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ABSTRACT
North China Plain is the largest agricultural production center
in China and wheat-maize rotation is a widespread cultivation
practice in this area. As gross primary production (GPP) is a proxy
of land productivity, research on its spatial-temporal dynamics
helps understand the variation of grain production in wheat-
maize rotation. Here, Moderate Resolution Imaging
Spectroradiometer (MODIS) data and ground observation data
were combined to drive Vegetation Photosynthesis Model (VPM)
in GPP estimation over wheat-maize rotation area during
2000–2015. Annual GPP has increased by 540.95 g C m�2 year�1

from 2000 to 2015, while total annual GPP has grown �150%
than that of 2000. Moreover, annual GPP showed an increasing
trend in the consecutively wheat-maize rotation area between
2000 and 2015. A strong linear relationship between GPP
estimates and grain production demonstrated the potential of
using VPM model to evaluate grain production in wheat-maize
rotation area of Henan province, China.
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1. Introduction

Food security is under constant pressure from increasing the human population and
environmental changes, which is a great challenge for sustainable development (Mc
Carthy et al. 2018). Timely and accurate estimation of grain production benefits evidence-
informed policy and decisions on adequately managing and distributing the food supply
that reduces food security threats. As the gross primary production (GPP) is used to
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quantify the total amount of energy or biomass produced through vegetation photosyn-
thesis in a given length of time (Spielmann et al. 2019), productivity in agricultural eco-
systems is key to understand their role of capturing energy (carbon) in the form of food
products, e.g. agricultural yield. GPP of agricultural ecosystems, a proxy of land product-
ivity (Ma et al. 2020), is the amount of total carbon assimilated by the planted crops and
the driver of useful biomass production.

Obtaining regional information of grain production through surveys is relatively popu-
lar, but they are of fairly high cost and still have associated uncertainties (Gallego et al.
2010). Alternatively, crop production or crops GPP estimated from remotely-sensed data
has been widely used among different management practices. GPP of globally widespread
crops, such as wheat, maize, rice, soybeans, and rapeseed, have been investigated exten-
sively in many studies (Kalfas et al. 2011; Sanchez et al. 2015; Wagle et al. 2015; Xin F
et al. 2020). Eddy covariance flux towers indirectly derive GPP as the difference between
net ecosystem exchange (NEE) and ecosystem respiration during daylight. Although the
increasing number of covariance flux towers in various biomes around the world has pro-
vided a perception of GPP geographical variability (Baldocchi et al. 2001), regional-scale
GPP estimation of cropland and its dynamic changes in time and space are urgently
required with the growth of food demand.

Light use efficiency (LUE) models are considered a robust tool as it can describe GPP spa-
tial and temporal variation among the available satellite-based estimation methods (Sanchez
et al. 2015). These models were built on the assumption that GPP of terrestrial ecosystem is
directly related to the absorbed photosynthetically active radiation (PAR) through LUE
(Monteith 1977). That is to say, GPP was estimated from these models as a product of
absorbed photosynthetically active radiation (APAR) and LUE (eg) (GPP¼APAR� eg). An
earlier study of LUE models employed the fraction of photosynthetically active radiation
(PAR) absorbed by the vegetation canopy (FPARcanopy) to estimate APARcanopy

(APARcanopy¼ (PAR)� (FPAR)canopy), and FPARcanopy being approximated using vegetation
indices (Potter et al. 1993; Zhao et al. 2005), which could be derived from remotely sensed
optical imagery. Remote sensing of earth observation provided consistent fine-scale measure-
ments and facilitate the monitoring process of the ecosystem exchange at larger scales
(DeFries 2008). As one of widely used LUE model, Vegetation Photosynthesis Model (VPM)
advanced estimation of the amount of PAR absorbed by photosynthetically active vegetation
(PAV, e.g. mostly green leaves) of vegetation canopy for photosynthesis and quantification of
light use efficiency of vegetation (Xiao, Zhang, et al. 2004). The satellite-based model has been
successfully employed to estimate GPP by use of flux measurements from a variety of CO2

flux tower sites, including forests (Xiao, Hollinger, et al. 2004; Xiao, Zhang, et al. 2004), savan-
nas (Jin et al. 2013), grassland (Wagle et al. 2014), crops (Xin et al. 2017; Ma et al. 2020), and
wetland (Kang et al. 2018).

Based on the concept of Monteith (1977), LUE (eg) depends on vegetation type and
suboptimal climate conditions. Previous relevant studies (Lobell et al. 2002; Bradford
et al. 2005) indicated that differences among crop types in carboxylation biochemistry
(especially, the C3 and C4 pathways) suggest associated differences in production effi-
ciency, which is linked to photosynthetic potential. Because C4 plants have a more effi-
cient photosynthetic capacity than C3 plants, the assignment of one fixed eg value across
an entire year is problematic (Yan et al. 2009). As we know, winter-wheat and summer-
maize double–cropping rotation system is one of extensive C3–C4 crop rotation systems
in global cropland, especially in the North China Plain (NCP) (Yan et al. 2009), which is
the largest and most important agricultural region in China (Wang et al. 2015; Bao et al.
2019). Henan province, located in the NCP, is one of the major grain-producing
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provinces, and produced more than 28% and 9% of the national winter-wheat production
and summer-maize production in 2018, respectively (http://data.stats.gov.cn/). Although some
signs of progress on GPP estimation of wheat and maize crop rotation in the NCP were
achieved in recent years (Yan et al. 2009; Wang et al. 2015; Zhang, Lei, et al. 2020), these
studies were based on CO2 eddy flux tower sites and the impact of double cropping on the
regional GPP estimation caused by changes in land surface conditions remains unknown.
Meanwhile, crops growing seasons and fallow periods were varied within crop rotation pattern
as affected by crop management practices in Henan province. Despite these time-gap varia-
tions were considered at site-scale, it still remains a challenge to monitor GPP dynamics
changes of croplands temporally and spatially at the regional scale, especially for the wide-
spread wheat-maize rotation area (WMRA) in a long time series.

The aim of this study was to better understand the spatial-temporal variation of satel-
lite-based GPP in WMRA (with consecutively cropping practice and non-consecutively
cropping practice) of Henan province during 2000–2015. First, WMRA was obtained by
overlaying wheat planting area and maize planting area from a basic dataset of crop plant-
ing area, and compared with planting area from agricultural statistical reports. Second,
annual GPP was estimated from the VPM model, and evaluated by the grain production
from the state statistical report. Third, interannual trend in GPP was analyzed in the con-
secutively WMRA and non-consecutively WMRA. Based on the analysis of relationships
between GPP and the number of years as (consecutively) wheat-maize rotation in tem-
poral and spatial, we try to answer whether grain production could be promoted by
increase the number of years as (consecutively) wheat-maize rotation and where is appro-
priate for high-yield wheat-maize rotation.

2. Materials and methods

2.1. Study area

Henan is a landlocked province, which is located in the central region of China (Figure 1).
Henan has a diverse landscape with floodplains in the east and mountains in the west. Most
of Henan province has a temperate climate that belongs to the continental monsoon climate
transition from the north subtropical zone to the warm temperate zone. It has a distinct sea-
sonal climate characterized by hot and humid summers and generally cold and windy in win-
ters. The average temperature of the province is between 12 and 16 �C, which meets the need
of one-year two-crops rotation practices (Zhu et al. 2020). The grain cropped area is about
10.9 million ha in 2018, accounting for nearly 2=3 of the Henan province area (http://data.stats.
gov.cn/). According to the historical meteorological data compiled by the China
Meteorological Administration (CMA), the study area was divided into four agro-climatic
zones (ACZs): that are Nanyang basin zone (ACZ 1), Huang-Huai floodplains zone (ACZ 2),
western mountainous zone (ACZ 3), and Hilly-plain transition zone (ACZ 4). In addition, 18
municipal districts of Henan province were shown in Figure S1.

2.2. Materials

2.2.1. Satellite imagery and vegetation indices
The MODIS sensor onboard the NASA Terra satellite was launched in December 1999.
In the study, the 8-day composite land surface reflectance product (MOD09A1) at a 500-
m spatial resolution from the USGS’s Land Processes Distributed Active Archive Center
(LPDAAC, https://lpdaac.usgs.gov/) was downloaded. Geometrical and atmospherically
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corrections and cloud contamination removal have already been processed in the
MOD09A1 product (Huete et al. 2002; Justice et al. 2002). A total of 728 images from 18
February 2000 to 31 December 2018 were used to estimate vegetation indices for GPP
estimation (Because of the sensor calibration, no observations were acquired on DOY
(day of year) 169 and 177 in 2001). Based on the geo-location information of Henan
province, the time–series images of land surface reflectance and quality flags in the study
period were extracted from MODIS tiled grid data (h27v05). The vegetation indices were
calculated by using 8-day composite surface reflectance data from the blue (459–479 nm),
red (620–670 nm), near-infrared (841–875 nm) and shortwave infrared (SWIR,
1628–1652 nm) bands (Equation (1)–(2)): (1) Enhanced Vegetation Index (EVI; Huete
et al. 1997), and (2) Land Surface Water Index (LSWI; Xiao et al. 2002).

EVI ¼ 2:5 � ðqNIR� qRedÞ
qNIR þ 6�qRed � 7:5�qBlue þ 1

(1)

LSWI ¼ qNIR � qSWIR

qNIR þ qSWIR
(2)

Although MOD09A1 product contain the best observations within the 8-day composite
periods to eliminate the effects of atmosphere and clouds, invalid or noisy observations
affected by external factors in the product should be smoothed. These abnormal observa-
tions were detected according to the quality assurance layer in the dataset. Poor quality
data were substituted with the linear interpolation of its predecessor and successor as

Figure 1. Introduction of study area (wheat and maize area was showed in 2015).
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reported in earlier studies (Xiao, Zhang, et al. 2004; Yan et al. 2009), and smoothed using
a Savitzky-Golay filter (Savitzky and Golay 1964), which can be used to reduce the ran-
dom noise and widely used for the reconstruction of time–series of remotely-sensed vege-
tation indices (Zhang et al. 2017; Silva et al. 2019).

2.2.2. Wheat and maize planting area data
Annual wheat and maize planting areas data at a spatial resolution of 1 km from 2000 to
2015 was used in this study (Luo et al. 2020). The cropland area of the product was
derived from the 1 km grid of the Chinese National Land Cover Dataset (NLCD) provided
by the Data Center for Resources and Environmental Sciences, Chinese Academy of
Sciences (http://www.resdc.cn/Default.aspx; Liu et al. 2014). Compared with cropland area
data published by National Bureau of Statistics of China, the coefficient of determination
between the statistical planting area data and NLCD-based planting area data is greater
than 0.95 (0.99 for wheat planting area, maize planting area, and wheat and maize plant-
ing area, respectively, Figure S2). The good accuracy of the cropland area data has been
showed in a recent study (Zhang, Zhang, et al. 2020).

2.2.3. Ground observation data
Ground observation data mainly contains crop phenology information and meteorological
data. Crop phenology is an important parameter in VPM model for GPP estimation at
regional scale due to its significant variation over a large spatial range. The ground obser-
vation data includes the field records of crop growth and development status, such as the
name of the crop, development stages with theirs date, the anomaly of the crop develop-
ment stage, and the degree of the development stage, and so on (Luo et al. 2020). The
start of the season (SOS) and the end of the season (EOS) of wheat and maize from 2000
to 2013 were collected from agricultural meteorological stations (AMSs) of CMA (https://
data.cma.cn/). In Total, there were 17 AMSs across the main cropland area in Henan
province were obtained for identification of the crop phenology in four ACZs. Due to
lack of crop phenology information in 2014 and 2015, the mean SOS and EOS of crops
from 2011 to 2013 were assigned as SOS and EOS of 2014, and the averaged SOS and
EOS of crops from 2012 to 2014 were assigned as SOS and EOS of 2015 (the result is
showed in the Excel file of the Supplementary Materials).

The meteorological data used to drive the VPM model consisted of daily mean tem-
perature and daily total sunshine duration. These data were derived from 25 meteoro-
logical stations in Henan province from 2000 to 2015. The total sunshine duration was
used to calculate total solar radiation based on Ångstr€Om–Prescott (Å–P) method
(Angstrom 1924). The Å–P method for solar radiation estimation has been adopted as the
standard procedure in evapotranspiration by FAO in 1998 (Allen et al. 1998). The empir-
ical coefficients used Å–P method were extracted from previous researches (Zuo et al.
1963). Then, PAR (photosynthetically active radiation) was estimated to be 45% of the
total solar radiation (Meek et al. 1984). After processing the site observation data, the
thin plate spline smoothing algorithms was applied to interpolate 8-day mean temperature
(with ASTER GDEM (Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Digital Elevation Model) as a covariate, http://www.gscloud.cn) and 8-
day PAR to produce meteorological raster images with a spatial resolution of 500m in
ANUSPLIN (Hutchinson 2002) to match the pixel size of MODIS imagery.
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2.2.4. Agricultural statistical data during 2000–2015
The datasets of wheat and maize plating area, and theirs grain production in Henan province in
2000–2015 were obtained from the agricultural statistical reports (http://data.stats.gov.cn/).
Previous studies indicated that carbon constitutes about 45% of crop grain production (Lobell
et al. 2003). Therefore, carbon content of grain production (g C year�1) as 0.45 of the grain pro-
duction (ton year�1) was calculated in the study, which allow us to evaluate the relationship
between annual GPP and annual grain production of wheat and maize, respectively.

2.3. Methods

2.3.1. GPP estimation from VPM model
Based on the concept that vegetation canopy is composed of photosynthetically active
vegetation (mostly chlorophyll (chl)) and non-photosynthetic vegetation (NPV) as well as
only the chlorophyll component of the canopy is used for photosynthesis, the VPM model
was developed to estimate gross primary production over the photosynthetically active
period of vegetation as the product of amount of photosynthetically active radiation
(PAR) absorbed by chlorophyll (APARchl ¼ (FPAR)chl� (PAR)) and light use efficiency
(Xiao, Hollinger, et al. 2004). The VPM is described as the following Equation (3):

GPP ¼ eg � ðFPARÞchl � ðPARÞ (3)

where PAR is the photosynthetically active radiation (lmol photosynthetic photon flux
density, PPFD), and eg is the light use efficiency for GPP (lmol CO2 lmol PPFD�1 or g
C mol PPFD�1). (FPAR)chl within the photosynthetically active period of vegetation is
estimated as a linear function of EVI (Equation (4)), and the coefficient a is set to be 1.0
(Xiao, Hollinger, et al. 2004):

FPARchl ¼ a � EVI (4)

light use efficiency is affected by temperature, water, which can be expressed in the
following Equation (5):

eg ¼ e0 � Tscalar � Wscalar (5)

where e0 is the apparent quantum yield or maximum light use efficiency. Ecosystem-level e0
values can be acquired from analysis of net ecosystem exchange (NEE) of CO2 and incident
PAR (lmol m�2 s�1) at CO2 eddy flux tower sites, either by using the hyperbolic light
response function (Goulden et al. 1997; Falge et al. 2001) or from the literature. In this study,
the e0 values were set to be 0.76 g C mol PPFD�1 of winter wheat and 0.92 g C mol PPFD�1

of maize based on analyses of half-hourly NEE and incident PAR data during 2003–2004 at
the Yucheng site, China, because this site is located in the NCP and share the same cropping
practices with Henan province (Yan et al. 2009). Tscalar and Wscalar are the scalars for the
effects of temperature and water on light use efficiency of vegetation, respectively. The effect
of temperature on photosynthesis (Tscalar) is estimated from the equation developed for the
Terrestrial Ecosystem Model (Raich et al. 1991; Equation (6)):

Tscalar ¼ T� Tminð Þ � T� Tmaxð Þ
T� Tminð Þ � T� Tmaxð Þ � T� Toptð Þ2 (6)

where Tmin, Tmax and Topt are minimum, maximum and optimal temperature for photo-
synthetic activities, respectively. In this study, Tmin and Tmax were set to �3 and 42 �C for
winter wheat, and 0 and 45 �C for maize (Chen et al. 2014). The optimum temperature
(Topt) is defined as the long-term mean temperature for the growing season based on the
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concept that plants grow efficiently at the prevailing temperature (Sellers et al. 1992), and
were set 16 �C for winter wheat and 23 �C for maize (Chen et al. 2014). If air temperature
falls below Tmin, Tscalar is set to be zero. The effect of water on plant photosynthesis
(Wscalar) was estimated from satellite-derived Land Surface Water Index in Equation (7):

Wscalar ¼ 1 þ LSWI
1 þ ðLSWIÞmax

(7)

where (LSWI)max is the maximum LSWI during the growing season of crops for each
pixel based on the analysis of LSWI seasonal dynamics derived from MODIS data. The
maximum of LSWI value within the growing season of crops was used as an approxima-
tion of (LSWI)max (Xiao, Hollinger, et al. 2004).

2.3.2. WMRA statistics
Based on the data products of annual wheat and maize planting area during 2000–2015
(Luo et al. 2020), we used boundary vector data of Henan province as well as its munici-
palities to extract theirs cropland area of wheat and maize. In order to evaluate the sus-
tainable development potential of cropland in C3-C4 rotation areas, two statistical
indicators of WMRAs were extracted from the crop planting area data between 2000 and
2015. The first one was the number of years as wheat-maize rotation area (NYWM).
Wheat pixels and maize pixels were overlapped to extract WMRA from 2000 to 2015.
The WMRA was counted at provincial scale and municipal scale to examine the theirs
trends during 2000–2015. A frequency (NYWM) map was then generated by overlaying
WMRA maps during the period 2000–2015. The second indicator was the number of
years as consecutively wheat-maize rotation area (NYCWM). There were two indicators
of NYCWM, one was annual consecutively wheat-maize rotation area (CWMRA). We
counted the pixels in consecutively wheat-maize rotation from 2 to 16 years, that meant
CWMRA between 2000–2001, 2000–2002, 2000–2003, … , 2000–2015 were recorded. The
other was 16-year consecutively wheat-maize rotation area (16 y-CWMRA). We over-
lapped WMRA during 2000–2015, and extracted the area that wheat-maize rotation crop-
ping every year over the 16 years.

2.3.3. GPP estimation of WMRA
As photosynthetic process is closely related to the length of crop growing season (LOS),
pixel-level GPP of Henan province was estimated from VPM model in LOS of wheat and
maize. LOS of wheat and maize was estimated from SOS and EOS data derived from the
ground observation at AMSs in four ACZs. Due to the model-driven data are 8-day com-
posite EVI data and meteorological data, the positions of the first day of SOS and the last
day of EOS in a given 8-day period were considered to determine how many 8-day data
used in GPP estimation. In views of the lower GPP at the beginning of SOS and relative
higher GPP at the ending of EOS, the processing of crop GPP estimation during SOS and
EOS was based on the following three criteria:

1. if the first day of SOS is located in the first half of a given 8-day, GPP of the 8-day
will be counted in the total GPP;

2. if the first day of SOS is located in the second half of a given 8-day, GPP of the 8-
day will be dismissed;

3. no matter what’s position of the last day of EOS in one 8-day, GPP of the 8-day will
be counted.

GEOCARTO INTERNATIONAL 7



Then, annual GPP of WMRA was summed up by four ACZs from 2000 to 2015. We
used the simple linear regression model (GPP ¼ a�Year þ b) to calculate the interan-
nual trend of annual GPP during 2000–2015. Subsequently, to explore the overall relation-
ship between GPP and cropping frequency, we calculated Pearson correlation coefficients
(R) between number of years as wheat-maize rotation and corresponding mean annual
GPP from 2000 to 2015.

2.3.4. Relationship between annual GPP and grain production of wheat and maize
during 2000–2015
As wheat and maize grain production in statistical data were separately recorded, a simple
linear regression model was used to assess the relationship between annual GPP and grain
production (GP) of wheat and maize during 2000–2015, respectively. Due to the growing
season of wheat spanning two calendar years, only 15-year comparisons were investigated
in wheat crop, while 16-year comparisons were analyzed in maize crop. The linear regres-
sion model is expressed as a simple equation: GP¼GPP� (HI)GPP, where (HI)GPP is
Harvest Index (HI), defined as the ratio between grain production and GPP (Xin et al.
2020). It is different from the widely used HI that is defined as the ratio between grain
production and aboveground biomass (GP¼GPP� (HI)AGB) or the ration between grain
production and net primary production (GP¼GPP� (HI)NPP) (Lobell et al. 2002). That
because this study focused on the GPP estimation and its dynamic change, the direct
comparison of GPP and GP is more appropriate than the comparison of NPP and GP, or
AGB and GP.

3. Results

3.1. Spatial-temporal variation of wheat and maize planting area as well as WMRA

The trends of wheat planting area and maize planting area of each municipality in Henan
province are showed in Figures S3 and S4. Wheat planting area increased in 15 of 18
municipalities, while maize planting area increased in 17 of 18 municipalities during
2000–2015. Zhoukou municipality showed the greatest average annual growth rate both in
wheat planting area and maize planting area with 17.95� 103 ha year�1 and 11.23� 103 ha
year�1, respectively. Figure S5 indicates the trend of WMRA of each municipality in
Henan province during 2000–2015. Five municipalities demonstrated an increasing trend
more than 10� 103 ha year�1 (that were Anyang, Puyang, Xinxiang, Zhoukou and
Zhumadian), and one municipality (that was sanmenxia) showed decreasing trend with
0.002� 103 ha year�1. In terms of entire province during the 16 years, WMRA illustrates a
significant upward trend with average annual increase of (111.73 ± 6.36)� 103 ha year�1

(p< 0.001), growing by �75% from 2000 (1945.18� 103 ha) to 2015 (3384.80� 103 ha)
(Figure 2). The spatial distribution in Figure S6 shows the substantial growth of WMRA
from north to south across Henan province from 2000 to 2015.

3.2. Spatial-temporal variation of GPP in WMRA

Spatial-temporal variation of GPP in WMRA is showed in Figure S7. A significant
increasing trend of GPP in WMRA across the province from 2000 to 2015. Figure 2 indi-
cates that there has been a gradual rise in the average annual increase rate of GPP in
WMRA with 39.83 ± 6.96 g C m�2 per year (p< 0.001), experiencing �50% growth from
2000 (1372.12 g C m�2 year�1) to 2015 (1913.07 g C m�2 year�1). Total annual GPP of
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WMRA has increased from 25.83� 1012 g C year�1 in 2000 to 64.75� 1012 g C year�1 in
2015, with an increase of 38.92� 1012 g C year�1 (151%) and an average annual increase
rate of 2.43� 1012 g C year�1 over the 16-year period. The spatial distribution of
CWMRA during 2000–2015 is illustrated in Figure S8. The annual CWMRA is signifi-
cantly decreased from 2000 to 2006 (Table S1).

Figure 3 demonstrates spatial distribution of annual mean GPP of each pixel in WMRA
from 2000 to 2015. The high values of GPP (>2000 g C m�2 year�1) are located in the north-
ern region and mid-east region of Henan province. The low values of GPP (<1000 g C
m�2 year�1) appear in the mid-western and southern region of Henan province.

The relationships between annual GPP and annual grain production of wheat and
maize were examined in 2000–2015 (Figure 4). The slope values ((HI)GPP) from simple
linear regression models between annual grain production and annual GPP of wheat and
maize are 0.31 and 0.33, respectively, in Henan province.

3.3. GPP of consecutively WMRA

To better understand the trend of GPP in the CWMRA, GPP of the consecutively culti-
vated area of wheat-maize rotation is showed in Figure 5. Top panel shows GPP (mean
GPP in a given year when NYCWM during 1–16) upward trend along with the
NYCWM. The simple linear model shows an average growth rate of 35.60 ± 6.55 g C
m�2 year�1 (p< 0.001) ranging from 1370.65 g C m�2 year�1 in 2000 to 1924.68 g C
m�2 year�1 in 2015. While, GPP of 16-year CWMRA also has demonstrated a significant
increasing in fluctuation from 2000 (1394.74 g C m�2 year�1) to 2015 (1924.68 g C
m�2 year�1) with 35.77 ± 6.57 g C m�2 per year (p< 0.001). The comparison between the
top panel and bottom panel indicates high consistency in growing trend between mean
annual GPP of the CWMRA and mean annual GPP of 16-year CWMRA.

In view of greater contingency in 2-year consecutively wheat-maize rotation, Figure 6
shows mean annual GPP in NYCWM rotation from 3 (NYCWM 2000–2002) to 16
(NYCWM 2000–2015). For a given year, variation of mean annual GPP is not significant

Figure 2. Trends of WMRA and corresponding GPP over the last 16 years (2000–2015). The blue squares connected
by the solid lines represent the annual WMRA, the red triangles connected by the solid lines mean the annual GPP,
and black squares connected by the solid lines stand for total annual GPP. Calculated trend (slope ± SE) based on
ordinary least squares regression is given with its significance level. The significance was computed by using the non-
parametric Mann-Kendall trend test and p-value are given in the figure where the dash lines represent the trend lines
of GPP, and the shaded area represents the 95% confidence limit of the estimated slope in GPP.
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when NYCWM varied between 3–16. While, when NYCMW > 8 (duration longer than
2000–2007), mean annual GPP shows a rise trend from 2008 to 2015 in a
given NYCWM.

Figure 3. Average GPP in wheat-maize rotation area during 2000–2015 in Henan province, China.

Figure 4. The relationship between total annual GPP and grain production for wheat and maize in Henan prov-
ince, China.
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3.4. GPP of WMRA in various frequencies

Figure 7(a) indicates the NYWM during 2000–2015. Most of the high values of NYWM
(NYWM> 10) are located in the north and mid-east region of Henan province. We found a
small amount of NYWM with high values in southwestern Henan province. Figure 7(b)
showed the number of pixels in the number of years as wheat-maize rotation. When
NYWM ranges from 1 to 5, the number of pixels in WMRA gradually increases and reaches

Figure 5. Trend of annual GPP in the consecutively wheat-maize rotation area and 16-year consecutively wheat-maize
rotation area during 2000–2015 in Henan province, China. Estimated trend (slope± SE) based on ordinary least
squares regression is given with its significance level. The significance was computed by using the nonparametric
Mann-Kendall trend test and p-value are given in the figure where the red solid lines represent the trend lines of
GPP, and the shaded area represents the 95% confidence limit of the estimated slope in GPP (NYCWM means the
number of years as consecutively wheat-maize rotation).

Figure 6. Heat map of mean annual GPP in different number of years as consecutively wheat-maize rotation area
(NYCWM) during 2000–2015 in Henan province, China.
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its peak when NYWM ¼ 5 (with �10.3% in corresponding frequency). Then, the number
of pixels in WMRA is sharply decreased when NYWM increases from 6 to 16.

For the variation in NYWM, the mean annual GPP is increasing along with the number
of years as wheat-maize rotation, and the maximum value of GPP (1584.69 g C m�2 year�1)
stays at NYWM¼ 11. The variation of mean annual GPP is relatively small, ranging from
1409.07 g C m�2 year�1 at NYWM¼ 1 to 1584.69 g C m�2 year�1 at NYWM¼ 11
(Figure 8(a)). Then, GPP shows decreasing trend when NYWM increases from 11 to 16. The
interannual trend of standard deviation of mean annual GPP is decreased significantly,
declining from 341.48 g C m�2 year�1 to 99.28 g C m�2 year�1. Due to great possibilities in
random rotation when NYWM less than 5, only mean annual GPP in NYWM between 5–16
is demonstrated in Figure 8(b). Overall, mean annual GPP grows with the increasing
of years, and the growing trend is significant from 2007 to 2015. Trends of mean annual
GPP are not substantial with the growing of NYWM for a given year.

Pearson correlation coefficients (R) between number of years as wheat-maize rotation
and corresponding mean annual GPP was calculated from NYWM¼ 1 to NYWM ¼ 16

Figure 7. Spatial and histogram distribution of the number of years (frequencies) as wheat-maize rotation (NYWM)
during 2000–2015. (a) Distribution of NYWM; (b) number of pixels in NYWM and corresponding frequencies.

Figure 8. GPP variation of non-consecutively wheat-maize rotation during 2000–2015 in Henan province, China. (a)
Mean annual GPP and its standard deviation in the number of years as wheat-maize rotation. (b) Heat map of mean
annual GPP in different number of years as wheat-maize rotation area (NYWM).
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for individual pixels (Figure 9). The mean value of Pearson correlation coefficients is 0.68
(p< 0.01) in Henan province, meaning high correlation between NYWM and mean
annual GPP. For specific value of NYWM, R values of various cropping frequencies are
greater than 0.6 and varied from 0.6 (NYWM¼ 2) to 0.73 (NYWM¼ 11, 14, 15),
showing variation of R value shifted in a small range (Table 1).

4. Discussion

4.1. Main sources of error in GPP estimation of WMRA in Henan province

Annual GPP of WMRA in Henan province has grown from 25.83� 1012 g C year�1

in 2000 to 64.75� 1012 g C year�1 in 2015. The rise in total annual GPP while the drop
in WMRA in 2002 and 2009 was mainly led by an increase of GPP in per unit area

Table 1. Mean value of Pearson correlation coefficients (R, between number of years as wheat-maize rotation and
corresponding mean annual GPP) in different number of years as wheat-maize rotation (NYWM).

NYWM 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R value 0.60 0.62 0.66 0.66 0.67 0.68 0.69 0.71 0.72 0.73 0.73 0.72 0.73 0.73 0.70

Figure 9. The spatial pattern of the Pearson correlation coefficients between annual GPP and the number of years as
wheat-maize rotation area.
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(Figure 2). The decline in total annual GPP, while droughts mostly drove the grow
in WMRA in 2001 and 2014 in the two years, which were considered the most serious
droughts in the past two decades (Zhu et al. 2020). Whereas, the primary factor contribu-
ting to the decline in total annual GPP in 2003, 2006, and 2008 may be the regional low
temperature and rainy in the crop growing seasons as recorded in meteorological data.

Winter wheat and summer maize rotation cropping is the most extensive type of
intensified land use in Henan province (Yan et al. 2009; Wang et al. 2015). The study on
regional GPP simulation in C3–C4 plants rotation area is of great importance to evaluate
the impact of cropping practice (consecutively or non-consecutively wheat-maize rotation)
on the grain production. VPM-based GPP estimates of wheat and maize agreed well with
grain production in agricultural statistical data during 2000–2015. As GPP was estimated
from remotely sensed imagery and ground observation data, there are a few error sources
relevant to the GPP estimates. The first is the uncertainty of time–series vegetation indices
extracted from spectral bands, that are often affected by many factors such as cloud and
atmospheric conditions. There is much research on how to gap-fill time-series vegetation
index and it has not been concluded which method is more suitable (Jin et al. 2013).
The second is the ground observation data, including PAR, temperature, and the record
of growing season. PAR and temperature are meteorological data derived from
meteorological stations. How to interpolate site-specific meteorological data to produce
meteorological raster images remains a highly debated research topic (Donat et al. 2013).
The record of growing season is another type of ground observation data obtained from
agricultural meteorological stations. These field-based observation data as well as phen-
ology camera record have always been regarded as true data that used for validating the
phenology derived from other indirect methods. Nevertheless, the observation data is a
kind of site-based data, which need to extrapolate to a regional scale by interpolation.
Alternatively, time–series vegetation index extracted from remotely sensed imagery has
offered wall-to-wall information on phenology of vegetation, such as the SOS and EOS of
various biomes in a given growing season (Dong et al. 2016; Wu et al. 2017). But, large
discrepancies in phenology prediction for a given biome still remain due to adaptability
of algorithms, diversity of species, and other factors (Wu et al. 2017; Chang et al. 2019).
A reduction in the uncertainty of growing season would likely use more site-based obser-
vation (e.g. phenology camera) to provide substantial improvement in phenology predic-
tion for croplands. The third lies in the estimation of key parameters in VPM such as the
maximum LUE may varied among different regions of the same ecosystem type (Xiao
et al. 2011). Usually, maximum LUE is based on analyses of half-hourly NEE and incident
PAR data during peaking growing season or entire growing season at flux tower site
(Baldocchi et al. 2001). Only one dominated type of land covers in most flux tower sites
make it more difficult to develop maximum LUE based on a specific crop-rotation in
land cover at flux tower sites. Yucheng site in Shandong, China, is a representative field
station with dominated wheat-maize rotation in land cover. Previous studies have shown
its key role to understand carbon exchange/balance in C3-C4 plants rotation area of the
terrestrial biosphere (Yan et al. 2009; Bao et al. 2019). Moreover, Yucheng site is only
about 110 kilometers away from the nearest county in Henan province, implying crops
grow in comparable climatic conditions over the region. Therefore, we adopted the max-
imum LUE and other drive parameters (such as minimum, maximum and optimal tem-
perature for photosynthetic activities) developed from the observation at Yucheng site.

The relationship between regional GPP (or NPP, biomass) and grain production was
usually evaluated by the analysis of Harvest Index (HI). The (HI)AGB or (HI)NPP and
grain production of different crops were often used to estimate above-ground biomass
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and net primary production of crops in the United States (Lobell et al. 2002; Guan et al.
2016). The empirical (HI)GPP, (HI)AGB or (HI)NPP values vary among the crop types.
Specifically, these values shift from 0.25 to 0.58 for maize, while they vary from 0.31 to
0.53 for wheat (He et al. 2018). The statistically significant relationship between annual
GPP and annual grain production of wheat and maize in this study clearly demonstrates
that VPM-based GPP is a feasible data source for estimating annual grain production of
wheat and maize in central China.

4.2. The variation of GPP in the NYCWM

Overall, mean annual GPP grows along with the raise of NYCWM during 2000–2015
(Figure 5), showing the upward trend in fluctuation. It is highly agreed that consecutively
WMARs are more likely to be managed with good water and fertilizer conditions, which
could mitigate the impacts of extreme weather event (such as drought or flood) in the dis-
aster-prone areas (Mueller et al. 2012), like WMRA in NCP. While, we noticed that the
CWMRA is decreasing significantly from 2000 to 2015 (Table S1), which meant declined
trend of annual total GPP in CWMRA during the 16-year periods. The substantial
decrease in annual total GPP depends on several factors, such as adjustment of cropping
practices in various municipalities, adaptability of crop varieties, land use/land cover
change, and so on. In regard to GPP of 16-year consecutively wheat-maize rotation, the
upward trend is very similar to the growing trend of GPP in CWMRA (GPP trend: 33.
77 ± 6.57 g C m�2 yr�1 vs. 35. 60 ± 6.55 g C m�2 yr�1), implying high consistency in GPP
variation derived from changing rotation areas and fixed rotation areas in a given time
period during 2000–2015.

4.3. The variation of GPP in the number of years as non-consecutively wheat-
maize rotation

As showed in Figure 8a, mean interannual trend of mean annual GPP in NYWM is not
significantly. Mean annual GPP has indicated a minor increase from NYWM ¼ 1 to
NYWM ¼ 11, then it started to gradually decrease. The increase of mean annual GPP
partly due to the increase in the scale of intensive production and returning farmland to
forest (transform sloping farmland and desertified farmland to forest, http://www.forestry.
gov.cn/tghl/2423/34042/2.html), which can be eliminate low production cropland and pro-
mote mean annual GPP. We noticed that the number of pixels in NYWM was sharply
decreased from NYMW ¼ 10. This is affected by the adjustment of agricultural planting
practices (such as large-scale peanut cultivation instead of maize cropping in Zhumadian
area). The alteration would affect the growing environment (fertility, temperature, humid-
ity and so on) of WMRA. Generally, the variation of mean annual GPP was varied in a
relative small range. The spatial pattern of Pearson correlation coefficients means annual
GPP and NYWM have a high correlation in most WMRA. It may imply the practice of
wheat-maize rotation is appropriate in most cultivated land area of Henan province.

5. Conclusions

In this study, the VPM-based GPP of winter wheat and summer maize rotation area in
Henan province was estimated from MODIS imagery and meteorological data from 2000
to 2015. The results showed increasing trend of interannual GPP in a WMRA with
39.83 ± 6.96 g C m�2 year�1. GPP in high values were located in the northern region and
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mid-east region of Henan province. For the consecutively WMRA, GPP increased along
with the years as wheat-maize rotation. Furthermore, the high correlation between GPP
and the number of years as wheat-maize rotation meant more frequencies in the wheat-
maize rotation could obtain greater GPP. The strong linear relationship between annual
GPP and annual grain production from the agricultural statistical data indicated the
potential of using the VPM model to estimate annual GPP and grain production in
WMRA. The research on regional GPP estimation is of great value to assess the impact of
cropping rotation on grain production. The results may help our society to achieve sus-
tainable development of WMRA in central China.
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