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a b s t r a c t

With more and more crowdsourcing geo-tagged field photos available online, they are becoming a
potentially valuable source of information for environmental studies. However, the labelling and
recognition of these photos are time-consuming. To utilise such information, a land cover type recog-
nition model for field photos was proposed based on the deep learning technique. This model combines a
pre-trained convolutional neural network (CNN) as the image feature extractor and the multinomial
logistic regression model as the feature classifier. The pre-trained CNN model Inception-v3 was used in
this study. The labelled field photos from the Global Geo-Referenced Field Photo Library (http://eomf.ou.
edu/photos) were chosen for model training and validation. The results indicated that our recognition
model achieved an acceptable accuracy (48.40% for top-1 prediction and 76.24% for top-3 prediction) of
land cover classification. With accurate self-assessment of confidence, the model can be applied to
classify numerous online geo-tagged field photos for environmental information extraction.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Global land cover mapping is a fundamental method to monitor
and evaluate global changes for environmental research and policy
making. Remote sensing based classification is considered as the
most efficient way for land cover mapping, but it always requires
ground referencing data for training (calibration) and validation.
Field survey is the general approach to acquiring the ground
referencing data. During field surveys, photographs are often used
to record detailed information of particular types of land cover at
specific locations. Information provided by these photos can be
used to help classify and validate land cover maps derived from
analyses of aerial or satellite imagery. Lots of efforts have been
made to archive these field photos. For example, from 1999 to 2011,
the United States Geological Survey has conducted a project named
“Land Cover Trends” (Gallant et al., 2004). During the project,
13,000 field photos were collected with ecoregion labels, as a
nation-wide, geo-referenced dataset for land cover change map-
ping and as training or test site data for remote sensing image
classification (Soulard and Sleeter, 2012).

However, field photo collecting by experts at a large scale is
always labour-intensive and time-consuming. The crowd-sourced
field photos have become a useful source employed by re-
searchers. Since 2011, the University of Oklahoma has set up a
Global Geo-Referenced Field Photo Library (Xiao et al., 2011), and
also released the mobile app “Field Photo” (freely available in
Google Play store and Apple Store for public use) to collect geo-
referenced field photos from other researchers; and the library
nowcontains more than 150,000 field photos (in public mode) with
manually labelled land cover types. Furthermore, in 2013, the Geo-
Wiki (Fritz et al., 2012) project released its mobile app “Geo-Wiki
Pictures” which enables the public to share landscape photographs
with detailed land cover types and other environmental informa-
tion. This platform has accumulated more than 17,800 pictures so
far.

These pictures can be used for validation of land cover maps at
local to global scales (Fritz et al., 2012; Dong et al., 2013). However,
with the aid of non-professional volunteers, crowdsourced field
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photos are sometimes misclassified with low accuracy. Average
producer's accuracy of volunteers ranges from 52% to 62% (Foody
et al., 2013). The experiment by Sparks et al., (2015) showed that
the overall accuracy of volunteer-based Earth observation is around
70%, which is comparable to the result of GEO-Wiki. The accuracy of
crowdsourced photo interpretation is becoming a bottleneck for its
development.

Additionally, the volume of unlabelled online photos has been
increasing at a rapid speed. In 2015, Yahoo released the YFCC
(Yahoo Flickr Creative Commons) dataset (Thomee et al., 2015)
containing 100 million online photos. Panoramio (http://www.
panoramio.com/) from Google has also collected countless photos
of the world, which remain to be utilised. However, the processing
speed of public participated photo recognition is limited by the
number of volunteers. Alternative efficient techniques should be
developed.

With the fast development of deep learning technology, it be-
comes much more likely to make artificial intelligence to aid field
work and help with the interpretation of ground referencing data
for land cover types. In the image recognition field of deep learning,
convolutional neural network (CNN) (Fukushima, 1980) is
becoming the most promising algorithm, which incorporates con-
volutional and max-pooling layers into traditional neural networks
for image feature extraction. It has already demonstrated satisfac-
tory results for digit number recognition (LeCun et al., 1998), face
detection (Garcia and Delakis, 2002; Osadchy et al., 2007; Strigl
et al., 2010), pedestrian detection (Sermanet et al., 2013) and ob-
ject detection (Long et al., 2015). However, these technologies have
not been used specifically for the identification of land cover types.
Therefore, the exploration of the state-of-the-art deep learning
technology on photo recognition for land cover classification is
needed to promote the automatic generation of the training and
validation samples for large scale land cover mapping.

In this study, the classification model is built and tested for land
cover type recognition by using the field photos from the global
geo-referenced field photo library (http://eomf.ou.edu/photos),
based on the CNN. Manually tagged pictures of land cover are used
for model training and validation. The model performance and
credibility are also assessed.

2. Methodology

2.1. Transfer learning

Training a complex neural network from scratch is always very
slow on a large training set. Thus, transfer learning was proposed to
apply a pre-trained neural network to another related problem
(Caruana, 1995; Bengio et al., 2011; Bengio, 2012; Donahue et al.,
2013). The idea of transfer learning is based on the fact that the
knowledge learned from one task could be applied to solve other
similar problems (Pan and Yang, 2010). In this way, the researchers
could save much time for model training. A pre-trained neural
network will include both its model structure and the network
weights trained with large datasets. The pre-trained CNN models
can always capture important features from common photos. Thus,
they can be widely used for different applications.

There are mainly two kinds of strategies to take advantage of
pre-trainedmodels: feature extraction and fine-tuning. Fine-tuning
means continuing training the pre-trained CNN model with
another new dataset, according to the task of interest. This process
will adjust the network weights of the pre-trained model to fit its
outputs as close to new labels as possible, which has been proven to
be effective by Yosinski et al., (2014). The benefit of fine-tuning is
less time consuming because the training starts from pre-trained
models. This technique has already been used for image style
recognition (Karayev et al., 2013).
Unlike the fine-tune, feature extraction works by removing the

last layer of a CNN model (output layer) and treating the output
data of the second last layer as extracted features (also called CNN
codes), which are always high dimensional vectors and implicitly
represent characteristics of input images. The extracted features
then can be analysed by other classifying models, such as logistic
regression, multinomial logistic regression or support vector ma-
chine. In feature extraction, the pre-trained CNN model acts as the
image feature extractor in the whole workflow. This framework has
also shown competitive performance compared with other so-
phisticated models (Razavian et al., 2014).

Feature extraction is suitable when the research dataset is not
similar to the original training dataset of the pre-trained CNN
model in terms of sample size or sample content when it may take
too much time to fine-tuning a CNN model. In this study, the
Inception-v3 model was pre-trained by the ImageNet dataset
(Russakovsky et al., 2015), which contains more than 10,000,000
labelled images depicting over 10,000 object categories. However,
the Global Geo-referenced Field Photo Library has only nearly
30,000 training samples for landscape classification, which may
cause overfitting if the CNNmodel is fine-tuned until the first layer.
Thus feature extraction was chosen in this research.

The overall model framework for our study is shown in Fig. 1.
The pre-trained CNN model Inception-v3 from Google (Szegedy
et al., 2015) was chosen, because of its excellent performance on
image recognition. The Inception-v3 model reached a top-5 error
rate of 3.46%, which is even better than the error rate 5.1% of human
(Karpathy, 2016) at the same image recognition challenge. By
removing the last output layer of the pre-trained Inception-v3
model, the image feature extractor was then acquired with the
output of 2048 CNN codes (image features). The CNN codes were
then classified by aweightedmultinomial logistic regression model
for land cover type recognition.
2.2. Weighted multinomial logistic regression

In neural networks, multinomial logistic regression (Arbib,
2003) is the most widely used classification model as the last
layer of a network, because it is straightforward and efficient.
Multinomial logistic regression, also called softmax regression, is
the generalised form of logistic regression, which can be used to
model and predict probabilities that samples belong to more than
two independent types. Its mathematic form is:
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where x represents an input variable, or a single sample, which is a
m� 1 dimensional vector, where m is the number of features of the
input variable; k is the number of categories, into which the input
variable to be classified; hqðxÞ represents the predicted probabilities
that x belongs to each of k classes; q is the multinomial logistic
regression model parameter, an m� k matrix. In this research, the
input variable x for each sample contains the CNN codes extracted
by Inception-v3 model, which is a 2048 dimensional vector.

The process of model training is to find out the best model
parameter q that minimises the difference between the predicted
and the actual probability that samples belong to each category.
The gradient descent method is used to search for optimum
parameter q, which is an iterative algorithm that updates parameter
q step by step:
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Fig. 1. The overall transfer learning framework of this study. All the convolutional and pooling layers except the last multinomial logistic classification layer of the Inception-v3
model were taken out as the feature extractor of this study. The extracted image features were then classified into different land cover types by weighted multinomial logistic
model.
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q :¼ q� g
h
XT ðhqðXÞ � YÞ þ lq

i
; (2)

where X is an N �m matrix and represents the CNN features of all
the training samples, and N is the number of training samples; Y is
an N � k matrix and represents the actual probabilities for each
training sample belonging to each type; hqðXÞ is also anN � kmatrix
and represents the predicted probabilities for each sample; g is the
iteration step size. Because there are infinitely many solutions for
any given training samples, lq is used in our iteration equation as a
weight decay term to find out the unique solution. The L-BFGS
(Limited-memory BroydeneFletchereGoldfarbeShanno) algorithm
was used to find optimal solutions. The learning rate is not fixed and
varies as the training progresses and is decided by the solving
algorithm.

Owing to the imbalanced numbers of training samples within
different categories, the sample weighting should be taken into
account when the multinomial logistic regression model is being
trained. The land cover types with a small sample size should be
treated with higher weights so that they will not be overwhelmed
by those with a large sample size. Therefore, the sample weight w
will be applied to the iteration equation of the ordinary multino-
mial logistic regression model as following:

q :¼ q� g
h
XT diagðwÞðhqðxÞ � YÞ þ lq

i
; (3)

where w is a vector with N elements and represents the training
weighting of each sample; and diagðwÞ is an operator that gener-
ates a diagonal matrix from a vector. Theweight of each type of land
cover is defined according to its sample size. All the samples within
the same category are assigned with the same weighting. The
weight for land cover type i is represented by wi and calculated by
the equation:

wi ¼
N

ni * k

where N is the total number of training samples, ni is the training
samples within the i -th category, and k is the total number of
types. This equation assures that the samples from small groups
(with small ni) will have large training weights, and yield the same
effect on the training process.

3. Experiment design

3.1. Data sources

Field photos from Global Geo-Referenced Field Photo Library
(http://www.eomf.ou.edu/photos/) are used for model training and
validation. There are more than 150,000 field pictures available in
this library, among which 35,887 pictures are labelled with land
cover types. These labelled photos are selected for this research.
This dataset has been accepted to have high quality and widely
used for land cover mapping and validation (Dong et al., 2013;
Leinenkugel et al., 2013; Dong et al., 2014; Tsarouchi et al., 2014;
Qin et al., 2015; B. Chen et al., 2016; Y. Chen et al., 2016; Dong
et al., 2016).

This dataset comprises 19 types of land cover as shown in
Table 1. Due to the uneven distribution of samples within different
land cover types, the land cover types were reclassified as nine new
land cover types. Specifically, the new Forest type includes Decid-
uous Broadleaf Forest, Deciduous Needleleaf Forest, Evergreen
Broadleaf Forest, Evergreen Needleleaf Forest andMixed Forest; the
new Shrublands type includes Open Shrublands and Closed
Shrublands; the new Croplands type includes Croplands and
Cropland/Natural Vegetation Mosaic; the new Savannas type in-
cludes Savannas and Woody Savannas. The Orchards type was
discarded due to too few samples. (Table 1).

Spatial and temporal coverages of these photos are shown in
Fig. 2 and Fig. 3. Most of the photos were taken after the year 2008.
They were mainly taken in Northern America, India, part of Africa,
East Asia and Australia, which are well distributed globally and
include various landscapes all over the world.

3.2. Model training and validation

The repeated random sub-sampling validation (Dubitzky et al.,
2007) has been performed in this study. Each time, the labelled
samples are divided into two subsets: training and testing set. The
model accuracy is evaluated by testing samples, which are

http://www.eomf.ou.edu/photos/


Table 1
Land cover types, sample sizes and training weights used in modelling.

Original Type Name Sample Count New Type Name Sample Count Training Samples validation Samples Training weight

Deciduous Broadleaf Forest 1670 Forest 3975 3875 100 0.80
Deciduous Needleleaf Forest 38
Evergreen Broadleaf Forest 349
Evergreen Needleleaf Forest 1595
Mixed Forest 323
Open Shrublands 475 Shrublands 1007 907 100 3.42
Closed Shrublands 532
Grasslands 1627 Grasslands 1627 1527 100 2.03
Barren Or Sparsely Vegetated 1085 Barren 1085 985 100 3.15
Croplands 5794 Croplands 5984 5884 100 0.53
Cropland/Natural Vegetation Mosaic 190
Plantations 341 Plantations 341 241 100 12.88
Permanent Snow And Ice 673 Snow and Ice 673 573 100 5.42
Permanent Wetlands 13,369 Wetlands 13,369 13,269 100 0.23
Savannas 1361 Savannas 1627 1527 100 2.03
Woody Savannas 266
Urban And Built-Up 2919 Urban 2919 2819 100 1.10
Water Bodies 2635 Water 2635 2535 100 1.22
Orchards 29 e e e e e

Total Count 35,271 35,242 34,142 1100

Fig. 2. Temporal coverage of photo samples from Global Geo-Referenced Field Photo Library.

Fig. 3. Spatial coverage of photo samples (blue points) from Global Geo-Referenced Field Photo Library. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4. Model fitting history of training and testing accuracies.
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independent of training samples. However, due to imbalanced
samples sizes within different land cover types,100 testing samples
are drawn from each land cover types in order to ensure the vali-
dation result is unbiased, as shown in Table 1. The training and
testing process are repeated by 100 times, to avoid the effects of
random factors and provide a comprehensive model evaluation.
Their average accuracies are used for the following discussion in
our paper. Different sample weights were applied to each training
sample according to the categories they belong to, which are also
listed in Table 1.

Fig. 4 shows how the model training and testing accuracies
change with fitting iterations. Both training and testing accuracies
monotonically increased with fitting iterations. No sign of over-
fitting could be identified.

In this research, top-1 accuracy and top-3 accuracy were used to
adequately reveal the model performance. Top-1 accuracy is the
percentage of testing samples whose most possible land cover
types match their actual types. Top-3 accuracy is defined as the
percentage of testing samples whose actual types are among the
Fig. 5. Example outputs of the field photo classification model (The source of the photos is Gl
photos are cocorahs, subbuteo and xiao 2007).
most three possible land cover types predicted by the multinomial
logistic regression model.

In addition, to avoid the effect of possible random factors, the
training and testing processes were repeated ten times, with
different training and validation samples each time. The overall
results of the model validation were then analysed.

4. Experiment result

4.1. Overall accuracy

Examples of model prediction are shown in Fig. 5, in which the
probabilities that a photo belongs to every land cover types are
given by the multinomial logistic regression. The type with the
highest probability will be taken as the predicted type within the
photo. And the corresponding probability is referred as “predicted
probability”. This probability represents how confident the model
is about its prediction. So it can also be regarded as prediction
confidence, which will be discussed in the next subsection.

Based on repeated cross-validation, top-1 and top-3 accuracies
of the model were calculated from testing samples, which are listed
in Table 2. To evaluate the model performance, random guessing
accuracies are also calculated as benchmarks. Compared with the
random guessing accuracies, this model produced a very promising
prediction accuracy.

4.2. Predicted probability

As illustrated in Fig. 5, land cover type predictions are accom-
panied with probabilities, which can be used as indicators of the
confidences of model predictions. It is possible that the predictions
with high probabilities will probably be correct. In order to prove
this assumption, further understanding how predicted probabili-
ties are related to the model accuracy is important.

As shown by the histogram in Fig. 6, each bar represents the
number of testing samples whose probabilities of top predictions
are within the given interval. The red and blue bars represent
incorrect and correct predictions respectively. And the correctness
of any prediction depends onwhether its top prediction is identical
to the label of the sample. Very few samples have predicted
obal Geo-Referenced Field Photo Library. The usernames of the uploaders of these three



Table 2
Classification accuracies for model training, model validation, and random guessing.

Accuracy Training Validation Random guessing

Top 1 accuracy 63.54% 48.40% 9.09%
Top 3 accuracy 87.32% 76.24% 27.27%

Fig. 7. Posterior probability of our model predictions.
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probabilities less than 20%. Obviously, the distributions of the
predicted probabilities of most of the incorrect samples are bell-
shaped and right skewed. Most of them tend to be around 40%.
And very few are higher than 80%.

For the correct predictions, the distribution of predicted prob-
abilities showed a monotone distribution. More samples have
higher predicted probabilities. It can be inferred that if a prediction
has a probability higher than 60%, it is more likely to be a correct
prediction. In order to further illustrate the likelihood of correct
predictions with their corresponding predicted probabilities, a new
measurement named “posterior probability” will be defined.

In this study, the posterior probability is defined as the likeli-
hood that a prediction is correct according to its predicted proba-
bility given by the multinomial regression model. This posterior
probability can be derived by calculating the ratio of correct pre-
diction frequency against total frequency at each predicted proba-
bility level in Fig. 6.

Fig. 7 shows the relationship between our model predicted
probability and the posterior probability based on all the testing
samples in this study. Each bar represents the percentage of correct
predictions within given intervals. Obviously, they have a nearly
linear relationship when predicted probability is greater than 20%.

This linear relationship implies that a prediction is more likely
to be correct whenever the model gives a higher predicted proba-
bility. For example, a prediction is probably correct with a nearly
80% likelihoodwhen themodel gives a predicted probability of 90%.
Such a linear relationship makes it possible to use predicted
probability as an efficient indicator to distinguish potential correct
and incorrect predictions. A certain threshold can be applied to
ignore uncertain predictions and increase the reliability of the
classification model.

4.3. User and producer accuracy

As mentioned above, model performance could be improved by
Fig. 6. Density distribution of right and wrong predicted probabilities of 1000 training
samples with 100 repeats.
applying a threshold of minimum predicted probability. To further
elaborate how predicted probabilities can be used to find out better
predictions, the user and producer accuracies with different prob-
ability thresholds were calculated and shown in Table 3. If the
predicted probability of a sample is lower than a certain threshold
(0%, 50%, and 75% are applied in Table 3), this sample will not be
counted in the corresponding accuracy measurement. For most of
the land cover types, both user accuracy and producer accuracy are
improved when applying higher thresholds. Moreover, the overall
accuracy reaches more than 73% when the threshold of 75%
applied.

Thus, it is important to know how many samples are left after
filtering out uncertain predictions. Fig. 8 shows the percentage of
remaining samples when applying different minimum predicted
probability thresholds. It represents the percentages of samples
whose predicted probabilities are higher than any given filtering
thresholds. It is obvious that 100% of the samples have more than
0% prediction confidence; and 0% of the samples have more than
100% prediction confidence. If the predictions with a probability of
less than 60% are dropped out, therewill be nearly 40% samples left.
It means this model can not only produce a reliable prediction but
also be aware of which samples are predicted reliably according to
its predicted probabilities.

5. Discussion

5.1. Model performance

In this study, the land cover classification model for field photos
showed the top-1 accuracy of 48.40% and top-3 accuracy of 76.24%.
Because no comparable researches were found for land cover
classification of field photos, it is difficult to assess the model ac-
curacy by comparison with the results of others. However, the
model accuracy is much better than the accuracy of random
guessing. If taking similar transfer learning researches into
consideration, such as the image style recognition with the accu-
racy of 36.8% (Karayev et al., 2013) and image scene classification
with the accuracy of 40.94% (Donahue et al., 2013), the model ac-
curacy of 48.40% is relatively good for its research task.

What is more important, this model could provide the self-
assessment of prediction confidence, which has been proved to
be helpful to increase the prediction accuracy. After filtering out the
predictions with predicted probabilities of less than 75%, the overall
accuracy increased to 73.61%, which implies that the model is fully



Table 3
User and Producer Accuracies with probability filtering thresholds of 0%, 50%, and 75%.

Type No filtering Predicted probability higher than 50% Predicted probability higher than 75%

User accuracy Producer accuracy User accuracy Producer accuracy User accuracy Producer accuracy

Forest 48.97% 59.34% 58.56% 70.40% 71.23% 82.45%
Shrublands 39.78% 40.90% 47.79% 50.21% 57.02% 60.39%
Savannas 39.71% 39.96% 48.32% 48.66% 62.76% 61.23%
Cropland 51.44% 56.26% 62.64% 66.67% 74.97% 78.73%
Plantations 63.01% 39.26% 69.63% 51.59% 77.41% 69.85%
Grassland 48.71% 47.60% 60.37% 58.34% 75.82% 69.72%
Wetlands 58.23% 65.43% 70.95% 76.73% 85.44% 88.63%
Urban 34.62% 36.65% 43.63% 40.70% 55.24% 45.87%
Barren 41.81% 37.63% 51.29% 44.48% 62.28% 52.44%
Open Water 45.53% 48.63% 54.59% 58.07% 65.88% 69.71%
Snow and Ice 67.21% 61.12% 76.33% 75.05% 86.90% 88.72%

Overall Accuracy 48.40% 59.24% 73.61%
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aware of its prediction confidence and can precisely assess the
degree of confidence by predicted probability. Therefore, this
model can be applied to classify field photos and extract useful
environmental information with high confidence.

5.2. Sample quality

The overall accuracy of this model is still far from perfect. One of
the factors that affect the model performance is the quality of
training samples. Uneven sample sizes for each land cover type
limited the model's ability to understand the feature of different
land cover types. For example, as shown in Table 1, there are only 27
samples for Deciduous Needleleaf Forest, which is why we merged
all the forest types into a single type. Besides that, some definitions
of land cover types could be ambiguous or overlapped with each
other. For example, the Plantation type could be regarded as Forest
or Croplands; the Wetlands could be labelled as the Water Bodies.
What is more, as the training samples were classifiedmanually, it is
inevitable that some photos could be tagged with wrong types of
land cover.

Moreover, not all the field photos have well-defined land cover
types. There are always uncertainties when trying to classify
photos. It is possible that some photographs contain more than one
land cover type. But all the photo samples are supposed to repre-
sent only one type of land cover and are labelled with only one
category in the database, which makes it difficult to validate the
existence of multiple types within one photo. Besides, by using the
Fig. 8. Data percentile and corresponding minimum predicted probability.
multinomial logistic regression model, any samples are assumed to
belong to only one category. And the classifier is supposed to be
able to identify the most significant type within the image. Any
ambiguous predictions are supposed to be the result of model bias.

It is also important to note that the photos in the field photo
library were taken with various qualities, dependent upon the data
providers, ranging from scientific researchers who follow precisely
the field photo acquisition protocols, to amateur citizens who have
only limited experiencewith the protocols. In this study, all training
samples are assumed to be correctly labelled for model testing
purposes. And a higher accuracy could be anticipated when better
training samples were used for model training. Therefore, it is
important to develop and deliver more training activities and ma-
terials that provide effective communications with citizen scien-
tists, which will improve their skills in taking photos in the fields.

6. Conclusions

This research demonstrated that the field photo recognition
model based on Inception-v3 CNN and weighted multinomial lo-
gistic regression produced the top-1 accuracy of 48.40% and the
top-3 accuracy of 76.24% when applied with the Global Geo-
Referenced Field Photo Library for land cover classification. The
model is able to describe its prediction confidence and enables
users to distinguish reliable and unreliable predictions.

The contribution of this research is not about a new image
recognition algorithm. Both the Inception-v3 model and transfer
learning are well-established techniques. This research is focused
on proposing a new approach to applying the deep learning for
geographic and environmental studies. The main contribution is to
prove the possibility that artificial intelligence can help with land
cover classification and to evaluate how well the model can
perform. It provides a new research direction in citizen science. And
hopefully, our research would be a benchmark for future studies.

Concerning future research, more photos should be taken for
those land cover types with very few samples in the existing library
in order to improve the training sample quality. A new land cover
classification scheme will also need to be developed to avoid class
overlapping. Besides the improvement of labelled data from data
providers, the transfer learning framework could also be further
improved. A CNN based classification model could be trained
completely from scratch. But this may require extensive computing
time and a large sample size. Besides, other more advanced pre-
trained CNN models in the future could be used as the feature
extractor. Such photo classification models will be applied to
countless online geo-tagged field photos for land use/cover
research and will form an important information source for envi-
ronmental observation.
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