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Abstract: Accurate mapping of built-up land is essential for urbanization monitoring and ecosystem 

research. At present, remote sensing is one of the primary means used for real-time and accurate 

surveying and mapping of built-up land, due to the long time series and multi-information ad-

vantages of existing remote sensing images and the ability to obtain highly precise year-by-year 

built-up land maps. In this study, we obtained feature-enhanced data regarding built-up land from 

Landsat images and phenology-based algorithms and proposed a method that combines the use of 

the Google Earth Engine (GEE) and deep learning approaches. The Res-UNet++ structural model 

was improved for built-up land mapping in Guangdong from 1991 to 2020. Experiments show that 

overall accuracy of built-up land map in the study area in 2020 was 0.99, the kappa coefficient was 

0.96, user accuracy of built-up land was 0.98, and producer accuracy was 0.901. The trained model 

can be applied to other years with good results. The overall accuracy (OA) of the assessment results 

every five years was above 0.97, and the kappa coefficient was above 0.90. From 1991 to 2020, built-

up land in Guangdong has expanded significantly, the area of built-up land has increased by 71%, 

and the proportion of built-up land has increased by 3.91%. Our findings indicate that the combined 

approach of GEE and deep learning algorithms can be developed into a large-scale, long time-series 

of remote sensing classification techniques framework that can be useful for future land-use map-

ping research. 
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1. Introduction 

The term “built-up land” refers to locations in which people engage in multiple social 

and economic activities [1,2]. These locations make use of the land’s carrying capacity or 

building space and are not used for the main purpose of obtaining biological products. 

Built-up land consists primarily of residential space, roads, public facilities, and parks that 

may include vegetation and scenic facilities. The change in built-up land is a slow and 

long process, and may not be complete if we only look at the change in built-up land in 

one or two years. Long-term monitoring and mapping can more accurately reflect dy-

namic changes in built-up land over long periods of time and reveal the temporal and 

spatial laws governing these changes. Amid rapid economic development and the accel-

eration of urbanization, large amounts of crop land and forest are occupied by built-up 

land, leading to a sharp decline in biodiversity and further adverse impacts. In particular, 

expansion affects the water cycle system, altering surface runoff and increasing the risk 
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of waterlogging disasters [3,4], and aggravates the urban “heat island” phenomenon [5–

7], contributing to ecosystem deterioration [8–12]. As such, the rate of change and trends 

in built-up land can directly or indirectly reflect and be used to evaluate the degree of 

urbanization. The swift acquisition of accurate spatial distribution information of built-up 

land supports analysis of changing trends in built-up land in the process of urban and 

rural development. This is crucial for formulating ecological and environmental protec-

tion policies, rationally planning land resources, and ensuring people’s quality of life [13]. 

Thanks to recent rapid developments in remote sensing technology, big data with 

high spatial resolution and temporal resolution are accumulating continuously, and long 

time series remote sensing images have become indispensable for the timely and accurate 

monitoring of built-up land. Several previous studies have explored the possibilities of-

fered by remote sensing for identifying built-up land. These studies can be roughly di-

vided into two classes: spectral analysis and image classification.  

Spectral analysis can be simply understood as utilizing the spectral characteristics of 

remote sensing images to analyze and obtain specific information. Various built-up land 

indexes are available, including the Normalized Difference Built-up Index (NDBI) [14–

16], the Index-based Built-up Index (IBI) [2,16–18], the Combinational Built-up Index (CBI) 

[16,19], the Modified Built-up Index (MBI) [16,19,20], and the Normalized Urban Areas 

Composite Index (NUACI) [14]. These index methods were relatively popular in early and 

even current spectral analysis research [21]. They can strengthen image features through 

calculations, and are then usually combined with the threshold method for the purpose 

of making judgments. The development of high-resolution images has allowed scholars 

to obtain built-up land characteristics based on dense time series image data using time 

series spectral analysis. For example, the spectral differences between impervious and 

pervious surfaces were analyzed from Landsat time series data [22]; time-space rules and 

Landsat time series stacks were used to capture continuous impervious surface dynamics 

[2]; MODIS NDVI and Landsat NDVI were merged for crop classification using long 

short-term memory (LSTM) algorithm [23]; and some scholars performed segment fitting 

on 12-year time series data and successfully extracted built-up land by extracting trajec-

tory features [24]. In summary, spectral analysis can accomplish much using the spectral 

and temporal characteristic information provided by remote sensing images but cannot 

provide optimal accuracy for surveying and mapping long time series built-up land.  

In contrast with spectral analysis, image classification involves the use of image seg-

mentation technology to classify remote sensing images [25]. With the rapid development 

of image classification and segmentation technology, classification methods have evolved 

from decision tree classifiers and support vector machine (SVM) [18,26] methods to the 

more recent artificial neural network (ANN) [20,27,28] approach. Early research focused 

on simpler neural networks, such as random forests (RF) and back propagation (BP) neu-

ral networks. Zhang et al. [29] used multi-temporal synthesis and relative radiation nor-

malization methods to extract phenological information and then mapped the impervious 

surface of the Yangtze River Delta from 1984 to 2020 using the RF method. Wan et al. [30] 

proposed a method that combined BP neural networks and support vector data descrip-

tion to extracted impervious surfaces. As deep learning methods used in other fields, such 

as medicine and biology, have matured, they have found new applications in remote sens-

ing recognition research. Since 2018, deep learning has been used to identify built-up land. 

Tan et al. [31] designed a double-stream convolutional neural network that combines com-

plementary cues from high-resolution panchromatic and multispectral images for high-

resolution built-up area recognition. Compared with the most advanced technology avail-

able hitherto, Tan’s method has higher overall accuracy (OA) and superior generalization 

ability. Sun et al. [32] began from different data sources and proposed a three-dimensional 

convolutional neural network (3D-CNN) method for extracting impervious surfaces from 

WorldView-2 and airborne LiDAR datasets. To extract feature information more compre-

hensively, Zeng et al. [33] combined and optimized the Resnet and U-Net models to iden-

tify airport land. Pixel-level spatial and spectral information are typically used first, 
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followed by the use of texture and feature maps through a multi-scale convolution pro-

cess. This enhances the identification of impervious surfaces. Image classification methods 

can provide the year-by-year feature recognition required by national land monitoring 

authorities and other departments. The principle is simple, and the law of feature change 

can also be further analyzed. However, the data used in most studies were manually se-

lected first-phase images with superior quality over a single year. Further research is re-

quired to address the need for year-by-year data processing and assess how the time–

space spectral information provided by remote sensing images may be fully utilized to 

generate higher-precision built-up land maps.  

Several large-scale identification and research projects have focused on built-up land. 

For example, NUACI is a global 30-m urban land cover dataset from 1990 to 2010 pro-

duced using an algorithm based on Landsat images [14]. LUC is a 1-km land use cover 

dataset from 2015 in China based on multi-source remote sensing data, such as Landsat-8 

and GF-2, combined with data obtained from field surveys and human–computer inter-

action interpretation, with a comprehensive evaluation accuracy greater than 90% [34]. 

The Annual Global Land Cover (AGLC) is a global 30-m land cover dataset from 2000 to 

2015, based on one year of high-confidence land cover data; it used random forests to 

classify areas that change every two years, resulting in 15 consecutive years of land cover 

data [13]. Mainstream large-scale mapping methods are still based on pixel-based ap-

proaches, such as RF. Pixel-based methods are more efficient in terms of computing 

power; they are also highly sensitive to small objects and able to map in greater detail. 

However, due to the complexity of mixed pixels and ground objects in remote sensing 

images, the results of pixel-based methods typically include “salt and pepper” noise.  

To compensate for the above-mentioned shortcomings of existing research, we per-

formed an analysis based on the following assumptions. First, the spectral differences in 

the remote sensing images captured across the period of a year differ significantly, and 

the artificial selection of one of these images is not scientifically sound. Remote sensing 

image classification is used primarily to obtain information from spectral features for clas-

sification. Therefore, we propose beginning from the spectral characteristics of different 

land uses, and then integrating all available images from a given year, and synthesizing 

feature-enhanced images for that year. Furthermore, to capture the dynamic changes in 

built-up land in a long-term series, it is necessary to perform year-by-year built-up land 

mapping. Similarly, the corrected outlier classification of mapping results should be based 

on long time series of annual results. Finally, year-by-year large-scale built-up land map-

ping research will inevitably involve problems related to processing, feature selection and 

training, and prediction of large sets of data. On one hand, deep learning identifies image 

features through neural networks and automatically filters image features through labels. 

This can significantly save computational power and time, and to a certain extent, mini-

mize reliance on professional knowledge and experience. The Convolutional Neural Net-

work (CNN) approach involves learning and predicting based on pixel blocks, which can 

take into account the context information of pixels, avoiding the problem of “salt and pep-

per” noise. On the other hand, big data can be accessed and analyzed quickly and easily 

on the Google Earth Engine (GEE) platform, which is provided by Google for online vis-

ualization, calculation, analysis, and processing of large amounts of large-scale earth sci-

ence data (especially satellite data). GEE is supported by numerous parallel servers, so it 

has significant advantages in data sourcing and processing efficiency. 

In conjunction with what was discussed above, in this study all available Landsat 

time-series imagery data were integrated to synthesize yearly feature-enhanced data with 

a phenology-based algorithm. Then, we combined the advantages of deep learning and 

GEE to train a built-up land model that enables fast and accurate identification of built-

up land. Finally, we obtained and corrected the annual built-up map of Guangdong from 

1991 to 2020, and analyzed the spatial and temporal distribution of built-up land in 

Guangdong for 30 consecutive years. The main objective of this study was to generate a 

large-scale, long-term and accurate dataset of 30 m built-up land in Guangdong from 1991 
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to 2020 by combining time-series Landsat imagery, phenology-based algorithm, deep 

learning methods, and GEE. 

2. Material and Methods 

2.1. Study Area 

Guangdong is a provincial-level administrative region of the People’s Republic of 

China. According to the 2018 China Statistical Yearbook, Guangdong has an area of ap-

proximately 179,710 km2. Guangdong has been China’s most populous and largest eco-

nomic province since 1989. In tandem with its economic development, land use in Guang-

dong has also witnessed drastic changes as the area of built-up land continues to increase. 

Moreover, the types and the distribution characteristics of its built-up land vary across 

different regions, making it a particularly suitable candidate for the study of built-up land 

identification.  

As shown in Figure 1, Guangdong is divided into four sub-regions: West Guang-

dong, North Guangdong, East Guangdong, and the Pearl River Delta. Of these, the Pearl 

River Delta is Guangdong’s most prosperous region. It is also one of China’s three most 

densely populated and robust urban agglomerations.  

 

Figure 1. Study area. 

2.2. Data and Pre-Processing 

2.2.1. Landsat Imagery 

The data used in this study were obtained from GEE, and all data processing was 

implemented in GEE. We collected all available Landsat-4/5/7/8 surface reflectance (SR) 

data from 1991 to 2020. Table 1 shows the number of Landsat imagery used each year. 

Landsat-7 only used data from 1999 to 31 May 2003, due to the problematic presence of 

striping in the images, and data from 2012 (Landsat-8 has no available data from 2012). 

This dataset is the SR data from the Landsat 8 OLI/TIRS sensors, and had processed to the 

Level-1 Precision Terrain (L1TP) level. These data have been atmospherically corrected 

using Land Surface Reflectance Code (LaSRC, https://www.usgs.gov/media/files/landsat-

8-collection-2-level-2-science-product-guide, accessed on 24 March 2022) and includes a 

cloud, shadow, water and snow mask produced using C implementation of mask function 

(CFMasK) [35], as well as a per-pixel saturation mask. The quality of Landsat SR data is 

determined by the “pixel_qa” band (a pixel quality attribute generated by the CFMask). 
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To ensure high-quality observation data, cloud, cloud confidence, cirrus confidence, cloud 

shadow, snow/ice, and water were filtered by “pixel_qa” band (Figure 2). 

Table 1. Number of Landsat imagery used totally each year. 

Year Number Year Number Year Number Year Number Year Number 

1991 267 1997 271 2003 427 2009 335 2015 359 

1992 289 1998 281 2004 377 2010 210 2016 371 

1993 225 1999 368 2005 271 2011 195 2017 387 

1994 236 2000 603 2006 285 2012 202 2018 394 

1995 250 2001 585 2007 232 2013 273 2019 341 

1996 290 2002 530 2008 297 2014 372 2020 352 

 

  
(a) (b) 

  

(c) (d) 

 

(e) (f) 

Figure 2. Good-quality observation of time-series remote sensing image from 1991 to 2020 according 

to the latitude. (a–d) show the number of Landsat 4, 5, 7 and 8 each year for 30 years. (e) shows total 

numbers in all study areas. (f) shows the number of Guangdong in 2019 in the form of a map. 
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2.2.2. Vegetation Index 

Numerous studies have demonstrated that the Normalized Difference Vegetation In-

dex (NDVI) is useful in identifying built-up land [34,36,37]. Moreover, NDVI is highly 

sensitive to green vegetation, which typically surrounds built-up land. To better extract 

built-up land boundaries, the NDVI of all valid data was calculated from Landsat SR data 

(Equation (1)) [38]. 

NDVI =
NIR − RED

NIR + RED
 (1)

where,  

NIR = near infrared surface reflectance (851–879 nm) in Landsat imagery 

RED = red surface reflectance (636–673 nm) in Landsat imagery 

2.3. Algorithms for Identifying Time Series of Built-Up Land 

Figure 3 presents the workflow followed to map built-up land in Guangdong from 

1991 to 2020. Based on all high-quality observations of the time series data collected, we 

synthesized the annual feature-enhanced data by analyzing the phenological spectral fea-

tures of different land use types. Built-up land cover from 1991 to 2020 was predicted 

using deep learning techniques with ground truth data, and temporal segmentation was 

used to correct and generate 30-year spatiotemporal dynamics of the built-up land. Fol-

lowing accuracy assessing, built-up maps of Guangdong from 1991 to 2020 were pro-

duced. These methods are described in detail in the following sections.  

 

Figure 3. Workflow of mapping built-up land in Guangdong province from 1991 to 2020. 

2.3.1. Spectral Variability between Built-Up Land and Other Lands Based on Phenology 

Forest, grassland, and cropland are typically covered by crops or vegetation during 

the lush growth period of the year, and bare during non-growth periods. Therefore, the 

spectral values usually differ significantly in the time series remote sensing images from 

a single year. The growth period also differs, as crop land in particular may undergo sev-

eral growth periods. Compared with forest, grassland, and cropland, land covered by wa-

ter is relatively stable, but the water may be covered by algae, so small fluctuations may 

be observed. Data for built-up land use should be stable with no significant fluctuations 

across the one-year spectral curve. Based on this principle, it is not scientifically sound to 

select only one image from a given year [39].  
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To generate an annual effective characteristic data set of built-up land, we analyzed 

the time series spectral characteristics of different land use types. Figure 4 presents the 

time series spectral curves for different land use types. The NDVI of water is usually less 

than 0 (Figure 4b); the NDVI of forest, cropland, and grassland is usually higher, and con-

centrated at 0.3–0.8 (Figure 4c–e); and the NDVI of built-up land is typically 0.1–0.3 (Fig-

ure 4a), which is smaller than the values for forest, cropland, and grassland and larger 

than water, which can be effectively distinguished. At the same time, built-up land is usu-

ally surrounded by vegetation, and the spectral information of mixed pixels also increas-

ingly exhibits vegetation spectral characteristics [36]. In theory, therefore, NDVI can effec-

tively distinguish built-up land from other land use types.  
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Figure 4. Time−series spectral curves for different land-use types with 1 data every 10 days were 

synthesized using all available Landsat−7, 8 and Sentinel-2 remote sensing imagery. The abscissa of 

the curve is the number of days in a year, and the ordinate is the reflectance of SR. (a–e) represent 

the time−series spectral curves of built-up land, crop land, forest, grass and water, respectively. 

2.3.2. Annual Composite Feature Enhancement Images 

To enhance the data characteristics and improve the model training efficiency, we 

synthesized the valid data for each year. All images were composited in a collection, using 

a quality band as a per-pixel ordering function. Each pixel used the maximum value of 

NDVI as an index to compose the NDVI_MAX image per year [37] (Figure 5). In the an-

nual NDVI_MAX images, blue (452–512 nm), green (533–590 nm), red (636–673 nm), NIR 

(851–879 nm), and SWIR-1 (1566–1651 nm) NDVI bands were selected as training bands, 

and some sample enhancement operations, such as random flip and rotation, were com-

pleted.  

 

Figure 5. The feature enhancement data (NDVI_MAX) of the study area in 2019. (a) shows the Day 

of Year (DOY) each pixel of NDVI_MAX; (b) shows false color image of NDVI_MAX. 

2.3.3. Deep Learning for Identifying Built-Up Land Per Year 

Res-UNet++ Model for Identifying Built-Up Land 

U-Net is a typical encoder–decoder structure network [40]. This model architecture 

can achieve good accuracy by training a smaller number of data samples, thereby reduc-

ing training time and resources. However, the feature maps obtained by the encoder in 

the traditional U-Net structure are directly superimposed with the decoder through skip 

connections. This will cause the network to lose a lot of information in the feature fusion 

part, affecting the mapping accuracy. Therefore, a dense jump connection is added be-

tween the encoder and the decoder—namely, U-Net++ [41]. This is considered an exten-

sion of U-Net, which can effectively reduce the semantic gap between low-level infor-

mation and high-level information [42,43]. To address the problem of gradient disappear-

ance or explosion during the U-Net structure training process, we introduced the residual 

structure design of Resnet to optimize our model [44], which became the Res-UNet++ 

model. 

Figure 6a presents the structure of the Res-UNet++ model. Resnet18 residual struc-

ture was used as the backbone of Res-UNet++, as shown in Figure 6b. Each basic-block 

contained two 3 × 3 convolutions. Batch normalization layers were added to speed up the 

network learning, and maximum pooling was added to downsampling. Through this 

model structure, the features of each layer from shallow to deep in the encoder were 
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connected and fused with the deep features in the decoder. The original image size of the 

feature was then restored by upsampling step by step. 

 

Figure 6. The overall flowchart of the proposed Res-UNet++ model. (a) the main flowchart of Res-

UNet++; (b) the flowchart of Resnet18 residual basic-block (bn-batch normalization layer, relu-the 

activation function, Conv-convolution layer.). 

Deeplab-v3 and FCN Models for Comparison 

In the field of semantic segmentation, FCN [45] is a typical model, and Deeplab-v3 

[46] has been applied very successfully in recent years. In this study, FCN and Deeplab-

v3 were adopted for comparison with our Res-UNet++ and improved according to the 

characteristics of built-up land in the study area. 

Figure 7a presents the architecture of Deeplab-v3. Xception was used as the backbone 

and Deeplab-v3 structure as the framework. Each encoder block was composed of 3 × 3 

depthwise convolution, 1 × 1 pointwise convolution, batch normalization, and maximum 

pooling. Five encoder blocks were designed in total. In particular, atrous spatial pyramid 

pooling was added to the final step of downsampling, which is a module unique to 

Deeplab-v3. We applied atrous convolution to the cascade module to realize Atrous Spa-

tial Pyramid Pooling (ASPP) [47]. On one hand, atrous convolution can address the prob-

lem of information loss caused by pooling, and the receptive field was increased without 

increasing the number of parameters to ensure that information was not lost. On the other 

hand, increasing multi-scale parallelism can resolve the problem of simultaneous segmen-

tation of differently sized objects. 

Figure 7b presents the architecture of FCN. Vgg16 was used as the backbone, and 

convolution transpose was used for upsampling. Each block was composed of two con-

volutions and one pooling. Five blocks were designed in total. 



Remote Sens. 2022, 14, 3562 10 of 23 
 

 

 

Figure 7. The structure of the compared model. (a) the structure of Deeplab-v3; (b) the structure of 

FCN. 

Parameters and Design of Deep Learning Training 

Due to the vastness of the research area, the production of label data based on the 

entire research area would be an enormous project. Therefore, the entire study area was 

divided using a 60 × 60-km grid. Two grids were selected as training data patches in each 

sub-region. The selection was based on the larger built-up land area and more built-up 

land types in the sub-regions, and the adjacent grid should be avoided as far as possible. 

To test the model’s generalization, two grids were selected as testing data patches in North 

Guangdong and Pearl River Delta (Figure 8). 

Data from 2019 were used as training and validation data, and all ground truth data 

were produced through manual visual interpretation. The ground truth data were based 

on the China Multi-period Land Use Land Cover Change Remote Sensing Monitoring Da-

taset (CNLUCC, from the Resource and Environmental Science Data Registration and 

Publishing System), which was verified by field inspection and manually revised. 

The learning rate adopted a piecewise constant decay strategy. The initial learning 

rate was 1 × 10-³, and the minimum learning rate is limited to 1 × 10-5. Learning rate was 

reduced by 5% when the accuracy difference between the two classes was very small. The 

model’s loss function set the sum of improved balanced binary cross-entropy loss and the 

dice coefficient loss [42]. The Adam optimization algorithm was used. 

 

Figure 8. Spatial distribution of training and testing patches. 
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2.3.4. Correction of Time Series Built-Up Land by Temporal Segmentation Algorithm 

Due to the complexity of the built-up land system, some built-up land is temporarily 

occupied, and some non-built-up land is temporarily occupied for several years. To adapt 

to the long-term dynamic changes of built-up land, we attempted to correct the mapping 

results of built-up land year-by-year from the perspective of a longer time series. 

We adopted LandTrendr (Landsat-based detection of Trends in Disturbance and Re-

covery) [48] to fit the long time series of built-up land probabilities to correct the misclas-

sification of individual years. Figure 9 presents the pixel-based temporal smoothing pro-

cedure. The spectral time series of pixels were modeled as a linear segment sequence 

through temporal segmentation. Next, spikes with similar spectral values before and after 

the de-spiking algorithm were removed. Subsequently, the residual-error criterion was 

used to identify potential vertices, which had large deviations from the fitted regression 

line. We performed simplification and refitting based on vertices and simplifying models, 

and the final output of the segmentation algorithm emerged from the best model, which 

was determined using the p-value for the F-statistic. 

 

Figure 9. The procedure of pixel−based temporal smoothing. 

2.4. Accuracy Assessment and Area Estimation 

Validation data were selected and the area accuracy estimated following the “good 

practice” suggested by Olofsson [49]. 

Taking a Landsat pixel (30 × 30 m) as the evaluation unit, the stratified random sam-

pling method was used to select the validation data based on four sub-regions. The sample 

size was based on the expected OA of the map and the assumed error matrix to obtain the 

approximate range, and the validation process was repeated to determine the best sample 

size [49]. We calculated the kappa coefficient [50] based on the confusion matrix and over-

all accuracy (OA), producer accuracy (PA), and user accuracy (UA) based on the error 
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matrix. To ensure that the accuracy and area estimates were unbiased and consistent, we 

also estimated each standard deviation and confidence interval at 95%. 

Since the research area is large and the sample weight is sufficient, the study area 

was stratified by sub-regions and map classes. The proportion of built-up land and non-

built-up land was significantly unbalanced, so a combination of proportional and optimal 

distribution was adopted in the sample size allocation. After multiple experiments, 30 

sample points for built-up land and 120 sample points for non-built-up land were ob-

tained in each sub-region (Figure 10). According to the Landsat series imagery and the 

high spatial resolution Google Earth TM image, these samples were visually interpreted 

as reference data for accuracy assessment and area estimation. Assessment was completed 

every five years from 1991 to 2020. 

 

Figure 10. Spatial distribution of validation sample points. 

3. Results 

3.1. Model Comparison Experiment Result 

We used the improved Res-UNet++, Deeplab-v3, and FCN models to predict the 

built-up land map of Guangdong Province in 2020 and used the validation sample points 

for validation. Table 2 presents the comparison of each model’s accuracy. Res-UNet++ 

clearly yielded the highest accuracies: OA was 0.99, kappa was 0.96 in 2020, and UA and 

PA were also the highest among the three models. Among them, the PA of the BL in Res-

UNet++ was considerably higher than that of the other two models. Accuracies of 

Deeplab-v3 and FCN were comparable: FCN was slightly higher on kappa and OA (OA 

was 0.95, kappa was 0.82 in 2020). 

Figure 11 presents detailed comparisons of the mapping results of the three models. 

The main problem of Deeplab-v3 and FCN was the serious omission error of built-up land 

(PA of BL on Deeplab-v3 was 0.53, PA of BL on FCN was 0.55), which was mainly reflected 

in the rough identification of the built-up land boundary, and more omission errors could 

be expected in small areas of built-up land. As with the precision results, Res-UNet++ 

yielded the best results: it provided the best results for the identification effect of the built-

up land boundary, and also provided the best results in mapping small areas of built-up 

land and the capture and judgment of spatial context information; in other words, it 

yielded the best semantic segmentation effects. 

Table 3 summarizes the accuracy results of sub-regions according to the results of 

Res-UNet++, which was convenient for further analysis and comparison of regions in 
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Guangdong. In general, the accuracies of each of the four sub-regions were relatively sim-

ilar. The accuracy indicators of WG, NG, and PRD were almost identical, and the OA of 

EG was relatively low. The main reason for this was that the PA of built-up land was low, 

so omission errors were present, and from the accuracies of four sub-regions, the PA of 

built-up land was also lower than other accuracy values. 

Table 2. Accuracy assessment of built-up land maps based on Res-UNet++, Deeplab-v3 and FCN 

model in 2020 (BL-Built-up land, N-BL-Non-Built-up land). 

Model OA Kappa 
UA PA 

N-BL BL N-BL BL 

Res-UNet++ 0.99 0.96 0.99 0.97 1.00 0.83 

Deeplab-v3 0.94 0.78 0.93 0.97 1.00 0.53 

FCN 0.95 0.82 0.95 0.93 1.00 0.55 

Table 3. Error matrix with cell entries expressed in terms of proportion of area and accuracies based 

on Res-UNet++ in 2020. The vertical axis represents the truth, and the horizontal axis represents the 

results of mapping, which are divided into four sub-regions for statistics (WG–West Guangdong, 

NG–North Guangdong, EG–East Guangdong, PRD–Pearl River Delta). 

Sub-Regions  
 Reference  

 N-BL BL Total UA 

WG 
Map 

N-BL 0.94  0.01  0.95 0.99 

BL 0.00 0.05  0.05  0.97 

Total 0.94 0.06 1.00   

 PA 1.00 0.86  OA = 0.99 

NG 
Map 

N-BL 0.94 0.01 0.95  0.99 

BL 0.00 0.05 0.05  0.97 

Total 0.94 0.06  1.00   

 PA 1.00 0.86   OA = 0.99 

EG 
Map 

N-BL 0.93 0.02 0.95 0.98 

BL 0.00 0.05 0.05 1.00 

Total 0.93 0.067 1.00  

 PA 1.00 0.76  OA = 0.98 

PRD 
Map 

N-BL 0.94 0.01 0.95 0.99 

BL 0.00 0.05 0.05 0.97 

Total 0.94  0.06 1.00  

 PA 1.00  0.86  OA = 0.99 
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Figure 11. Examples of built-up land produced by Res-UNet++, Deeplab-v3 and FCN in 2020. 

3.2. Assessment of Built-Up Land Maps from 1991 to 2020 

The built-up land mapping model was trained using the 2019 training patches. Based 

on this model, we predicted the built-up land map for each year from 1991 to 2020. The 

built-up land maps were displayed every five years, as shown in Figure 12. Table 4 lists 

the accuracy assessment, area estimation, and 95% confidence interval of area. 

From the accuracy assessment in Table 4, we can see that OA peaked at 0.99 (2010) 

with a lowest value of 0.98 (2005); the kappa value peaked at 0.96 (2020) and had a lowest 

value of 0.94 (2010). Overall, the accuracies in 1995 and 2005 were lower than those in 

other years (OA was 0.98 and kappa was 0.90 in 1995; OA was 0.98 and kappa was 0.91 in 

2005), mainly due to UA (0.93 in 1995; 0.94 in 2005) and PA (0.55 in 1995; 0.66 in 2005) in 

the built-up land class; 2020 had the highest accuracies (0.99 for OA and 0.96 for kappa). 

From the spatial distribution of the built-up land maps in Figure 12 and the estimated 

built-up land area in Table 4, it is clear that there was an obvious phenomenon of built-up 

land expansion centered on towns and cities. Overall, the area of built-up land increased 

from 4.98(±0.94) × 103 km2 in 1995 to 10.65(±1.56) × 103 km2 in 2020. Among these, the great-

est increase occurred between 2000 and 2005 (an increase of 1.56 × 103 km2). Figure 12b,c 

shows that the most obvious built-up land expansion occurred in the PRD and EG. The 

second most obvious expansion was between 2015 and 2020 (an increase of 1.48 × 103 km2), 

with an obvious expansion of built-up land at the village and town scale. The expansion 

of urban built-up land in the PRD region was also prominent. The smallest increase oc-

curred between 1995 and 2000 (an increase of 390 km2), followed by between 2005 and 

2010 (an increase of 940 km2). 
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Table 4. Accuracies assessment, area estimation and its 95% confidence interval in Guangdong in 

1995, 2000, 2005, 2010, 2015 and 2020. 

Year OA Kappa 
UA PA 

Area (95% CI) (×103 km2) 
BL N-BL BL N-BL 

1995 0.98 0.90 0.93 0.99 0.55 1.00 4.98(±0.94) 

2000 0.99 0.92 0.94 0.99 0.63 1.00 5.37(±1.76) 

2005 0.98 0.91 0.94 0.98 0.66 1.00 6.93(±1.02) 

2010 0.99 0.94 0.94 0.99 0.85 1.00 7.87(±0.71) 

2015 0.98 0.93 0.97 0.98 0.73 1.00 9.17(±1.90) 

2020 0.99 0.96 0.97 0.99 0.83 1.00 10.65(±1.56) 
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Figure 12. Annual built-up land maps of Guangdong, China in 1995, 2000, 2005, 2010, 2015, 2020. 

3.3. Spatial-Temporal Changes of Built-Up Land in Guangdong 

We counted the built-up land area mapped each year, as shown in Figure 13. Figure 

14 presents the spatial distribution of built-up land expansion in Guangdong from 1991 

to 2020. As shown in Figure 13, the built-up land did not increase every year: for example, 

it decreased by 60 km2 in 2012 and by 110 km2 in 2018, but on the whole, the built-up land 

in Guangdong expanded significantly, increasing from 2.64×103 km2 in 1991 to 9.12×103 

km2 in 2020. The greatest expansion was 960 km2 in 2019, followed by 540 km2 in 1993 and 

2006. Over a 30-year period, the built-up land increased by 71%. The proportion of built-

up land in Guangdong has increased from 1.68% in 1991 to 5.59% in 2020–an increase of 

3.91%. 

From the perspective of regional spatial distribution, PRD had the largest area of 

built-up land and the fastest increase; WG had the smallest area and the slowest increase. 

PRD’s increase was concentrated in the Guangzhou-Dongguan-Shenzhen-Foshan urban 

agglomeration and was mainly due to the outward expansion of urban built-up land, 

which expanded faster in 2005 and 2020 (Figure 14e). The built-up land in EG was con-

centrated in the Chaoshan area (Shantou-Jieyang-Chaozhou-Shanwei). It was mainly ur-

ban built-up land that was expanding, with faster expansion rates in 2000 and 2005 (Figure 

14d). The built-up land in NG was relatively scattered. The expansion mainly affected 

town built-up land, with faster expansion rates in 1995 and 2020 (Figure 14b). The built-

up land in WG was relatively scattered and located mainly in villages and towns; it ex-

panded most rapidly in 2020 (Figure 14c). 

 

Figure 13. Built-up land area and its standard error statistics in annual classification maps. 
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Figure 14. Built-up land expansion in Guangdong from 1991 to 2020. 

4. Discussion 

4.1. Algorithms for Mapping Annual Built-Up Land Maps 

In early built-up land mapping research, it was common to artificially select the best 

quality scene data for mosaicking [16,36] and calculate the indexes [36,51,52]. To maximize 

the advantages of existing time series images and highlight the spectral characteristics of 

built-up land, we synthesized the annual pixel-based NDVI maximum data as feature-

enhanced data using all available time series data based on a phenology-based algorithm. 

The mapping results also verified that the NDVI_MAX data can reflect and highlight the 

characteristics of built-up land to a certain extent and can be used as basic data for built-

up land mapping. 

Res-UNet++, Deeplab-v3, and FCN structures were used in this study (Section 2.3.3), 

and the improved Res-UNet++ model was the best among these three models. Deeplab-

v3 and the FCN structural model that we designed were not sufficient to extract built-up 

land details with a spatial resolution of 30 m, but the Res-UNet++ structural model can 

yield good results. These findings are sufficient to verify that the Res-UNet++ model we 

designed can effectively extract built-up land from large-scale 30-m spatial resolution re-

mote sensing images. Moreover, the training rate of a built-up land mapping model in 

Guangdong was 1.80 × 103 km2/s, enabling it to achieve good results and be applied to 

long-term series mapping. Therefore, we can also conclude that the deep learning method 

can efficiently identify built-up land in large-scale remote sensing images. 

In earlier attempts at built-up land mapping, bare land, sandy land, and mixed pixels 

were commonly confused with built-up land [15,22,37]. In our built-up land maps, we 

also counted a matrix showing the specific situations of all commission errors in the built-

up land map from 2020, as detailed in Table 5, and Figure 15 presents a detailed map of 

all misclassifications in 2020. We can see that three of the 120 built-up land validation 

points were misclassified (Figure 15B): the actual land uses of these three points are bare 

land, mixed pixels, and cropland. However, the level of commission error is still accepta-

ble. In particular, our method had no commission error for sand, and the commission er-

ror for crop land was actually rare. The more serious commission error was the case in 

which bare land was classified as built-up land. Some omission errors also emerged in our 
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mapping results (Figure 15A). This phenomenon was more prominent on some small ar-

eas of built-up land or branch roads. Since our method was implemented based on pixel 

blocks (such as 3×3 pixel blocks), some details could not be captured. Therefore, the built-

up land area counted by our mapping results should be smaller than the actual area. These 

shortcomings may be addressed in future research. 

Finally, we used the LandTrendr algorithm (Section 2.3.4) to re-fit the time series as 

post-processing. The results demonstrated that this method is suitable for post-processing 

of time series mapping, which can not only remove some simple errors but can also handle 

some complex situations. For example, due to the mixed pixels, the identification result of 

one pixel for three consecutive years was built-up land—non-built-up land—built-up 

land. LandTrendr can observe and judge results from longer time series. Some problems 

occurred with data due to cloud occlusion, and a small portion of water was mapped as 

built-up land over several years. These classifications will be reprocessed as built-up land. 

Temporal filtering improved the accuracy of the results. 

Table 5. Statistical matrix of land use for all commission errors of built-up land in Guangdong in 

2020. Among 120 BL validation sample points in Guangdong, 3 N-BL were mapped as BL, and the 

actual land types were counted. 

 Regions 

Reference 

BL 
N-BL 

Bare Land Sand Mixed Pixel Crop Land 

Mapped as BL 

WG 30 0 0 0 0 

NG 29 1 0 0 0 

EG 29 0 0 1 0 

PRD 29 0 0 0 1 

Total 117 1 0 1 1 

 

Figure 15. Examples of classification errors in the mapping of built-up land in Guangdong in 2020. 

(A) Examples of omission errors; (B) all commission errors in 120 built-up land validation points. 

4.2. Comparison with Different Datasets 

To better reflect the quality of mapping data, the built-up land identification results 

in 2015 (DL-based_2015) were compared with NUACI_2015 [14], LUC_2015 [34], and 

AGLC_2015 [53]. Figure 16 compares four regions: the selected cities are relatively devel-

oped large cities or megacities, so the built-up land was concentrated and large. Overall, 

the spatial distribution of built-up land presented by the four data products was relatively 

consistent. The built-up land distribution of PRD was highly concentrated and contigu-

ous, while the built-up land of WG had the spatial characteristics of scattered small areas. 
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Specifically, NUACI_2015, LUC_2015, and AGLC_2015 were pixel-based data prod-

ucts and were thus highly sensitive to the identification of tiny features. However, because 

the identification of NUACI_2015 was urban land, the identification of rural built-up land 

was lacking compared with other data, and the identification of built-up land should be 

the lowest. LUC_2015 was able to identify built-up land based on historical land use vec-

tor data and the human–computer interaction interpretation method, so the spatial distri-

bution of the identified built-up land was relatively accurate, but the boundary was rela-

tively rough. AGLC_2015 was highly sensitive to the identification of small roads and 

small areas of built-up land, and the identification was highly detailed. In contrast with 

the impervious surface identified by AGLC_2015, the data used in this study (DL-

based_2015) identified built-up land. Due to the different definitions of identification ob-

jects, DL-based_2015 can identify areas such as urban wetlands and urban green spaces 

as built-up land, but impervious surfaces are not allowed. We also adopted the CNN 

method to realize identification based on pixel blocks. Therefore, our method focuses 

more on the extraction of spatial context information, with the result that the built-up land 

mapping was more comprehensive. 

In sum, the data products obtained using different methods have different character-

istics and different applications. In future research, appropriate methods can be selected 

according to different needs. 

 

Figure 16. Comparison of built-up land mapping examples of three important data products in four 

sub-regions in 2015. DL-based_2015 is the data of this study, which identified built-up land; 

NUACI_2015 is the product of the global 30 m urban land; LUC_2015 is the product of the 1 km 

land use (built-up land) in China; AGLC_2015 is the product of the global 30 m land cover (imper-

vious surface). 

4.3. Advantages of Combining GEE and Deep Learning Methods 

On one hand, GEE offers considerable advantages for the acquisition and processing 

of large amounts of data. Large amounts of free, high-quality data with different spatial 

and temporal resolutions are available via the GEE platform, which allowed us to directly 

acquire and process the data in parallel on GEE. In fact, it took only about 25 min to 
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synthesize 30 years of annual NDVI_MAX data in Guangdong Province, which greatly 

reduced time and labor costs. Additionally, the algorithm of temporal smoothing had also 

been integrated on the GEE platform, which was convenient and fast to use. Therefore, 

batch data processing of large data volumes can be easily implemented using GEE. 

On the other hand, deep learning has significant advantages in terms of data feature 

selection and feature learning. Deep learning simulates human brain neurons through 

complex neural networks to recognize and learn data features. In particular, CNNs are 

widely used in remote sensing image classification [20,31,33]. The relationship between 

time, space, and spectrum can be automatically discovered through convolution. This con-

siderably reduces the manual selection features in the identification of built-up land, mak-

ing it more intelligent and automated. 

We combined GEE and deep learning methods: we used the cloud to process data on 

GEE and used GEE data for deep learning training, and the trained model could also be 

directly utilized and predicted on GEE, saving space, memory, and time. Real-time map 

display can also be performed on GEE, and the model’s shortcomings can be found over 

time. GEE has led to a new era of cloud operation, and the combination of GEE and deep 

learning will likely become the main method used in remote sensing mapping research. 

4.4. Implications and Future Work 

Mastering the spatial distribution of the temporal and spatial changes of built-up 

land over a period of 30 consecutive years helps support land planning and dynamic man-

agement of land resources. It is a necessary prerequisite to ensure the scientific implemen-

tation of spatial planning [1]. The phenology-based algorithm based on time series remote 

sensing images obtains characteristic image data by selecting unique spectral or pheno-

logical features, which can be applied to other land use classifications and even remote 

sensing interpretation work. The combination of this algorithm, GEE, and deep learning 

methods has developed into a large-scale, long-term series of remote sensing classification 

technology framework that will be useful for future land use mapping research. 

In future research, we will apply the algorithm generalization to the built-up land 

mapping of the entire country as well as on a global scale in a longer time series. Theoret-

ically, the algorithm of this study can be directly applied and implemented. However, the 

edge detection effect and detail effect of deep learning convolutional neural networks 

need to be optimized. 

5. Conclusions 

We proposed a method combining phenology-based algorithm, GEE, and deep learn-

ing to map annual built-up land from medium-resolution remote sensing images. This 

method used 30-m spatial resolution time series remote sensing images to generate pixel-

based annual NDVI maximum images as feature enhancement data on GEE. Taking 

China’s Guangdong Province as the study area, the Res-UNet++ model with the U-Net++ 

structure as the backbone and Resnet18 as the framework was largely improved. Tem-

poral segmentation was performed with the time series data of built-up land identification 

results. The accuracy of built-up land mapping was improved in various aspects, and we 

were able to map built-up land in Guangdong from 1991 to 2020. The results of our exper-

iments indicate that our algorithm can identify built-up land relatively broadly and com-

prehensively, but the recognition effect needs to be improved in small area of built-up 

land. At the same time, the combination of the phenology-based algorithm, GEE, and deep 

learning offers significant advantages in data processing, feature learning, and model pre-

diction efficiency and can be applied to long-term, large-scale remote sensing rapid iden-

tification research. 
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