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Abstract: Due to the differences in land cover and natural surroundings within cities, residents in
various regions face different thermal risks. Therefore, this study combined multi-source data to
analyze the relationship between urban heat risk and local climate zones (LCZ). We found that in
downtown Shenyang, the building-type LCZ was mainly found in urban centers, while the natural-
type LCZ was mainly found in suburbs. Heat risk was highest in urban centers, gradually decreasing
along the suburban direction. The thermal risk indices of the building-type LCZs were significantly
higher than those of the natural types. Among the building types of LCZs, LCZ 8 (open middle
high-rise) had the highest average thermal risk index (0.48), followed by LCZ 3 (0.46). Among the
natural types of LCZs, LCZ E (bare rock and paved) and LCZ F (bare soil and sand) had the highest
thermal risk indices, reaching 0.31 and 0.29, respectively. This study evaluated the thermal risk of
the Shenyang central urban area from the perspective of LCZs and combined it with high-resolution
remote sensing data to provide a reference for thermal risk mitigation in future urban planning.

Keywords: local climate zones; land surface temperature; single-window algorithm; heat risk index;
Shenyang

1. Introduction

Widespread urbanization and urban population increase have significantly changed
the urban thermal environment and produced a severe urban heat island (UHI) effect [1].
This phenomenon describes the higher temperatures in urban areas than in the surrounding
rural areas. Numerous research studies report that the UHI effect may lead to major
problems such as decrease of air quality, increase of energy consumption, and change of
vegetation phenology [2–4]; moreover, the UHI effect may be harmful to humans. Increased
risks to mental health and well-being are associated with climate-sensitive health outcomes
and systems caused by climate change [5,6]. An increased frequency of extreme heat
events exacerbates health risks associated with cardiovascular disease, impairs agricultural
productivity, and increases food insecurity in low-income areas [7–9]. Therefore, in the
backdrop of frequent extreme heat events, studying the UHI effect and its associated
thermal risks is necessary [10,11].

Due to differences in the development status of cities, the UHI effect and thermal
risk status within cities differ. To better reflect the differences in heat island effects under
different land surfaces, Stewart and Oke [12] proposed a regime of local climate zones
(LCZs) that quantifies differences in land cover, composition, materials, and human activity
to classify urban sub surfaces into 17 categories. The LCZ system has greatly promoted a
comparative study of global UHI [13–15]. Regular and irregular grids are the main methods
of LCZ mapping, which must be realized by quantifying the corresponding indicators. For
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example, the World Urban Database and access portal tools are used to construct training
samples for supervised classification and classify remote sensing images with regular
grids to achieve LCZ mapping [16]. The irregular grid approach usually requires detailed
building plan data [17–19]. With advances in remote sensing technology, UHI studies
from the perspective of LCZs have predominantly focused on surface UHIs. The research
scale involves global, regional, and urban agglomerations and individual cities [20–22]; for
example, Yang et al. [23] explored the surface temperature of various sized cities based on
LCZs, using the Pearl River Delta urban agglomeration as the study area.

The 2021 World Risk Index reveals that China has a hazard index of 5.87%, an exposure
of 14.29%, and a thermal vulnerability of 41.08% [24]. Early studies on heat vulnerability
and exposure emphasized the role of socio-demographic factors, such as age, sex, and edu-
cation, but this approach often failed to reflect the spatial heterogeneity of the population
distribution across the entire range [25–27]. In addition, others have evaluated thermal
vulnerability by calculating physiologically equivalent temperatures or thermal comfort
indices [28–30]. With the diversity of data acquisition, biological variables such as land
surface temperature (LST), land cover, and environmental factors were included in these
studies [31,32]. Combining LST data simultaneously can improve the understanding of
changes in the risk of extreme heat within cities, whereas land cover and environmental
factors can better reflect people’s living environments [33]. Therefore, many scholars have
conducted research on thermal risk based on the three components of the Clayton Triangle,
namely, thermal hazard, exposure, and vulnerability, and different studies have adopted
several indicators to quantify the three components [34,35]. For example, the number
of days of extreme high temperatures and LST were used to represent the construction
of the thermal hazard index, population density data were used to measure the thermal
exposure index, and the elderly population combined with environmental factors were
used to represent the thermal vulnerability index. Finally, the overall thermal risk index
was calculated using weighted or unweighted methods to assess the thermal risk in the
study area [36,37]. Therefore, based on the framework of the Clayton Triangle’s three
components, this study used LST, population density, and people vulnerable to heat to
represent heat hazard, exposure, and vulnerability, respectively, and then obtained the
thermal risk index.

Some scholars have considered environmental factors while constructing a thermal risk
index [38], and differences in heat health risk between urban, suburban, and rural areas have
been analyzed [39]. Dong et al. [38] assessed the thermal risk under the Beijing heat island
effect and found that impervious water was highly correlated with thermal health risk.
Upon studying the thermal risk of Chongqing, Zhang et al. [40] combined vegetation, water
bodies, and slopes to build a thermal vulnerability index, demonstrating consideration of
differences in human bodies and the surrounding environment. In addition, the vector
model has been used more frequently than the grid model to assess thermal risk. For
example, Chen et al. [41] considered night light, vegetation index, digital elevation model,
and other factors to evaluate the thermal risk of the Yangtze River Delta on a 250 m × 250 m
grid but not the differences in the impact of land cover on thermal risk within cities.
Jiang et al. [42] evaluated the thermal risk of Los Angeles on a 1 km scale by dimensionality
reduction of the GEOS LST data. In addition, owing to the limitation of the spatial resolution
of multi-source data, the evaluation of the thermal risk index cannot determine an optimal
spatial scale. Most research on thermal risk is combined with statistical data, and the
scale of statistical data is limited to the administrative scope, which often requires spatial
quantification using an interpolation method [36]. Therefore, combined with existing
multi-source data, this study investigates the thermal risk distribution from a scale of
100 m.

This study used the downtown area of Shenyang as the research object and applied
the LCZ system to evaluate its thermal risk under different LCZ types and determine the
distribution law of thermal risk among LCZs. The process consisted of three parts: (1) a
grid of 100 was constructed, LCZ was divided, and LCZ mapping was conducted for the
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central urban area of Shenyang; (2) LST, population density, and statistical yearbook data
were combined to construct the thermal risk index and conduct spatial visualization; and
(3) spatial superposition of the two was conducted to analyze the thermal risk differences
under different LCZs in Shenyang. Overall, the study can provide a reference for mitigating
the heat island effect, plan reasonable urban land use, and improve urban livability.

2. Materials and Methods
2.1. Study Area

Shenyang is located at 41◦48′ N, 123◦25′ E in the southern part of northeast China and
in the central part of Liaoning Province (Figure 1). It is a central city in northeast China
approved by the State Council. In 2021, the total area of Shenyang was approximately
12,860 km2, with a permanent population of 9,118,000. In 2022, the People’s Government of
Shenyang City issued the Action Plan for Building Shenyang into a National Central City to
support Shenyang in accelerating the construction of a national central city and effectively
enhancing its comprehensive strength and regional influence. This study selected Tiexi,
Yuhong, Huanggu, Hunnan, Shenhe, Dadong, Heping, Shenbei New, and Sujiatun districts
as the research areas. The demographic data of 2020 shows that 79% of the population of
Shenyang is living in the central urban area; therefore, local residents are more vulnerable
to the threat of high temperature.
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Figure 1. Location of study area.

2.2. Data

The data used for the study are shown in Table 1. LST inversion was conducted using
Landsat data, and the entire process was realized using ENVI 5.3 software. The thermal
risk index was calculated by combining population density and demographic data. The
building-type LCZs were divided by building vector data, whereas the natural-type LCZs
were divided by combining land use data. Sobrino et al. [43] demonstrated that a resolution
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of 100 m can appropriately reflect the LST differences between communities. At the same
time, in order to match the world population density data, this study resampled the LST,
and then analyzed it based on a 100-m grid. The whole research process is shown in
Figure 2.

Table 1. Data sources and description.

Data Types Time Resolution Sources

Landsat-8 2020.7.22 30 m http://www.gscloud.cn/
(accessed date: 21 October 2022)

Build data 2018 - https://map.baidu.com/
(accessed date: 21 October 2022)

Land use data 2018 30 m http://doi.org/10.5281/zenodo.4417809
(accessed date: 26 October 2022)

WorldPop data 2020 100 m https://www.worldpop.org/
(accessed date: 21 October 2022)

Socioeconomic and
statistical data 2020 - http://tjj.shenyang.gov.cn/

(accessed date: 24 October 2022)
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Figure 2. Research flowchart.

2.3. Methods
2.3.1. LCZ Classification

Stewart and Oke [11] divide the entire LCZ system into architectural and natural LCZs.
Therefore, combining with the natural conditions of the downtown area of Shenyang,
relevant indices were calculated to divide the building-type LCZ, and the calculation
formula is shown in Table 2. In addition, the classification of natural types was carried
out based on land use data, and the whole process was realized in Arcgis10.5. Finally, the
two were combined to obtain the final LCZ drawing (Table 3), in which the open type
represents building density greater than 0.4, and the compact type represents building
density less than 0.4.

http://www.gscloud.cn/
https://map.baidu.com/
http://doi.org/10.5281/zenodo.4417809
https://www.worldpop.org/
http://tjj.shenyang.gov.cn/
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Table 2. Calculation of urban form parameters.

Index Calculate Formula Description

Building density (BD) BD = Sbuild
Sarea

Sbuild represents the building base area in
the unit grid, Sarea represents the grid area

Building height (BH) BH =∑N
I=1 HI

N
HI is the height of i buildings in the grid, N

is the number of all buildings in the grid

Table 3. LCZ types.

Building LCZs Explanation Nature LCZs Explanation

LCZ 1 Compact super-high-rise
(Above 12 floors) LCZ A Dense trees

LCZ 2 Compact high-rise
(10–12 floors) LCZ B Scattered trees

LCZ 3 Compact middle-high-rise
(7–9 floors) LCZ C Bush

LCZ 4 Compact mid-rise
(4–6 floors) LCZ D Grass

LCZ 5 Compact low-rise
(1–3 floors) LCZ E Bare rock and paved

LCZ 6 Open super-high-rise
(Above 12 floors) LCZ F Bare soil and sand

LCZ 7 Open high-rise
(10–12 floors) LCZ G Water

LCZ 8 Open middle-high-rise
(7–9 floors)

LCZ 9 Open mid-rise
(4–6 floors)

LCZ 10 Open low-rise
(1–3 floors)

2.3.2. Calculation of Heat Risk Index

Different indicators have been used to quantify thermal risk indices, but they are
all based on the framework of the Clayton Triangle. In this framework, thermal hazard,
exposure, and vulnerability together constitute the thermal risk index. In this study, LST,
population density, and susceptible population were respectively used to represent heat
hazard, exposure, and vulnerability. However, existing studies do not have the most
appropriate weight to construct the thermal risk index [39]. Therefore, the three indices of
thermal hazard, thermal vulnerability, and thermal exposure are assigned the same weight
in this study so as to obtain the final thermal risk index of the study area.

Heat Hazard Index

In terms of spatial and temporal resolution, the use of satellite remote sensing data
has more advantages than the weather station interpolation method describing heat loss.
Therefore, in this study, Landsat data was selected, and a single window algorithm was
used to invert the LST and quantify the thermal hazard index by referring to relevant
literature. Figure 3 shows the final land surface temperature inversion results

Heat Vulnerability Index

Many studies have shown that the elderly and children are the most vulnerable to heat
owing to their special physiological conditions, resulting in a low tolerance to heat [44].
In addition, the Intergovernmental Panel on Climate Change (IPCC) report on thermal
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vulnerability was based on sensitivity and capacity. Considering the existing literature
combined with the availability of data and consistency of spatial resolution, this study
expressed the sensitivity by counting the population vulnerable to heat threats (children
aged <15 years and elderly aged >65 years) and mapped it into the grid with the population
density data (Figure 4).
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Heat Exposure Index

The IPCC interpretation of heat exposure describes populations that may be adversely
affected by high temperature. In combination with existing studies, this study measured
heat exposure using population density as an indicator, quantified it using WorldPop
gridded population density data, and used regression between population density data
and demographic data to verify its accuracy. Increasing population density assumes that
the heat exposure index increases from 0 to 1. See Figures 5 and 6 for comprehensive spatial
distribution and accuracy verification.
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Finally, the three indices were normalized. As no standard weight was established,
the same weight was assigned to the three indices, and then the final thermal risk index
was calculated.

3. Results
3.1. LCZ Classification

Figure 7 shows the LCZ classification results for the entire study area. In terms of
spatial distribution, building-type LCZs are principally located in the city center and along
both banks of the Hun River, which is consistent with urban spatial planning. However,
significantly more buildings were on the northern side of the Hun River than on the
southern side, indicating a large space for development in realizing the coordinated and
interactive development of the two sides of the urban inland river. For natural-type LCZs,
LCZ A was distributed in the southeast of the study area, in relation to the ecological source
planning of the southeastern hilly area of Shenyang, while the northern part of the study
area was mainly composed of LCZ C. In terms of the number of building types (Figure 8),
LCZ 10 had the highest proportion (15.23%), indicating that the study area was mainly
dominated by open low-rise buildings, while LCZ 2 had the lowest proportion (0.09%).
Among the natural types of LCZs, LCZ C was the largest (39.09%), followed by LCZ A
(26.10%).
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3.2. Heat Risk Index

In this study, the thermal hazard, exposure, and vulnerability indices were used to
construct the final thermal risk index. The thermal hazard index was expressed by the
inversion of Landsat 8 data, and the accuracy of the inversion results was verified by
combining them with meteorological station data (Figure 5). The heat exposure index
was represented by the population density data and verified using population statistics.
The verified results showed that the R2 was 0.70. Further, the representative thermal
vulnerability index of the population vulnerable to heat stress was used to calculate the
spatial distribution characteristics of the overall thermal risk in the study area (Figure 9).
As shown in the figure, the thermal risk index was the highest in the urban center and
gradually decreased from the center to the surrounding area. In addition, the thermal
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risk index of the construction area on the northern side of the Hun River was significantly
higher than that on the southern side because many old urban areas of Shenyang were on
the northern side of the Hun River, which was often well built and populous. According
to Figure 9, the thermal risk index of the building-type LCZ was higher than that of the
natural-type LCZ.
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In this study, the LCZ types and thermal risk indices were superimposed to analyze
the thermal risk differences caused by different LCZ types (Figure 10). The results revealed
that the thermal risk indices of LCZ building types were significantly higher than those of
natural types (Table 4). Within the building types, LCZ 8, which included open middle high-
rise buildings, had the highest average thermal risk index (0.48). The second was LCZ 3,
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which comprised compact middle high-rise buildings (0.46), and with decreasing building
height and density, the thermal risk index gradually decreased. Among the natural-type
LCZs, LCZ E (bare rock and paved areas) and LCZ F (bare soil and sandy areas) had the
highest thermal risk indices, reaching 0.31 and 0.29, respectively. For other natural types,
the thermal risk indices were stable between 0.20 and 0.21.
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Figure 10. Heat risk index differences among different LCZ types.

Table 4. Statistical results of heat risk index of different LCZ types.

LCZ Types Min Max Avg Std

LCZ 1 0.21 0.91 0.42 0.24

LCZ 2 0.20 0.89 0.43 0.25

LCZ 3 0.21 0.90 0.46 0.20

LCZ 4 0.20 0.90 0.40 0.09

LCZ 5 0.18 0.89 0.30 0.18

LCZ 6 0.20 0.89 0.35 0.21

LCZ 7 0.20 0.88 0.38 0.24

LCZ 8 0.20 0.91 0.48 0.22

LCZ 9 0.20 0.90 0.41 0.02

LCZ 10 0.14 0.92 0.27 0.08

LCZ A 0.00 0.69 0.21 0.02

LCZ B 0.17 0.28 0.20 0.03

LCZ C 0.00 0.66 0.20 0.25

LCZ D 0.17 0.33 0.21 0.02

LCZ E 0.13 0.89 0.31 0.15

LCZ F 0.17 0.74 0.29 0.05

LCZ G 0.00 0.87 0.21 0.06
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4. Discussion

In this study, the LCZ system was used to classify Shenyang City. This framework
classifies the urban surface based on the differences in ground cover, land nature, and
human activity, and has been widely used in studying the UHI effect. Many scholars have
mapped LCZs at grid and community scales to analyze the differences between thermal
environments [45–48]. However, while analyzing the grid scale, the consistency of multi-
source data in terms of spatial resolution should be considered. When urban heterogeneity
is high, resampling and other methods can easily cause loss of information. Obtaining
timely statistical data on administrative boundary changes and community levels on a
community scale is difficult. The General Spatial Planning of Shenyang City (2021–2035)
Report advises that, while optimizing the overall spatial pattern, the spatial structure of the
central urban area should be adjusted to form “one main area and three secondary areas,
one riverbank, one corridor, and two axes.” Therefore, a grid of 100 m × 100 m was used to
divide the LCZ in Shenyang.

Against the background of global warming, the likelihood of urban residents receiving
heat threats is increasing. Presently, most studies on thermal risk are concentrated in
developed countries, whereas relevant studies show that tropical areas and developing
countries are more susceptible to the impact of thermal risk [49]. Particularly, the education
and medical systems in urban areas attract the younger generations to cities, while the
older population remains in rural areas. Additionally, as medical resources and economic
conditions in rural areas lag far behind those in urban areas, the elderly are more vulnerable
to the threat of heat.

Gao et al. [50] considered the number of air conditioners in constructing a final
thermal risk index. Traditional thermal risk assessment usually combines several different
vulnerable groups into a general thermal risk index, which commonly includes temperature,
population, and socioeconomic indices. However, owing to differences in the scale of
statistical data, using statistical methods for index calculations is usually necessary. For
example, in China, population statistics are usually conducted according to administrative
levels and are published on various government websites. Acquiring population data at
a level below the county level is difficult, and conducting quantitative spatial analysis is
challenging. Therefore, this study combined world population density data with a spatial
resolution of 100 m and LST data and proportionally placed the elderly population in
a grid to better describe the spatial distribution characteristics of heat risk. The spatial
pattern of thermal risk was consistent with the surface temperature and population density
layers, indicating that thermal hazard and exposure were the leading factors to an increased
thermal risk index. Finally, this study analyzed the differences among the thermal risks
from the perspective of LCZ because the system better reflects these differences in the
underlying urban surfaces. Compared with using a single index to construct a thermal risk
index, LCZ classification more completely expresses regional landscape differences. To
avoid urban thermal risk, more targeted spatial information can be provided to improve
the comparability of thermal risk assessments between different cities.

This study analyzed urban thermal risk from the perspective of LCZ, but some defi-
ciencies still need further analysis and research. First, because of the failure to obtain better
quality data, this study only used building height and density to divide the building-type
LCZs. Higher quality building data should be used for classification, in future studies.
Second, to calculate the thermal risk index, this study only used three indices, which may
have certain limitations compared with the multi-index quantification performed by other
scholars. This is because spatially quantifying the statistics is difficult. In future studies,
more emphasis should be given to data with spatial characteristics to better calculate the
spatial distribution of thermal risk.
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5. Conclusions

This study examined the thermal risk of Shenyang from the viewpoint of LCZ by
combining LST, population density, and demographic data and analyzing the differences
in thermal risk among different LCZs. The main findings are as follows:

(1) In terms of spatial distribution, the LCZs of building types were primarily in the
center of the study area and distributed along both sides of the Hun River, with LCZ 10
accounting for the largest proportion. Natural-type LCZs, were mainly dominated by LCZ
A and LCZ C in the southwestern and northern sides of the study area, respectively.

(2) The results of the thermal risk index revealed that the thermal risk of the urban
center was the highest, and it gradually decreased toward the periphery. The building-type
LCZs had significantly higher thermal risk indices than the natural types, with LCZ 8 and
LCZ 3 having the highest average thermal risk indices. Among the natural-type LCZs, LCZ
E and LCZ F had the highest thermal risk indices.

The findings of this study can serve as a reference to mitigate the UHI effect and
effectively plan urban land use.

Author Contributions: Conceptualization, J.X., Z.S. and J.Y.; methodology, J.X.; software, J.X. and
Z.S.; validation, J.X. and Z.S.; formal analysis, J.X.; investigation, J.X.; resources, J.X.; data curation,
J.X., Z.S. and R.Y.; writing—original draft preparation, J.X.; writing—review and editing, J.X., Y.J., C.J.,
X.X. and J.X.; visualization, J.X.; supervision, J.X.; project administration, J.Y.; funding acquisition, J.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Liaoning Provincial Social Science Planning Fund 2022
project “Research on Modernization Framework and Indicator System Design of Governance Ca-
pacity of Fishing Villages in the New Era” (L22BFX005); the economic and social Development
Research Project of Liaoning Province 2023 “Research on the Construction of Evaluation Index Sys-
tem of Rural Governance System Modernization and Governance Capacity of Liaoning Province”
(2023lsljdybkt-005); “Evaluation Study on Fishery Modernization and Sustainable Development in
Liaoning Province”, a basic scientific research project of Education Department of Liaoning Province
in 2022; and the Liaoning Social Science Planning Fund project “Research on Legal Protection of
Personal Data in the Era of Artificial Intelligence” (NO:L19BFX013) in 2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original datasets used in the study are included in the article.
Further inquiries can be directed to the corresponding author.

Acknowledgments: This research was funded by the Liaoning Provincial Social Science Planning
Fund 2022 project “Research on Modernization Framework and Indicator System Design of Gover-
nance Capacity of Fishing Villages in the New Era” (L22BFX005); the economic and social Develop-
ment Research Project of Liaoning Province 2023 “Research on the Construction of Evaluation Index
System of Rural Governance System Modernization and Governance Capacity of Liaoning Province”
(2023lsljdybkt-005); ”Evaluation Study on Fishery Modernization and Sustainable Development in
Liaoning Province”, a basic scientific research project of Education Department of Liaoning Province
in 2022; and the Liaoning Social Science Planning Fund project “Research on Legal Protection of
Personal Data in the Era of Artificial Intelligence” (NO:L19BFX013) in 2019.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, W.; Hou, J.; Shen, X.; Xiang, R. Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot

Summer Days: A Case Study of Wuhan, China. Remote Sens. 2022, 14, 6084. [CrossRef]
2. Henao, J.J.; Rendon, A.M.; Salazar, J.F. Trade-off between Urban Heat Island Mitigation and Air Quality in Urban Valleys. Urban

Clim. 2020, 31, 100542. [CrossRef]
3. Yang, R.; Yang, J.; Wang, L.; Xiao, X.; Xia, J. Contribution of Local Climate Zones to the Thermal Environment and Energy

Demand. Front. Public Health 2022, 10, 992050. [CrossRef]
4. Yang, J.; Luo, X.; Jin, C.; Xiao, X. Spatiotemporal Patterns of Vegetation Phenology along the Urban-Rural Gradient in Coastal

Dalian, China. Urban For. Urban Green. 2020, 54, 126784. [CrossRef]

http://doi.org/10.3390/rs14236084
http://doi.org/10.1016/j.uclim.2019.100542
http://doi.org/10.3389/fpubh.2022.992050
http://doi.org/10.1016/j.ufug.2020.126784


Int. J. Environ. Res. Public Health 2023, 20, 3283 13 of 14

5. Aghamohammadi, N.; Fong, C.S.; Idrus, M.H.M.; Ramakreshnan, L.; Sulaiman, N.M. Environmental Heat-Related Health
Symptoms among Community in a Tropical City. Sci. Total Environ. 2021, 782, 146611. [CrossRef]

6. He, B.-J. Potentials of Meteorological Characteristics and Synoptic Conditions to Mitigate Urban Heat Island Effects. Urban Clim.
2018, 24, 26–33. [CrossRef]

7. Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers.
Sci. Total Environ. 2016, 569, 527–539. [CrossRef] [PubMed]

8. Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase
Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [CrossRef]

9. Milan, B.F.; Creutzig, F. Reducing Urban Heat Wave Risk in the 21st Century. Curr. Opin. Environ. Sustain. 2015, 14, 221–231.
[CrossRef]

10. Tan, K.; Qin, Y.; Du, T.; Li, L.; Zhang, L.; Wang, J. Biochar from Waste Biomass as Hygroscopic Filler for Pervious Concrete to
Improve Evaporative Cooling Performance. Constr. Build. Mater. 2021, 287, 123078. [CrossRef]

11. Zhang, G.; He, B.-J. Towards Green Roof Implementation: Drivers, Motivations, Barriers and Recommendations. Urban For.
Urban Green. 2021, 58, 126992. [CrossRef]

12. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Amer. Meteorol. Soc. 2012, 93, 1879–1900.
[CrossRef]

13. Chakraborty, T.; Lee, X. A Simplified Urban-Extent Algorithm to Characterize Surface Urban Heat Islands on a Global Scale and
Examine Vegetation Control on Their Spatiotemporal Variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [CrossRef]

14. Varquez, A.C.G.; Kanda, M. Global Urban Climatology: A Meta-Analysis of Air Temperature Trends (1960–2009). npj Clim. Atmos.
Sci. 2018, 1, 32. [CrossRef]

15. Li, N.; Wang, B.; Yao, Y.; Chen, L.; Zhang, Z. Thermal Contribution of the Local Climate Zone and Its Spatial Distribution Effect
on Land Surface Temperature in Different Macroclimate Cities. Remote Sens. 2022, 14, 4029. [CrossRef]

16. Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci.
2021, 9, 637455. [CrossRef]

17. Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia (Cecilia), J.; Jin, C.; Li, X. Understanding Land Surface Temperature Impact Factors Based on
Local Climate Zones. Sustain. Cities Soc. 2021, 69, 102818. [CrossRef]

18. Shi, Z.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C. Urban Ventilation Corridors and Spatiotemporal Divergence Patterns of Urban Heat
Island Intensity: A Local Climate Zone Perspective. Environ. Sci. Pollut. Res. 2022, 29, 74394–74406. [CrossRef]

19. Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Li, X.; Wang, S.; Xia, J.C. Exploring Thermal Comfort of Urban Buildings Based on Local
Climate Zones. J. Clean Prod. 2022, 340, 130744. [CrossRef]

20. Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of Land Cover Types, Meteorological Conditions,
Anthropogenic Heat and Urban Area on Surface Urban Heat Island in the Yangtze River Delta Urban Agglomeration. Sci. Total
Environ. 2016, 571, 461–470. [CrossRef]

21. Hou, H.; Su, H.; Liu, K.; Li, X.; Chen, S.; Wang, W.; Lin, J. Driving Forces of UHI Changes in China’s Major Cities from the
Perspective of Land Surface Energy Balance. Sci. Total Environ. 2022, 829, 154710. [CrossRef]

22. Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of Urban Morphological Characteristics on Thermal Environment. Sustain.
Cities Soc. 2021, 72, 103045. [CrossRef]

23. Yang, J.; Zhan, Y.; Xiao, X.; Xia, J.C.; Sun, W.; Li, X. Investigating the Diversity of Land Surface Temperature Characteristics in
Different Scale Cities Based on Local Climate Zones. Urban Clim. 2020, 34, 100700. [CrossRef]

24. Aleksandrova, M.; Balasko, S.; Kaltenborn, M.; Malerba, D.; Mucke, P.; Neuschäfer, O.; Radtke, K.; Prütz, R.; Strupat, C.; Weller,
D.; et al. Bündnis Entwicklung Hilft; WorldRiskReport 2021; Ruhr University Bochum—Institute for International Law of Peace
and Armed Conflict (IFHV): Bochum, Germany, 2021.

25. Johnson, D.P.; Stanforth, A.; Lulla, V.; Luber, G. Developing an Applied Extreme Heat Vulnerability Index Utilizing Socioeconomic
and Environmental Data. Appl. Geogr. 2012, 35, 23–31. [CrossRef]

26. Beckmann, S.K.; Hiete, M. Predictors Associated with Health-Related Heat Risk Perception of Urban Citizens in Germany. Int. J.
Environ. Res. Public Health 2020, 17, 874. [CrossRef]

27. Song, J.; Huang, B.; Kim, J.S.; Wen, J.; Li, R. Fine-Scale Mapping of an Evidence-Based Heat Health Risk Index for High-Density
Cities: Hong Kong as a Case Study. Sci. Total Environ. 2020, 718, 137226. [CrossRef]

28. Cheng, W.; Li, D.; Liu, Z.; Brown, R.D. Approaches for Identifying Heat-Vulnerable Populations and Locations: A Systematic
Review. Sci. Total Environ. 2021, 799, 149417. [CrossRef]

29. Li, L.; Zha, Y. Population Exposure to Extreme Heat in China: Frequency, Intensity, Duration and Temporal Trends. Sustain. Cities
Soc. 2020, 60, 102282. [CrossRef]

30. Yasumoto, S.; Jones, A.P.; Oyoshi, K.; Kanasugi, H.; Sekimoto, Y.; Shibasaki, R.; Comber, A.; Watanabe, C. Heat Exposure
Assessment Based on Individual Daily Mobility Patterns in Dhaka, Bangladesh. Comput. Environ. Urban Syst. 2019, 77, 101367.
[CrossRef]

31. Nayak, S.G.; Shrestha, S.; Kinney, P.L.; Ross, Z.; Sheridan, S.C.; Pantea, C.I.; Hsu, W.H.; Muscatiello, N.; Hwang, S.A. Development
of a Heat Vulnerability Index for New York State. Public Health 2018, 161, 127–137. [CrossRef]

32. Azhar, G.; Saha, S.; Ganguly, P.; Mavalankar, D.; Madrigano, J. Heat Wave Vulnerability Mapping for India. Int. J. Environ. Res.
Public Health 2017, 14, 357. [CrossRef] [PubMed]

http://doi.org/10.1016/j.scitotenv.2021.146611
http://doi.org/10.1016/j.uclim.2018.01.004
http://doi.org/10.1016/j.scitotenv.2016.06.119
http://www.ncbi.nlm.nih.gov/pubmed/27366983
http://doi.org/10.1073/pnas.1701762114
http://doi.org/10.1016/j.cosust.2015.08.002
http://doi.org/10.1016/j.conbuildmat.2021.123078
http://doi.org/10.1016/j.ufug.2021.126992
http://doi.org/10.1175/BAMS-D-11-00019.1
http://doi.org/10.1016/j.jag.2018.09.015
http://doi.org/10.1038/s41612-018-0042-8
http://doi.org/10.3390/rs14164029
http://doi.org/10.3389/fenvs.2021.637455
http://doi.org/10.1016/j.scs.2021.102818
http://doi.org/10.1007/s11356-022-21037-9
http://doi.org/10.1016/j.jclepro.2022.130744
http://doi.org/10.1016/j.scitotenv.2016.07.012
http://doi.org/10.1016/j.scitotenv.2022.154710
http://doi.org/10.1016/j.scs.2021.103045
http://doi.org/10.1016/j.uclim.2020.100700
http://doi.org/10.1016/j.apgeog.2012.04.006
http://doi.org/10.3390/ijerph17030874
http://doi.org/10.1016/j.scitotenv.2020.137226
http://doi.org/10.1016/j.scitotenv.2021.149417
http://doi.org/10.1016/j.scs.2020.102282
http://doi.org/10.1016/j.compenvurbsys.2019.101367
http://doi.org/10.1016/j.puhe.2017.09.006
http://doi.org/10.3390/ijerph14040357
http://www.ncbi.nlm.nih.gov/pubmed/28358338


Int. J. Environ. Res. Public Health 2023, 20, 3283 14 of 14

33. Bao, J.; Li, X.; Yu, C. The Construction and Validation of the Heat Vulnerability Index, a Review. Int. J. Environ. Res. Public Health
2015, 12, 7220–7234. [CrossRef]

34. Zheng, M.; Zhang, J.; Shi, L.; Zhang, D.; Pangali Sharma, T.P.; Prodhan, F.A. Mapping Heat-Related Risks in Northern Jiangxi
Province of China Based on Two Spatial Assessment Frameworks Approaches. Int. J. Environ. Res. Public Health 2020, 17, 6584.
[CrossRef] [PubMed]

35. Pramanik, S.; Punia, M.; Yu, H.; Chakraborty, S. Is Dense or Sprawl Growth More Prone to Heat-Related Health Risks? Spatial
Regression-Based Study in Delhi, India. Sustain. Cities Soc. 2022, 81, 103808. [CrossRef]

36. Ho, H.C.; Knudby, A.; Huang, W. A Spatial Framework to Map Heat Health Risks at Multiple Scales. Int. J. Environ. Res. Public
Health 2015, 12, 16110–16123. [CrossRef]

37. Howe, P.D.; Marlon, J.R.; Wang, X.; Leiserowitz, A. Public Perceptions of the Health Risks of Extreme Heat across US States,
Counties, and Neighborhoods. Proc. Natl. Acad. Sci. USA 2019, 116, 6743–6748. [CrossRef]

38. Dong, J.; Peng, J.; He, X.; Corcoran, J.; Qiu, S.; Wang, X. Heatwave-Induced Human Health Risk Assessment in Megacities Based
on Heat Stress-Social Vulnerability-Human Exposure Framework. Landsc. Urban Plan. 2020, 203, 103907. [CrossRef]

39. Dong, W.; Liu, Z.; Zhang, L.; Tang, Q.; Liao, H.; Li, X. Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island.
Sustainability 2014, 6, 7334–7357. [CrossRef]

40. Zhang, W.; Zheng, C.; Chen, F. Mapping Heat-Related Health Risks of Elderly Citizens in Mountainous Area: A Case Study of
Chongqing, China. Sci. Total Environ. 2019, 663, 852–866. [CrossRef] [PubMed]

41. Chen, Q.; Ding, M.; Yang, X.; Hu, K.; Qi, J. Spatially Explicit Assessment of Heat Health Risk by Using Multi-Sensor Remote
Sensing Images and Socioeconomic Data in Yangtze River Delta, China. Int. J. Health Geogr. 2018, 17, 15. [CrossRef] [PubMed]

42. Jiang, Y.; Fu, P.; Weng, Q. Downscaling GOES Land Surface Temperature for Assessing Heat Wave Health Risks. IEEE Geosci.
Remote Sens. Lett. 2015, 12, 1605–1609. [CrossRef]

43. Sobrino, J.A.; Oltra-Carrio, R.; Soria, G.; Bianchi, R.; Paganini, M. Impact of Spatial Resolution and Satellite Overpass Time on
Evaluation of the Surface Urban Heat Island Effects. Remote Sens. Environ. 2012, 117, 50–56. [CrossRef]

44. O’Sullivan, K.C.; Chisholm, E. Baby It’s Hot Outside: Balancing Health Risks and Energy Efficiency When Parenting during
Extreme Heat Events. Energy Res. Soc. Sci. 2020, 66, 101480. [CrossRef]

45. Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI Analysis Using Local Climate Zones-A
Comparison of 50 Cities. Urban Clim. 2019, 28, 100451. [CrossRef]

46. Li, L.; Zhao, Z.; Wang, H.; Shen, L.; Liu, N.; He, B.-J. Variabilities of Land Surface Temperature and Frontal Area Index Based on
Local Climate Zone. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 2166–2174. [CrossRef]

47. Yang, J.; Wang, Y.; Xiao, X.; Jin, C.; Xia (Cecilia), J.; Li, X. Spatial Differentiation of Urban Wind and Thermal Environment in
Different Grid Sizes. Urban Clim. 2019, 28, 100458. [CrossRef]

48. Guo, A.; Yang, J.; Xiao, X.; Xia (Cecilia), J.; Jin, C.; Li, X. Influences of Urban Spatial Form on Urban Heat Island Effects at the
Community Level in China. Sustain. Cities Soc. 2020, 53, 101972. [CrossRef]

49. Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot
Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [CrossRef]

50. Gao, Y.; Chan, E.Y.Y.; Lam, H.C.Y.; Wang, A. Perception of Potential Health Risk of Climate Change and Utilization of Fans and
Air Conditioners in a Representative Population of Hong Kong. Int. J. Disaster Risk Sci. 2020, 11, 105–118. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/ijerph120707220
http://doi.org/10.3390/ijerph17186584
http://www.ncbi.nlm.nih.gov/pubmed/32927631
http://doi.org/10.1016/j.scs.2022.103808
http://doi.org/10.3390/ijerph121215046
http://doi.org/10.1073/pnas.1813145116
http://doi.org/10.1016/j.landurbplan.2020.103907
http://doi.org/10.3390/su6107334
http://doi.org/10.1016/j.scitotenv.2019.01.240
http://www.ncbi.nlm.nih.gov/pubmed/30738265
http://doi.org/10.1186/s12942-018-0135-y
http://www.ncbi.nlm.nih.gov/pubmed/29801488
http://doi.org/10.1109/LGRS.2015.2414897
http://doi.org/10.1016/j.rse.2011.04.042
http://doi.org/10.1016/j.erss.2020.101480
http://doi.org/10.1016/j.uclim.2019.01.005
http://doi.org/10.1109/JSTARS.2022.3153958
http://doi.org/10.1016/j.uclim.2019.100458
http://doi.org/10.1016/j.scs.2019.101972
http://doi.org/10.1016/S0140-6736(21)01208-3
http://doi.org/10.1007/s13753-020-00256-z

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 
	LCZ Classification 
	Calculation of Heat Risk Index 


	Results 
	LCZ Classification 
	Heat Risk Index 

	Discussion 
	Conclusions 
	References

