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Urbanization has been accelerating; hence the effect of urban heat island (UHI)

has increased. There has been extensive research on spatiotemporal UHI

changes and drivers, however, data on the dominant seasonal factors of

UHIs and the differences along urban-rural gradients remain limited. Based

on Luojia-1A, Landsat 8, and moderate resolution imaging spectroradiometer

(MODIS) data, we assessed the seasonal differences in surface UHI (SUHI),

normalized differences in vegetation index (NDVI), built-up index (NDBI), and

water index (NDWI) and their relationships in the Dalian City, Northeast China.

We found that in the urban built-up area, the mean SUHI intensity (SUHII)

decreased from that in summer (2.74°C) > autumn (1.65°C) > winter (0.28°C) >
spring (−0.79°C). SUHII was more strongly affected by NDWI and NDBI than

NDVI, and NDBI and NDWI showed positive and negative correlations with

SUHII in different seasons, while NDVI and SUHII were positively correlated in

spring and negatively correlated in the other seasons. When analyzing the

dominant factors of SUHII, the importance results showed that, in spring,

NDBI > NDVI > NDWI, in autumn, NDVI > NDWI > NDBI, in summer and

winter, NDWI > NDVI > NDBI. In addition, SUHII changed the most in

summer along the urban-rural gradient, decreasing from 2.74°C to −2.74°C.

Among these indicators, except for spring NDVI which increased from 0.09 to

0.59 with distance from built-up areas, there was minimal change in NDVI,

NDBI, and NDWI along the urban-rural gradient in other seasons (i.e., all were

within 0.2). In this study, the difference analysis of SUHI and remote sensing

indices along the urban-rural gradient can help to facilitate the rational layout of

cities.
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Introduction

Under rapid global urbanization, the population has shown a

surging trend accompanied with the expansion of urban areas,

thereby causing a series of ecological environment and climate

problems such as urban heat islands (UHIs), extreme climate and

heat waves (Manoli et al., 2019; Wang et al., 2021a; Ma et al.,

2021b; Smith et al., 2021; Koç et al., 2022; Shi et al., 2022),

severely threating human life, health, and safety (Chang et al.,

2021; Yao et al., 2021; Yang et al., 2022). UHI refers to a

phenomenon whereby the temperature in the suburbs is lower

than that in the city center, and has been extensively studied (Wu

et al., 2017; Yang et al., 2021b). UHI includes two categories:

atmospheric UHI (AUHI) (Tran et al., 2006) and surface UHI

(SUHI) (Imhoff et al., 2010; Peng et al., 2012). AUHI is obtained

through observation of meteorological stations, whereas SUHI is

mainly obtained through remote sensing images obtained via

satellite sensors (Zhou et al., 2014a). Compared with the AUHI,

SUHI is widely used due to its advantages of easy data acquisition

and spatial continuity (Kim and Brown, 2021).

A key in SUHI research is the calculation of land surface

temperature (LST). At present, the LST calculations are mainly

obtained by inversion of the thermal infrared band of satellites;

common data sources include Landsat (Yang et al., 2021c; Kamali

Maskooni et al., 2021; Najafzadeh et al., 2021; Carrillo-Niquete

et al., 2022) and moderate resolution imaging spectroradiometer

(MODIS) (Li et al., 2020; Mohammad and Goswami, 2021a; Niu

et al., 2021). The lower resolution ofMODIS data is more suitable

for mesoscale research, whereas the resolution of Landsat data is

30 m, more suitable for urban scale research. Therefore, this

study calculated LST based on Landsat 8 data. SUHI intensity

(SUHII) refers to the temperature difference between urban and

rural areas, and the definition of urban-rural boundaries is the

key to SUHI research. At present, there is no unified standard for

the definition of the urban-rural boundary, hence new SUHII

calculation methods are constantly being proposed of which the

most commonly used are the urban-rural dichotomy,

mean—standard deviation, positive planning, and

normalization methods (Shastri et al., 2017; Liu et al., 2021b;

Hsu et al., 2021; Morabito et al., 2021). When calculating SUHII

using the urban-rural dichotomy, urban area mainly refers to the

area covered by actual urban construction land. The built-up area

extractionmethods are roughly divided into three types: One is to

extract built-up areas by classifying the spectral features of high-

resolution satellite images; the second is to use night light data as

the data source to obtain the best threshold through a series of

methods and extract the built-up area by binarization according

to the threshold; the third is to combine night light and high-

resolution remote sensing data to extract built-up areas. The

most widely used data source is night light data, from which the

best threshold is obtained, following which the urban built-up

area is then extracted. Night light data are mainly Defense

Meteorological Satellite Program/Operational Linescan System

DMSP/OLS and National Polar-orbiting Partnership/Visible

Infrared Imaging Radiometer NPP-VIIRS (Zhou et al., 2014b;

Yang et al., 2021a; Li et al., 2021); however, their spatial

resolutions are low, i.e., 1,000 m and 500 m, respectively. The

Luojia-1 satellite (Luojia-1A) launched by China in 2018 has

efficiently addressed this problem (Jun et al., 2021), where its

spatial resolution reaches 130 m; therefore, this study extracted

built-up areas based on the Luojia-1A satellite. However, the

definition of suburban backgrounds remains controversial. Most

scholars have obtained suburbs by establishing buffer zones with

built-up areas as boundaries. The buffer zone can be the same

area or 150% of the urban area calculated according to the size of

the city (Peng et al., 2012;Meng et al., 2018; Feng et al., 2021), and

can be a buffer distance of approximately 0–25 km from the

urban built-up area (Dewan et al., 2021; Yao et al., 2021; Li et al.,

2022). In the selection of the suburban background, this study

referred to the definition method based on the buffer zone of Yao

et al. (2021), Yao et al. (2018), and Li et al. (2022), by establishing

a buffer zone with the built-up area as the boundary to determine

the suburban background. Due to the unique shape of the

administrative boundary of the Dalian City, in this study, we

selected the 10-km range as the suburb.

In SUHI research, in addition to the spatiotemporal evolution of

SUHI, research on the influencing factors has been the primary focus

of several studies (Wang et al., 2021b; Erdem et al., 2021; Niu et al.,

2021; Zhang et al., 2021; Ren et al., 2022). Blue-green space, building

roof materials, building density, building height, vegetation coverage,

and urban ventilation are all driving factors of SUHI (Guo et al., 2020;

Yang et al., 2020; Hu et al., 2021b; Deliry et al., 2021; Luo et al., 2021;

Ma and Peng, 2022). The research angle is divided into several

aspects, such as land-use type, surface biophysical conditions,

landscape pattern, human activities, meteorological conditions and

geographical location, and policy elements. In addition, there may be

differences in the dominance of SUHI by different influencing factors

in different seasons. For example,Mohammad andGoswami (2021a)

quantified the daily, seasonal, and inter-annual SUHII of 150 major

Indian cities located in different climate zones based onMODIS data.

The study found differences in SUHI, in addition to the leading roles

of different influencing factors in winter and summer. However,

studies have been conducted on the dominant drivers of seasonal

SUHI,which showed differences in different gradients between urban

and rural areas (Ma et al., 2021a; Mohammad and Goswami, 2021b;

Ma and Peng, 2022), but this has received little attention. Therefore,

this study not only assessed the seasonal differences of SUHII and its

dominant factors, but also analyzed the differences of the dominant

factors of SUHII along the urban-rural gradient.

We considered the Dalian City, Northeast China, as a case study

and extracted urban built-up areas based on Landsat 8, digital

elevation model (DEM), Luojia-1A night light, and other data.

We established a buffer zone within 10 km outside the built-up

area (defined as suburbs), and calculated SUHII, normalized

differences in vegetation index (NDVI), built-up index (NDBI),

and water index (NDWI), and the difference in SUHI, NDVI,
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NDBI, and NDWI along ‒the urban-rural gradient. Meanwhile, we

analyzed the differences in SUHII by the dominant factors in

different seasons. This study investigated the seasonal differences

in SUHI and various remote sensing indices and the dominant

factors of SUHI. The differences in SUHI along the urban-rural

gradient were also studied, which provides an important reference for

SUHI mitigation strategies and rational urban layout.

Materials and methods

Study area

The Dalian City is located in the southern area of the

Liaodong Peninsula, Northeast China, between

38°43′–40°12′N and 120°58′–123°31′E, and has jurisdiction

over seven municipal districts and one county and manages

two county-level cities. The terrain is high and wide in the

north, and low and narrow in the south (Figure 1). The total

land area of the city is approximately 12,574 km2, of which the

urban area is approximately 2,414.96 km2, and the counties

(cities) under its jurisdiction cover an area of approximately

10,158.89 km2.

Data sources

The data used in this study included Landsat eight OLI/TIRS,

Luojia-1A night light, statistical yearbook, MODIS, and

administrative division data. Table 1 lists data sources,

preprocessing process, and detailed descriptions.

Remote sensing indices

Development of urbanization leads to the conversion of a

large amount of natural land to anthropogenic land, thereby

changing urban surface cover, such as reductions in vegetation

and increases in urban impervious surfaces, thus changes urban

surface heat absorption, ultimately leadings to the UHI effect. To

study the seasonal variation of SUHI and its relationship with

vegetation cover, water body, bare soil, and impervious surfaces

(Koko et al., 2021), we used NDVI, NDBI, and NDWI, the

specific calculation formulas for which are as follows:

NDVI � NIR − Red

NIR + Red
(1)

NDWI � NIR − SWIR

NIR + SWIR
(2)

NDBI � SWIR −NIR

SWIR +NIR
(3)

Where, NIR, Red, and SWIR represent the near-infrared band,

the red band, and the mid-infrared band, respectively,

corresponding to the fourth, fifth, and sixth bands of the

Landsat eight OLI data, respectively.

land surface temperature retrieval

The better the quality of remote sensing images, the higher

the accuracy of LST inversion results. Therefore, in this study,

images with minimal precipitation, sunny and minimal cloudy

(<5% cloud cover) weather were selected in the corresponding

time range. We then referred to the single-window algorithm

FIGURE 1
Study area location. DEM—digital elevation model.
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proposed by Qin et al. (2001), and to Hu et al. (2015) to calculate

LST using Landsat eight band10 data, the formulas are as follows:

Ts � (a(1 − C − D) + (b(1 − C − D) + C + D)T10 − DTa)
× /(C − 273.15) (4)

C � ετ (5)
D � (1 − τ)[1 + (1 − ε)τ] (6)

Where,Ts is LST (K); T10 is the brightness temperature (K); Ta is

the average temperature of the atmosphere (K); a and b are

reference coefficients (a =−67.355,351 and b = 0.458,606 when

LST is in the range from 0 to 70°C); ε is the land surface emissivity

ofT10; τ is the atmospheric transmittance of T10. Finally, the LST

inversion results were clipped based on the extraction tool by

mask of ArcGIS, taking the administrative boundary of Dalian

City as the boundary.

Surface urban heat island

The LST difference between the urban and rural is defined as

the SUHII (Zhao et al., 2021), Urban areas were obtained based

on night light data, while rural areas were obtained after buffer

zones for urban areas have been established.

In researching the extraction of built-up areas, the

determination of the optimal threshold for nighttime light

data has been challenging. Various methods have been

proposed such as mutation detection, empirical threshold, and

higher-resolution data comparison methods (Jun et al., 2021;

Zhang et al., 2022), each of which has its own limitations. The

mutation detection method does not consider the regional

differences in urban development; the empirical threshold and

higher-resolution data comparison methods are highly subjective

and the results obtained by different studies often differ. To this

end, this study referred to the extraction method of Liu et al.

(2021c), combined the brightness and texture information of

night lights to perform object-oriented segmentation, and

comprehensively extracted the built-up area.

First, we performed object-oriented multi-scale

segmentation on the night light data after reprojection and

resampling. On the premise of ensuring the minimum mean

heterogeneity between objects and the maximum homogeneity

between pixels within the object, image segmentation was

performed based on the region merging technology using the

brightness and texture features of the image. We then calculated

the mean brightness value and area of each object following

segmentation. Zhou et al. (2014b) comprehensively considered

and verified the influence of the area and mean brightness of

different areas on the extraction threshold of built-up areas

during their study on the extraction of built-up areas from night

light data. We used the area and mean brightness of different

objects to construct the built-up area index X of night lights as a

standard to measure the probability of each object being a built-

up area. The formula for X is:

X � Area0.2*NTLmean (7)

Where, Area is the area size of each object andNTLmean refers the

mean value of night light brightness of each object. We sorted the

X value of each object and accumulated and summed the area of

each object according to the X value from large to small until it

was the closest to the total built-up area (henceforth UA) in the

same period in the statistical data of the region, which was

derived from the China City Statistical Yearbook. The specific

conditions are as shown in Eq. 2:
∣∣∣∣∣UA −∑

i−1
max

Xi

∣∣∣∣∣≥
∣∣∣∣∣UA −∑

i

max
Xi

∣∣∣∣∣≤
∣∣∣∣∣UA −∑

i+1
max

Xi

∣∣∣∣∣ (8)

Where, the X value Xi of object i was used as the threshold value

T for extracting the built-up area from night light data, and

objects with X value > T were extracted as built-up areas. The

built-up area extraction results can reflect the approximate range

and overall shape of the built-up area distribution.

TABLE 1 Data sources and descriptions.

Data type Data Time/Year Resolution Sources Data processing

Remote sensing
image

Landsat
8 OLI/TIRS

2018 (Acquisition time: Spring: 2018/4/19 and
2018/4/28. Summer: 2018/8/2 and 2018/8/9.
Autumn: 2018/9/10 & 2018/10/5. Winter: 2018/
1/6 and 2018/1/13)

30 m (Multispectral)
100 m (Thermal)

https://earthexplorer.
usgs.gov/

Radiometric calibration,
atmospheric correction

Nightlight Luojia-1A 2018 (Acquisition time: 2018/9/9) 130 m http://59.175.109.173:
8,888/index.html

Radiance conversion

China City
Statistical Yearbook

Urban built-
up area

2018 — National Bureau of
Statistics of China

—

Land surface
temperature

MOD11B3 2018 — https://ladsweb.modaps.
eosdis.nasa.gov/search/

Projection and format
conversion

Administrative
divisions

— 2021 — National Catalogue Service
for Geographic
Information

Extract administrative
divisions
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We consulted relevant literature and found that the accuracy

verification of built-up area extraction is mainly through the method

of creating randompoints, based on theGoogle Earth high-definition

map combined with visual interpretation to determine the

proportion of valid points (correct division) (He et al., 2021).

Therefore, we adopted ArcGIS Create Random Point Tool,

created 200 random points, counted the number of valid points,

and calculated the proportion of valid points as the overall accuracy.

We also considered 10 km outside the built-up area as the

suburban boundary, combined with the unique geographical

location of Dalian City and the LST results obtained from

Landsat eight data inversion, and used the ArcGIS 10.4 raster

calculator tool to determine the difference between the LST of the

study area and the mean LST of the suburbs to obtain SUHII. The

calculation formula is as follows:

SUHII � Turban −MeanTrural (9)

Where, T represents the LST value of each pixel in the study area,

and MeanTrural is the mean LST value in the rural.

In this study, a multi-level buffer zone was established with

the urban area as the boundary (Implemented withMultiple Ring

Buffers tool of ArcGIS), and a total of 10 multi-level buffer zones

were established as the urban-rural gradient with an interval of

1 km, which was how we calculated the urban-rural gradient.

Correlation analysis

Bivariate correlation analysis involves two or more variables.

Since the data here do not obey the normal distribution, we used

SPSS 24.0 software to select the Spearman correlation coefficient

to study the responses of SUHII to various remote sensing

indices. The calculation formula is as follows:

rs � 1 − 6∑d2
i

N(N2 − 1) (10)

Where, di � X′
i − Y′

i is the difference between each pair of the

ranked variables and N is the total number of the samples.

To further analyze the importance of each influencing factor

of SUHII, we used the Random Tree model in IBM SPSSModeler

18.0 software for modeling (Joloudari et al., 2020; Nhu et al.,

2020), using default parameters for modeling, taking SUHII as

the target value, and obtained the importance of predictor

variables of NDVI, NDBI, and NDWI.

Results

Built-up area extraction

We calculated the built-up area extracted from the night

light data and compared it with the statistical yearbook. Since

the total calculated area of the built-up area was infinite

approximation to built-up area values recorded in

statistical yearbook when the light threshold was set for

the extraction of the built-up area, the mean deviation and

the standard deviation were 0.0054 and 0.0076, respectively.

In order to verify the accuracy of the spatial distribution, we

adopted ArcGIS Create Random Point Tool, created

200 random points, using Google Earth historical image,

we found that 186 random points were correctly classified,

and the overall accuracy reached 0.93. The visualization of the

extraction results of built-up areas through ArcGIS is shown

in Figure 2. Built-up areas were mainly gathered in the

Zhongshan, Xigang, Shahekou, Ganjingzi, and Jinzhou

districts, and they were less distributed in the Lushunkou

District, Pulandian District, Wafangdian City, and

Zhuanghe City.

Seasonal variations of surface urban heat
island

In this study, the LST inversion results were verified before

calculation of SUHII. Due to the lack of public weather station

data in Dalian City, we referred to Arabi Aliabad et al. (2021)

and Jiang and Lin. (2021) using MODIS data for verification.

Since this study investigated seasonal differences, we selected

the monthly mean LST data (MOD11B3) and 1,000 random

points through ArcGIS software (MOD11B3 was resampled to

30 m), tested the LST results of the Landsat thermal infrared

inversion after the α = 0.05 level of confidence test, and

calculated the mean deviation (bias), standard deviation

(STD), and root mean square error (RMSE). The spring

LST inversion results were the best, with bias, STD, and

RMSE all ~2°C (Table 2). Except for the RMSE = 9.35°C in

autumn, the other results were all around 5°C.Therefore,

SUHII was calculated using the LST value obtained by

inversion, and as shown in Figure 3 and Table 3. Overall

(the entire study area), the mean SUHII decreased from that in

spring (1.41°C) > winter (0.13°C) > autumn (−0.80°C) >
summer (−1.54°C). However, within the urban built-up

area, the mean SUHII decreased from that in summer

(2.74°C) > autumn (1.65°C) > winter (0.28°C) > spring

(−0.79°C). Overall, the maximum SUHII value decreased

from that in autumn (25.34°C) > summer (19.64°C) >
winter (17.59°C) > spring (15.26°C); whereas, the minimum

value decreased from that in winter (−20.52°C) > summer

(−22.37°C) > spring (−23.73°C) > autumn (−25.31°C). In the

built-up area, the maximum SUHII value decreased from that

in autumn (25.34°C) > summer (18.95°C) > spring (10.27°C) >
winter (9.77°C); the minimum value decreased from that in

winter (−9.25°C) > autumn (−10.63°C) > summer

(−16.24°C) > spring (−19.73°C).
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Seasonal responses of surface urban heat
island to different drivers.

Table 4 shows that, overall, NDBI and SUHII positively

correlated with NDWI, while SUHII showed negative

correlations in all four seasons, whereas NDVI showed

positive correlation in spring but negative correlations in

summer, autumn and winter. Buildings enhanced UHI and

water weakened UHI, whereas vegetation enhanced UHI in

spring and weakened UHI in summer, autumn and winter.

Specifically, in spring, the correlation coefficients of NDVI,

NDBI, NDWI, and SUHII were 0.42, 0.43, and –0.60,

respectively, indicating that in spring, SUHII was more

affected by water, followed by buildings and vegetation. In

summer, the correlation coefficients of NDVI, NDBI, NDWI,

and SUHII were −0.18, 0.44, and −0.56, respectively, indicating

that in summer, SUHII was also more affected by water, followed

by buildings, and that vegetation had the smallest effect. In

autumn, the correlation coefficients of NDVI, NDBI, NDWI,

and SUHII were −0.25, 0.59, and −0.59, respectively, indicating

that in autumn, SUHII was more affected by water and buildings,

and less affected by vegetation. In winter, the correlation

coefficients of NDVI, NDBI, NDWI, and SUHII were −0.02,

0.33, and −0.33, respectively, indicating that in winter, SUHII was

also more affected by water and buildings, and less by vegetation.

The importance of each predictor variable is shown in

Figure 4. In spring, the contribution of NDBI was the largest,

followed by NDVI, and the smallest was NDWI; while in summer

and winter, the contribution of NDWI was the largest, followed

by NDVI; in autumn, NDVI contributed the most, followed

by NDWI.

Variation trends of SUHII, NDVI, NDBI, and NDWI along

the urban-rural gradient in different seasons.

The mean SUHI, NDVI, NDBI, and NDWI outside the built-

up area 0–10 km range (1 km interval, The distance map from

the built-up area was shown in Figure 5) were calculated

separately via ArcGIS; the results are shown in Figure 6.

SUHII decreased along the urban-rural gradient in summer

and autumn. The change was the largest in summer

(2.74 to −2.74°C) and that in spring was relatively small

(−1 to 1°C); whereas, in winter, along the urban-rural

gradient, SUHII showed a trend of first decreasing and then

increasing, with an overall increase of 0.50°C. When far from the

built-up area, NDVI showed an increasing trend in spring,

FIGURE 2
Extraction result of built-up area.

TABLE 2 Comparison of LST accuracy with α = 0.05 level confidence
test (°C).

spring Summer Autumn Winter

Bias 1.70 3.17 5.10 3.80

STD 2.090 4.81 6.55 4.48

RMSE 2.57 6.04 9.35 7.04
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summer, and autumn (0.09–0.59, 0.32 to 0.59, and 0.29 to 0.44,

respectively), and decreased in winter, with a small decrease from

0.24 to 0.20. When far from the built-up area, NDBI showed an

increasing trend in winter, while NDBI in summer showed a

decreasing trend along the urban-rural gradient, but the variation

range was not large (around 0.1), and there was minimal change

in NDBI along the urban-rural gradient in spring and autumn.

For NDWI, there was little change in spring and autumn, a large

change in summer (an increase from 0.12 to 0.26 along the

urban-rural gradient), and the change in winter was relatively

small and decreased when far from the built-up area (from

0.09 to −0.05).

FIGURE 3
Surface urban heat island (SUHII) intensity spatial distribution map in: (A) spring, (B) summer, (C) autumn, and (D) winter.

TABLE 3 SUHII varies in different seasons.

SUHII
(°C)

spring Summer Autumn Winter

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

All 1.41 15.26 −23.73 −1.54 19.64 −22.37 −0.80 25.34 −25.31 0.13 17.59 −17.09

Urban −1.77 10.27 −19.73 2.74 18.95 −16.24 1.65 25.34 −10.63 0.28 9.77 −9.25

TABLE 4 Correlation between NDVI, NDBI, NDWI, and SUHII in
different seasons.

Spearman’s correlation coefficient

Season NDVI NDBI NDWI

SUHII Spring 0.42* 0.43* −0.60*

Summer −0.18* 0.44* −0.56*

Autumn −0.25** 0.59* −0.59*

Winter −0.02 0.33* −0.33*

*The correlation is significant at the 0.01 level (two-tailed).

**The correlation is significant at the 0.05 level (two-tailed).
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To further study the changes of SUHII, NDVI, NDBI, and

NDWI along the urban-rural gradient, we calculated ΔSUHII,

ΔNDVI, ΔNDBI, and ΔNDWI (The mean SUHII, NDVI, NDBI,

and NDWI in built-up area minus the mean SUHII, NDVI,

NDBI, and NDWI values of different urban-rural gradient

zones), the change values of SUHII, NDVI, NDBI, and

NDWI, and the relationship between ΔSUHII, ΔNDVI,
ΔNDBI, and ΔNDWI with the urban-rural gradient

(Figure 7). The results showed that for ΔSUHII, in summer

and autumn, ΔSUHII is positively correlated with the urban-

FIGURE 4
The importance of each predictor variable in: (A) spring, (B) summer, (C) autumn, and (D)winter. The predictor values refers to the importance
and contribution of NDVI, NDBI, and NDWI.

FIGURE 5
Buffer map of distance from built-up area. Distance represents that from the built-up area, in km.
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rural gradient, with correlation coefficients of 0.498 and 0.139,

respectively, indicating that the greater the distance from the

built-up area, the greater the ΔSUHII, while in spring and winter,

ΔSUHII was negatively correlated with the urban-rural gradient,

with correlation coefficients of −0.128 and −0.124, respectively,

indicating that the greater the distance from the built-up area, the

smaller the ΔSUHII. For ΔNDVI, in spring, summer and

autumn, ΔNDVI was negatively correlated with the urban-

rural gradient, with correlation coefficients of−0.018, −0.080,

and −0.006, respectively, indicating that the greater the

distance from the built-up area, the smaller the ΔNDVI, but
the change trend was not large, while in winter, there was a

positive correlation between ΔNDVI and the urban-rural

gradient, and the correlation coefficient was 0.005, which also

showed that the variation trend of ΔNDVI along the urban-rural
gradient was small. For ΔNDBI, in spring, autumn and winter,

ΔNDBI had a negative correlation with the urban-rural gradient,

and the correlation coefficients were all very small, which

were −0.001, −0.002, and −0.009, respectively, while in winter,

there was a positive correlation between ΔNDBI and the urban-

rural gradient, with correlation coefficient of 0.023, indicating

that the variation of ΔNDBI along the urban-rural gradient was
still small. For ΔNDWI, in spring, autumn and winter, ΔNDWI

had a positive correlation with the urban-rural gradient, and the

correlation coefficient was very small, 0.003, 0.002, and 0.009,

respectively, while in summer, ΔNDWI was negatively correlated

with the urban-rural gradient, and the correlation coefficient

was −0.038, indicating that ΔNDWI also changed little along the

urban-rural gradient.

Discussion

Urban built-up area extraction

At present, most night light data selected for the extraction of

built-up areas are DMSP/OLS and NPP-VIIRS (Yu et al., 2021;

Zheng et al., 2021), which have low spatial resolution. However,

the Luojia-1A data used in this study had a spatial resolution of

130 m, and studies have showed that Luojia-1A data was more

FIGURE 6
Variations of surface urban heat island (SUHII), normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and
normalized difference water index (NDWI) along the urban-rural gradient in: (A) spring, (B) summer, (C) autumn, and (D)winter. Distance represents
that from the built-up area, in km.
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sensitive in detecting new emerging urban built-up areas, which

can better reflect the spatial structure of urban system and

achieve a higher extraction accuracy (Li et al., 2018; Hu et al.,

2021b; Wang and Shen, 2021). In addition, this study adopted an

object-oriented segmentation method for determining the

optimal threshold. Comparing the built-up area data in the

statistical yearbook, the mean deviation and standard

deviation of the two were 0.0054 and 0.0076, respectively,

which greatly improved the accuracy of the built-up area

extraction.

Correlations between surface urban heat
island and normalized differences in
vegetation index, built-up index, and
normalized differences in water index

Recently, the UHI effect has attracted much attention with

the acceleration of urbanization. With the continuous

improvement of remote sensing technology, many scholars

have begun to explore the spatiotemporal changes, impact

mechanisms, and mitigation strategies of SUHI (Cosgrove

and Berkelhammer, 2018; Zhang, 2020;Liu et al., 2021a;

Schwaab et al., 2021). To explore the relationship between

SUHI and vegetation, water, bare soil, and impervious

surface, three indices (NDVI, NDBI, and NDWI) were

selected to analyze the seasonal differences in SUHII and the

relationships among them. To further study the differences of

dominant role of SUHII along the urban-rural gradient, this

study used ArcGIS software to create fishnet (the rectangular

cells) of 300 m, intersected the fishnet with the urban-rural

gradient, and counted the values of SUHII, NDVI, NDBI, and

NDWI corresponding to each fishnet, Finally, each fishnet was

selected according to the urban-rural gradient, and the

correlation between SUHII and NDVI, NDBI, and NDWI

was calculated by SPSS 24.0 software. The correlations

between SUHII and NDVI, NDBI, and NDWI at different

distances were shown in Table 5. Overall, the correlations

between NDBI, NDWI, and SUHII were significant, and

NDBI and SUHII showed a positive correlation regardless of

FIGURE 7
Correlation between ΔSUHII, ΔNDVI, ΔNDBI, and ΔNDWI, and the distance from the built-up area in: (A) spring, (B) summer, (C) autumn, and (D)
winter. Distance represents that from the built-up area, in km.
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TABLE 5 The correlation between SUHII and NDVI, NDBI, and NDWI on the urban-rural gradient in different seasons.

Distance (km) Season Spearman’s correlation coefficient

NDVI NDBI NDWI

SUHII 0 Spring .26* 49** −55**

Summer −26** 57** −63**

Autumn −30** 66** −66**

Winter 06** 05** −05**

1 Spring 42** 52** −63**

Summer −.06** 45** −50**

Autumn −04** 58** −58**

Winter 15** 02** −02**

2 Spring 54** 59** −69**

Summer 01 50** −50**

Autumn 04* 62** −62**

Winter 12** 20** −20**

3 SSpring 51** 56** −66**

Summer −10** 49** −52**

Autumn −01 60** −60**

Winter 04** 37** −37**

4 Spring 45** 59** −62**

Summer −06* 47** −45**

Autumn 03 63** −63**

Winter −02** 46** −46**

5 Spring 46** 62** −66**

Summer 05 53** −45**

Autumn 05 67** −67**

Winter −03** 43** −43**

6 Spring 44** 60** −60**

Summer −08* 51** −46**

Autumn 37** 28** −28**

Winter 04 68** −68**

7 Spring 29** 46** −46**

Summer −14* 48** −52**

Autumn −13** 72** −72**

Winter 01 39** −39**

8 Spring 39** 38** −42**

Summer −4** 47** −60**

Autumn −22** 63** −63**

Winter −01 50** −50**

9 Spring 46** 39** −43**

Summer −12 37** −61**

Autumn −11 64** −64**

Winter −13** 57** −57**

10 Spring −27 53* −86**

Summer −62** 08 −80**

Autumn −46* 61** −61**

Winter −14** 58** −58**

*The correlation is significant at the 0.05 level (two-tailed).

**The correlation is significant at the 0.01 level (two-tailed).
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FIGURE 8
The importance of each predictor variable in different seasons. Distance represents that from the built-up area, in km. The predictor values
refers to the importance and contribution of NDVI, NDBI, and NDWI.
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the season. NDWI and SUHII showed a negative correlation;

whereas, for NDVI, 52.4% showed a negative correlation with

SUHII, most of which occurred in summer and autumn, 47.6%

showed a positive correlation, and 25% showed a non-

significant correlation. Specifically, most within the range of

0–10 km from the built-up area, the dominant factor of SUHII

changes was partially consistent with the analysis results. That

is, in spring and summer, SUHII was more affected by water,

followed by buildings, and less affected by vegetation; whereas,

in autumn and winter, SUHII was more affected by water and

building, and less affected by vegetation. However, in summer

within 4 and 5 km and in spring within 6 km from the built-up

area, SUHII was more affected by buildings (−0.47, −0.53, and

0.60 respectively) than water and vegetation, and the effect of

water (−0.45, −0.45, and −0.60, respectively) was higher than

that of vegetation (−0.06, 0.05, and 0.44, respectively). In

autumn within 7 km from the built-up area, SUHII was

mostly affected by vegetation (correlation coefficient of 0.37)

followed by water and buildings (correlation coefficients of

0.28 and −0.28, respectively). In spring within 8 and 9 km and

in summer within 10 km, from the built-up area, the

correlations between vegetation and SUHII were higher than

those between buildings and water. In other urban-rural

gradients in different seasons, the dominant factors of SUHII

changes were consistent with the overall conclusions in the

results analysis. In addition, NDVI correlation with SUHII

showed a trend of first increasing and then decreasing along

the urban-rural gradient in spring, while in summer showed a

trend of first decreasing and then increasing, in autumn, except

for 0, 6 and 10 km from the built-up area, the absolute value of

the correlation coefficient was basically stable between 0 and

0.2, and in winter, the correlation coefficient was basically stable

between 0 and 0.2. For NDBI, its correlation with SUHII

showed a trend of first increasing and then decreasing in

spring along the urban-rural gradient and the inflection

point was within 5 km from the built-up area, in summer,

there was a trend of fluctuation and decline, and the inflection

point was also within 5 km from the built-up area, in autumn,

the correlation coefficient with SUHII was basically stable at

approximately 0.6, except for the significantly low value within

6 km from the built-up area, and in winter, there was a

fluctuating upward trend, and the maximum correlation

coefficient appeared within 6 km from the built-up area.

NDWI correlation with SUHII along the urban-rural

gradient showed a minimum value in spring except for 6 km

away from the built-up area, and the absolute value of the

remaining correlation coefficients was stable between 0.5 and

0.7, while in summer showed a trend of rising after fluctuation

and decline and the inflection point was 6 km away from the

built-up area, and in autumn and winter, its changing trend was

the same as that of NDBI. Therefore, the correlations between

NDVI, NDBI, and NDWI and SUHII showed significant

differences along the urban-rural gradient, and the main

inflection point was within 5–6 km from the built-up area.

Hence, for future urbanization construction, the urban layout

can be reasonably planned with reference to the role of different

FIGURE 9
The importance of each predictor variable in different seasons. Distance represents that from the built-up area, in km. The predictor values
refers to the importance and contribution of NDVI, NDBI, and NDWI.
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land use types on SUHI. However, our study have not

conducted in-depth research on the reasons for this

difference, and the effects of other factors such as land cover

and landscape pattern should also be considered in future

studies.

In Distance, 0 represents the built-up area, 1–10 represent the

distance from the built-up area, and in km.

The results of the importance of each variable (Figures 8, 9)

showed that: in spring, within 0, and 6 km from the built-up area,

NDWI was more important, followed by NDVI; at 7 and 8 km,

NDBI was more important, followed by NDVI, at 10 km, NDBI

contributed more, followed by NDVI, at 3, 4, 5, and 9 km, the

importance result was NDVI > NDBI > NDWI, at 1 km, the

importance result was NDVI > NDWI > NDBI, at 2 km, the

importance result was NDBI > NDVI > NDWI. In summer and

autumn, NDWI and NDVI contribute greatly, and in 63.6% of

cases, NDWI contributed more; in winter, only at 10 km, the

influence of NDBI was greater, followed by NDVI, while the rest

of the gradients were mainly contributed by NDVI and NDWI.

The cases where NDVI and NDWI were the most contributing

variables accounted for 50% each.

Although many studies have assessed the influencing

factors of SUHI, most have focused more on the simple

correlation between SUHI and various factors (Li and

Zhou, 2019; Varentsov et al., 2021; Liu et al., 2022), and

have not conducted in-depth research on the contribution of

each factor (Xiong et al., 2022). NDVI, NDBI, and NDWI do

not always show strong importance in different seasons and

different gradients in this paper, which has important

reference significance for understanding the influencing

factors of SUHI.

Limitations

This study analyzed the seasonal differences of SUHII and

its dominant factors in different seasons. In addition, the

changes in SUHII, NDVI, NDBI, and NDWI in different

urban‒rural gradients were analyzed, which provided an

important insights into mechanism of SUHII and

identifying appropriate mitigation strategies. However, this

study has some limitations. In the extraction of built-up

areas, we used Luojia-1A data, and the resolution was

increased to 130 m. However, the resolution was still not

sufficiently high, hence higher-precision data should be

considered for cross-extraction in the future. Secondly, due

to the long-term revisit period of the Landsat data, only one

period of seasonal data in the study area could be selected for

analysis, and data with higher temporal resolution should be

considered for research in the future. Finally, since the

Landsat data were only from the daytime, this study only

considered seasonal differences, and hence diurnal

differences should be considered in the future.

Conclusion

Since the beginning of the 21st century, China’s urbanization

process has accelerated, especially in coastal cities. As a typical coastal

city in the Liaoning Province, Dalian City has experienced a surge in

urban population and a significant UHI effect. Based on Luojia-1A,

statistical yearbook, and Landsat eight remote sensing image data,

this study analyzed the seasonal differences in SUHI and remote

sensing indices along the urban-rural gradient. The conclusions were

as follows:

The SUHII differed among seasons. In the urban built-up area,

the mean SUHI intensity (SUHII) decreased from that in summer

(2.74°C) > autumn (1.65°C) > winter (0.28°C) > spring (−0.79°C),

while the maximum (25.34°C) and minimum (−19.73°C) SUHII

values appeared in autumn and spring, respectively.

Overall, NDBI and SUHII showed positive correlations,

while NDWI and SUHII showed negative correlations in all

seasons. Whereas, NDVI showed positive correlations in spring,

but negative correlations in summer, autumn and winter. In all

seasons, buildings enhanced UHI, while water weakened UHI,

whereas vegetation enhanced UHI in winter and spring and

weakened UHI in summer and autumn.

SUHII, NDVI, NDBI, and NDWI showed differences along the

urban-rural gradient. In summer and autumn, SUHII decreased

along the urban-rural gradient, with the largest change in summer

(2.74°C to −2.74°C), while that in spring was lower (−1 and 1°C). In

winter, SUHII showed a trend of first decreasing and then increasing

with an increase along the urban-rural gradient, with an overall

increase of 0.50°C. Except in spring, NDVI increased from 0.09 to

0.59 with an increase in the distance from built-up areas. In other

seasons, NDVI, NDBI, and NDWI remote sensing indices changed

little along the urban-rural gradient and were all within 0.2.
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