°E),
cropland (21.8325°N, 100.4101°E), forest (22.1024°N, 100.2855°E), tea plan-
tation (21.7088°N, 100.4009°E), and a water body (21.9066°N, 100.2897°E).
All sites correspond to the GRSs except for the forest and water body sites,
which were selected using Google Earth imagery.
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The pyramid level was set as 0 so that the full resolution image was
used to do classification.

We also compared the performance of between Landsat and Landsat
plus imagery for mapping tea plantation. We excluded four variables
from PALSAR data and used the same optical variables derived from
Landsat imagery and DEM (Table 4) to map tea plantation. The same

ground reference data was used for SVM algorithm training (Table 2)
and product validation (Table 3).

3. Results

3.1. Tea plantation maps at 30 m resolution in 2010 and 2015

We mapped tea plantations in 2015 based on 25-m resolution
PALSAR, 30-m resolution Landsat-7/ETM+, and Landsat-8/OLI data
from November 1, 2013 to October 31, 2016 (Fig. 11a). To analyze
changes in tea plantation area from 2010 to 2015, we also mapped tea
plantation in 2010 using 25-m resolution PALSAR, and 30-m resolution
Landsat-5/TM, and Landsat-7/ETM+ data from November 1, 2008 to
October 31, 2011. These two tea plantation maps were created using
the SVM algorithm mentionedin Section 2.7.2. The total tea plantation
area in Menghai County was estimated to be ∼ 27,817 ha in 2010 and
∼ 37,152 ha in 2015, respectively.

3.2. Accuracy assessment of tea plantation maps

Accuracy assessments of these resultant 2010 and 2015 tea plan-
tation maps were conducted using the validation GRS introduced in
Section 2.5.2 (Fig. 5). The assessment results indicated that our tea
plantation classifications have reasonably high accuracies. The overall
accuracies (OA) were 97.70% and 97.16% with Kappa coefficients of
0.96 and 0.95 in 2010 and 2015, respectively. The 2010 tea plantation
map had a producer accuracy (PA) of 87.50% and a user accuracy (UA)
of 83.58% (Table 5), and the 2015 tea plantation map had a slightly
higher PA of 90.83% and UA of 91.67% (Table 6). These results sug-
gested that the tea plantations maps in different periods of time were
comparable with each other, and it was possible to monitor tea plan-
tation change from 2010 to 2015 using the SVM approach with PALSAR
data and Landsat images.

3.3. Tea plantation changes from 2010 to 2015 in Menghai County, China

We used the PALSAR/Landsat tea plantation maps to identify their
spatio-temporal changes from 2010 to 2015 (Fig. 11b). According to the
PALSAR/Landsat tea plantation maps, tea plantation area increased
from ∼27,817 ha to ∼37,152 ha, with an average annual growth rate
of 6.7% from 2010 to 2015. Of the total tea plantation area in 2015,
50.2% of the tea plantation area in 2010 remained tea plantation area
in 2015, 33.6% of the 2015 tea plantation area was cropland in 2010,
16.2% of the 2015 tea plantation area was forest in 2010, and 0.005%
of the 2015 tea plantation area was other land cover types in 2010.
Moreover, we also found that forest area decreased from about
328,666 ha to 312,204 ha, but other land types, such as tea plantations,
croplands, built-up areas, and waterbodies, increased from 2010 to
2015.

According to the official agricultural census data, tea plantations
area were 25,733 ha (Yang and Li, 2010) and 38,500 ha (Statistics,
2015) in 2010 and 2015, respectively, an increase of 49.61% in Men-
ghai County. Our SVM algorithm calculated that tea plantation area
was ∼27,817 ha and ∼37,152 ha in 2010 and 2015, respectively, an
increase of 33.56%. In comparison, our SVM-based estimates of total
tea plantation area were 108.10% and 96.50% of the area estimated by
official agricultural census data in 2010 and 2015, respectively
(Fig. 12). According to the official agricultural census, the total esti-
mated increase of tea plantation area between 2010 and 2015 was
12,767.6 ha (Li et al., 2014; Statistics, 2015), but our SVM algorithm
estimated an increase of ∼9335 ha.

Fig. 8. Intra-annual variation of EVI for five major land cover types.

Fig. 9. Intra-annual variation of LSWI for five major land cover types.

Fig. 10. Intra-annual variation of mNDWI for five major land cover types.
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4. Discussion

4.1. Algorithms for tea plantation mapping with PALSAR and Landsat
imagery

The algorithm developed in this study successfully classified tea
plantation cover in complex, tropical landscapes using PALSAR back-
scatter coefficients and time-series Landsat imagery. In the tropical and

sub-tropical area, frequent clouds and fog often impact the effective
observation of land cover in the visible spectrum, but PALSAR ob-
servations were not limited by clouds and fog. The combination of
PALSAR and Landsat images allowed us to distinguish tea plantations
from other vegetation types and non-vegetated lands (built-up areas
and water bodies). NDVI can be used to effectively distinguish between
vegetation and non-vegetation and eliminate the commission error of
forests on mountainous terrain with complex reflectance/backscatter

Table 4
List of variables used for support vector machine (SVM) classification.

Name of variables Bands name Description

HH B1 The backscattering coefficients of HH in decibel
HV B2 The backscattering coefficients of HV in decibel
HH-HV B3 The difference value (HH-HV)
HH/HV B4 The ratio value (HH/HV)
NDVI_Min B5 The min value at each pixel of NDVI
NDVI_Median B6 The median of all values at each pixel of NDVI
NDVI_Mean_cool and dry season B7 The mean of all values at each pixel of NDVI from November 1 to February 28
NDVI_Mean_hot and dry season B8 The mean of all values at each pixel of NDVI from March 1 to April 30
NDVI_Stdev_cool and dry season B9 The standard deviation of all values at each pixel of NDVI from November 1 to February 28
LSWI_Min B10 The min value at each pixel of LSWI
LSWI_Median B11 The median of all values at each pixel of LSWI
LSWI_Min_cool and dry season B12 The min of all values at each pixel of LSWI from November 1 to February 28
LSWI_Mean_hot and dry season B13 The mean of all values at each pixel of LSWI from March 1 to April 30
LSWI_Stdev_cool and dry season B14 The standard deviation of all values at each pixel of LSWI from November 1 to February 28
EVI_Median B15 The median of all values at each pixel of EVI
EVI_Min_cool and dry season B16 The min of all values at each pixel of EVI from November 1 to February 28
EVI_Mean_hot and dry season B17 The mean of all values at each pixel of EVI from March 1 to April 30
EVI_Stdev_cool and dry season B18 The standard deviation of all values at each pixel of EVI from November 1 to February 28
mNDWI_Max B19 The max of all values at each pixel of mNDWI
mNDWI_Median B20 The median of all values at each pixel of mNDWI
DEM B21 The 30-m resolution DEM

Fig. 11. (a) Map of tea plantation in 2015 and (b) map of change in tea plantation area from 2010 to 2015 at 30-m spatial resolution.
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environments (Qin et al., 2016a). Likewise, LSWI can be used effec-
tively to differentiate between evergreen and deciduous vegetation
based upon their phenological difference. mNDWI can be used to
identify open surface water body effectively (Zou et al., 2017). NDVI
and EVI are both sensitive to chlorophyll concentrations, but EVI is
more responsive to canopy structural variations, including leaf area
index (LAI), canopy type, plant physiognomy, and canopy architecture
(Huete et al., 2002). EVI also can eliminate the impact of soil back-
ground and reduce atmospheric noise. The terraced terrain of tea
plantations makes the surface of the tea ridge interval exposed, so EVI
could be used to distinguish tea plantations from other land cover types.
Although tea plantation is a perennial evergreen plant, it is difficult to
distinguish from forest and some perennial evergreen cropland. Fur-
thermore, we considered the unique, three-season climate of our study
area and calculated seasonal VI values. Finally, we provided 21 vari-
ables for SVM classification to create tea plantation maps, which
achieved accuracies similar to the Walker et al. (2010) study result.
Walker et al. (2010) used ALOS/PALSAR (24 variables) and Landsat (49
variables) to map 6 land cover types in the Brazilian Amazon, including
forest, agriculture, roads, sandbars, open water, and wetlands. The
overall accuracies reached 82.8% (PALSAR spectral and ancillary) and
88.2% (Landsat spectral and ancillary), respectively.

4.2. Image data for tea plantation mapping: Landsat vs PALSAR plus
Landsat

Time series optical remote sensing can identify and map a few land
cover types through phenology and texture information (Chen et al.,
2016; Kou et al., 2017), while most of the uncertainties are related to
the difficulties inherent to optical remote sensing in frequent cloud-
covered regions. Synthetic Aperture Radar (SAR) sensors are not af-
fected by cloud and sensitive to the geometry of the surface and ve-
getation canopy structure. Integrating SAR and optical data can obtain
the biophysical attributes of vegetation and the structure characteristics
of the surface. Many studies verified that combining PALSAR data and
optical data can get a higher accuracy than that of using optical data
only for land cover classification (Han et al., 2017; Pavanelli et al.,
2018). Comparing with the tea plantation maps generated by Landsat,
the combination of PALSAR and Landsat reached much higher accuracy
(Tables 5–8). The overall accuracies of tea plantation maps increased
from 86.6% to 97.7% and from 92.9% to 97.2% in 2010 and 2015,
respectively. The produce accuracy and user accuracy of tea plantation
maps also substantially improved in 2010 (Tables 5 and 7) and 2015
(Tables 6 and 8). Our findings indicated that tea plantation mapping

can benefit from the time series optical and PALSAR data integration.

4.3. Uncertainty analysis

Several factors might affect the accuracy of our tea plantation maps.
First, the definition of tea plantation is the key component in accurately
classifying tea plantations, and the definition can be different in dif-
ferent classification systems. In our study, we defined tea plantations as
lands dominated by tea plant trees with cover ≥50% and an average
height of 80 cm, but other researchers reported that tea plantation ca-
nopy cover is usually> 10% with a height lower than 5m (Zhang and
Liu, 2005). However, there is no standardized definition of tea plan-
tation. Thus, we developed our definition of tea plantation according to
an in-situ survey of the study area. Ground-based, in-situ samples
(Fig. 3(a)), showed that tea plant tree cover was larger than 50%.

Mature and well-managed tea plantations were easily distinguished
from other land-cover types by considering their color, intensity,
structure, terraced ridges, and ridge spacing using PALSAR and Landsat
images and the SVM algorithm. However, newly planted tea plantations
and young tea plantations before harvest age (tea tree’s age< 3–5
years) have small canopy coverage and could be omitted by our SVM
algorithm (Guo et al., 2006). Mismanaged or abandoned tea plantations
can suffer quickly from encroachment by other species, resulting in a
canopy cover and average height that falls outside our definition of tea
plantation. Secondly, although our data were corrected to account for
variances in topography in advance of mapping, impacts of topography

Table 5
Accuracy assessment of the 2010 tea plantation map generated by the SVM method.

Land types Producer accuracy/% User accuracy/% Commission/% Omission/% Overall accuracy/% Kappa Coefficient

Build-up 90 90 10.00 10.00 97.70 0.96
Forest 98.24 98.24 1.76 1.76
Tea plantations 87.50 83.58 16.42 12.50
Cropland 98.12 98.38 1.62 1.88
Water 100.00 100.00 0.00 0.00
Others 75.00 100.00 0.00 25.00

Table 6
Accuracy assessment of the 2015 tea plantation map generated by the SVM method.

Land types Producer accuracy/% User accuracy/% Commission/% Omission/% Overall accuracy/% Kappa Coefficient

Build-up 93.33 87.50 12.50 6.67 97.16 0.95
Forest 97.21 98.20 1.80 2.79
Tea plantations 90.83 91.67 8.33 9.17
Cropland 98.13 96.91 3.09 1.88
Water 100.00 100.00 0.00 0.00
Others 75.00 100.00 0.00 25.00

Fig. 12. Tea plantation area change from 2010 to 2015.
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on PALSAR data and Landsat images in our study area, which is 93.5%
mountainous, might still affect the results of our tea plantation mapping
algorithm (Matsushita et al., 2007). PALSAR data offers complementary
and supplementary data to sensors operating in the optical and thermal
bands. The backscatter value is sensitive to dielectric properties (soil
and vegetation internal properties) and geometric (surface roughness)
attributes of the imaged surface (Darmawan et al., 2015). Many en-
vironmental factors, such as atmospheric conditions and soil back-
ground, may produce errors and noise in the visible spectrum.

4.4. The implication of tea plantation expansion between 2010 and 2015

We analyzed tea plantation area change based on our tea plantation
maps and DEM from 2010 and 2015 in Menghai County, Yunnan
Province. Fig. 13 quantifies the expansion of tea plantation at different
elevations. Tea plantation area expansion originated mainly from
croplands and forests. Tea plantation was distributed at elevations
ranging from 1200m to 2400m, but the expansion of tea plantation
between 2010 and 2015mainly occurred between 1400m–1900m in
elevation. Tea plantation area expansion between 1200m and 2400m
were converted from forests, but croplands converted to tea plantation
occurred in areas less than 2100m in elevation. The expansion of tea
plantation was driven by the governmental regimes and increasing of
tea price. Ministry of Agriculture of the People’s Republic of China
released the “National key Tea Area Development Plan (from 2009 to
2015)” in 2009, which accelerate the expansion of tea plantation (Xiao
et al., 2017). World tea consumption exceeded production in
2009–2011 from the first on record and tea price escalated significantly
from 2006 to 2009, around 80% increased (Gunathilaka and Tularam,
2016). Our study found that tea plantation expansion resulted in de-
forestation in the study area. Other researchers reported that conver-
sion of tropical forest to tea plantations changed soil properties by more
frequently fertilized (Li et al., 2012b).

5. Conclusion

Although the tea plant has different growth characteristics than
evergreen forest and other crops (such as banana) in the tropical and
subtropical regions, it is difficult to identify tea plantations using only
the visible spectral bands of satellite images due to the spectral simi-
larity of these land cover types in the visible spectrum. Accurate esti-
mations of tea plantation area, spatial distribution, and expansion at the
landscape scale is fundamental to governmental planning, policy
making, and land management decisions. We proposed a novel

approach to map the spatial and temporal patterns of tea plantation by
integrating 25-m ALOS PALSAR and time-series 30-m Landsat imagery.
We used an image-based SVM approach to distinguish tea plantations
from other land-cover types. Our results indicated that the image-based
SVM approach can identify tea plantations reasonably well in 2010 and
2015. Between 2010 and 2015, tea plantation area increased dramati-
cally by 33.56%, cropland area increased by 2.62%, and forest cover
decreased by 5%. Tea plantation is defined as a special shrub forest
subtype of economic forest in the Chinese forest land classification
system (Administration, 2014). Thus, if tea plantation expansion re-
sulted in deforestation, it is difficult to investigate the change in forest
area by using only traditional statistics for forest area. We distinguished
tea plantation from forest and cropland, and we found that these two
land cover types were converted to tea plantation. Of the increased tea
plantation area between 2010 and 2015, 32.50% was previously forest
and 67.50% was previously cropland. The application of our approach
at larger scales still needs further validation. Therefore, developing a
regular monitoring scheme for the evaluation of the ecological and
environmental impacts of tea plantation expansion should be urgently
considered.
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