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Abstract

In this paper, we developed a new geospatial database of paddy rice agriculture for 13 countries in South and Southeast Asia. These countries

have ¨30% of the world population and ¨2/3 of the total rice land area in the world. We used 8-day composite images (500-m spatial resolution)

in 2002 from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Terra satellite. Paddy rice fields are

characterized by an initial period of flooding and transplanting, during which period a mixture of surface water and rice seedlings exists. We

applied a paddy rice mapping algorithm that uses a time series of MODIS-derived vegetation indices to identify the initial period of flooding and

transplanting in paddy rice fields, based on the increased surface moisture. The resultant MODIS-derived paddy rice map was compared to

national agricultural statistical data at national and subnational levels. Area estimates of paddy rice were highly correlated at the national level and

positively correlated at the subnational levels, although the agreement at the national level was much stronger. Discrepancies in rice area between

the MODIS-derived and statistical datasets in some countries can be largely attributed to: (1) the statistical dataset is a sown area estimate (includes

multiple cropping practices); (2) failure of the 500-m resolution MODIS-based algorithm in identifying small patches of paddy rice fields,

primarily in areas where topography restricts field sizes; and (3) contamination by cloud. While further testing is needed, these results demonstrate

the potential of the MODIS-based algorithm to generate updated datasets of paddy rice agriculture on a timely basis. The resultant geospatial

database on the area and spatial distribution of paddy rice is useful for irrigation, food security, and trace gas emission estimates in those countries.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Paddy rice fields account for over 11% of global cropland

area (Maclean et al., 2002). The major rice-producing

countries of Asia account for over half of the world’s

population and rice represents over 35% of their daily caloric

intake (FAO, 2004). Monitoring and mapping of paddy rice

agriculture in a timely and efficient manner is very important

for agricultural and environmental sustainability, food and

water security, and greenhouse gas emissions. Because paddy

rice is grown on flooded soils (irrigated and rainfed), water

resource management is a major concern. Irrigation for
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agriculture accounts for over 80% of the fresh water

withdrawals in our Asian study area, with several of the

countries reporting over 95% of fresh water used for irrigation

(FAOSTAT, 2001). These high levels of irrigation also raise

concerns about maintenance and contamination of the water

supply. Also, seasonally flooded rice paddies are a significant

source of the greenhouse gas methane (Denier Van Der Gon,

2000; Li et al., 2002; Neue & Boonjawat, 1998), contributing

over 10% of the total methane flux to the atmosphere (Prather

& Ehhalt, 2001), which may have substantial impacts on

atmospheric chemistry and climate. Field studies have shown

that water management can have a significant influence on

total methane emissions during a cropping season (Wassmann

et al., 2000; Sass et al., 1999), so paddy water management

has become a target scenario for greenhouse gas mitigations

(Wassmann et al., 2000; Li et al., 2005).
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Several global datasets of paddy rice were developed in the

late 1980s and early 1990s (Aselman & Crutzen, 1989;

Matthews et al., 1991; Olson, 1992; Wilson & Henderson-

Sellers, 1992) and were used in analyses of climate and trace

gas emissions; most of these datasets have a coarse spatial

resolution (0.5- to 5-). More recently (Leff et al., 2004),

provided a global rice map at a spatial resolution of five arc

minutes as part of their global cropland product. An Asian rice

dataset was generated using agricultural statistical data from

the 1970s (Huke, 1982) and updated with agricultural census

data in the early 1990s (Huke & Huke, 1997). This updated

Asia rice database was used to estimate methane emissions in

Asia (Knox et al., 2000; Matthews et al., 2000). It is important

to note that all of the above-mentioned rice datasets were

wholly or partially based on agricultural statistical data. These

statistical data sources cannot meet the needs of science and

policy researchers that require updated geospatial databases of

paddy rice agriculture at improved spatial and temporal

resolutions.

In Asia, rice is grown over a large spatial domain (60- of

latitude and 80- of longitude) and a wide range of landscape

types. Such a large area contains a wide variety of climatic

conditions, ranging from the temperate zones in the north to

the tropical equatorial zones in the south. With such a large

variation in landscapes and climates in the rice-growing

region of Asia, a large number of unique paddy farming

methods have also evolved, based on farming type (irrigated,

rainfed, deepwater), crop management (single crop, multi-

crop), and seasonality (wet season, dry season). This variation

in potential rice farming scenarios makes the generation of a

timely and spatially explicit paddy rice dataset a challenging

task. Optical satellite remote sensing provides a viable means

to improve geospatial datasets of paddy rice fields, and a

number of earlier studies have used Landsat or AVHRR

images to generate local to regional-scale estimates of paddy

rice fields (Fang, 1998; Fang et al., 1998; Okamoto &

Fukuhara, 1996; Okamoto & Kawashima, 1999; Tennakoon

et al., 1992; Van Niel et al., 2003). Most of those previous

satellite-based rice analyses used image classification proce-

dures and required abundant local knowledge (e.g., crop

calendars) of rice paddy fields. A rice mapping method that is

both timely and requires less prior knowledge of local

farming management would be a tremendous asset for

large-scale mapping of paddy rice fields.

Recently, we developed an approach that takes advantage of

a new generation of optical sensors such as VEGETATION

(VGT; Xiao et al., 2002b) and the Moderate Resolution

Imaging Spectroradiometer (MODIS; Xiao et al., 2005). This

approach is based on a unique physical feature of paddy rice

fields—rice is grown on flooded soils and paddy fields are a

mixture of open water and green rice plants during the early

part of the growing season. An algorithm was developed to

identify and track those image pixels that experienced flooding

and rice transplanting over time. Unlike other satellite-based

classification algorithms that primarily use the Normalized

Difference Vegetation Index (NDVI; Eq. (1)), our temporal

profile analysis algorithm combines vegetation indices that are
sensitive to the development of canopy (e.g., leaf area index,

chlorophyll) and vegetation indices that are sensitive to

changes in the land surface water content. We have applied

this algorithm to map paddy rice fields in central China at a

local scale using VGT data (Xiao et al., 2002b) and at a

regional scale (13 provinces in China) using 8-day MODIS

composite data (Xiao et al., 2005).

In this study, we use this algorithm to map paddy rice fields

in 13 countries of South and Southeast Asia. Our objective is to

generate an updated geospatial database of paddy rice at 500-m

spatial resolution, using 8-day MODIS composites in 2002.

The resultant geospatial database could be used to support

various studies of land-use and land-cover change, methane

emission estimations, and food and water security in Asia.

2. Brief description of the study area

The study area encompasses 13 countries in South and

Southeast Asia, ranging from 68-E to 142-E and 10-S to 35-N
(Fig. 1). The region contains a variety of climate zones,

including tropical and subtropical areas in the southeast,

temperate areas in northern India and Nepal, and dry areas in

western India. In the areas where rice growth is limited by

precipitation or temperature, there is usually one rice crop per

year, as in most of the dry and temperate zones. However, in

many of the tropical regions, two rice crops per year are

common and, in some areas (such as the Mekong Delta in

Vietnam), three crops per year are grown. Seasonal patterns of

precipitation are driven by the monsoon climate system that

dominates over the Indian subcontinent and Southeast Asia.

The monsoons are seasonal winds that bring torrential rains in

the summer (May/June to September/October) and sunny and

dry weather in the winter.

The 13 countries in our study area are home to almost 1.8

billion people (Table 1), almost 30% of the global population.

Rice is a highly important product in this part of the world,

where much of the population is still employed by the

agriculture sector. Rice represents a significant portion of total

cropland area and the amount of daily caloric intake (Table 1).

With approximately 1,000,000 km2 of area sown to paddy rice

(Table 1), our study area represents almost two-thirds of the

world’s total area sown to rice (1.53 million km2 in 2004).

3. Data and methods

3.1. MODIS image data

The MODIS sensor has 36 spectral bands, 7 of which are

designed for the study of vegetation and land surfaces: blue

(459–479 nm), green (545–565 nm), red (620–670 nm), near

infrared (NIR1: 841–875 nm, NIR2: 1230–1250 nm), and

shortwave infrared (SWIR1: 1628–1652 nm, SWIR2: 2105–

2155 nm). Daily global imagery is provided at spatial

resolutions of 250-m (red and NIR1) and 500-m (blue, green,

NIR2, SWIR1, SWIR2). The MODIS Land Science Team

provides a suite of standard MODIS data products to users,

including the 8-day composite MODIS Surface Reflectance



Fig. 1. Spatial extent and location of the 13 countries in South and Southeast Asia.
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Product (MOD09A1). Each 8-day composite includes esti-

mates of surface reflectance of the seven spectral bands at 500-

m spatial resolution. In the production of MOD09A1,

atmospheric corrections for gases, thin cirrus clouds, and

aerosols are implemented (Vermote & Vermeulen, 1999).
Table 1

A comparison of agricultural (FAO, 2004), nutritional (FAO, 2002), and population

Country Cropland sown

area (km2)

Paddy rice sown

area (km2)

Percent of cro

that is paddy

Bangladesh 145,661 110,000 76

Bhutan 1014 200 20

Cambodia 27,446 23,000 84

India 1,906,335 425,000 22

Indonesia 321,707 117,527 37

Laos 11,382 8200 72

Malaysia 62,832 6700 11

Myanmar 141,912 60,000 42

Nepal 44,023 15,500 35

Philippines 126,8161 40,000 32

Sri Lanka 19,566 7555 39

Thailand 177,610 98,000 55

Vietnam 130,302 74,000 57

Total 3,116,606 985,682 32
MOD09A1 composites are generated in a multi-step process

that first eliminates pixels with a low score or low observa-

tional coverage, and then selects an observation with the

minimum blue-band value during the 8-day period (http://

modis-land.gsfc.nasa.gov/MOD09/MOD09ProductInfo/
(FAO, 2003) statistics for 13 countries in Southeast and South Asia

pland

rice

Rice production

(�000 Mt)

% of caloric intake

from rice

Population

(�000)

37,910 74 146,736

45 21 2257

4710 69 14,144

124,410 33 1,065,462

53,100 50 219,883

2700 64 5657

2184 25 24,425

23,000 68 49,485

4300 38 25,164

14,200 43 79,999

2510 37 19,065

25,200 42 62,833

35,500 65 81,377

329,769 42.4 1,796,487
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MOD09_L3_8-day.htm). The composites still have reflectance

variations associated with the bidirectional reflectance distri-

bution function. MOD09A1 also includes quality control flags

to account for various image artifacts (e.g., clouds, cloud

shadow). Standard MODIS products are organized in a tile

system with the Sinusoidal projection; each tile covers an area

of 1200�1200 km (approximately 10- latitude�10- longitude
at equator). In this study, we acquired 23 tiles of MOD09A1

data for 2002 (forty-six 8-day composites per year) from the

USGS EROS Data Center (http://edc.usgs.gov/).

3.2. Algorithms for identifying inundation and paddy rice field

A unique physical feature of paddy rice fields is that rice

plants are grown on flooded soils. Temporal dynamics of paddy

rice fields can be characterized by three main periods: (1) the

flooding and rice transplanting period; (2) the growing period

(vegetative growth, reproductive, and ripening stages); and (3)

the fallow period after harvest (Le Toan et al., 1997). During

the flooding and rice transplanting period, the land surface is a

mixture of surface water and green rice plants, with water

depths usually between 2 and 15 cm. About 50 to 60 days after

transplanting rice plant, canopies cover most of the surface

area. At the end of the growth period prior to harvesting, there

is a decrease of leaf and stem moisture content and a decrease

of the number of leaves. Individual farmers have different

flooding and rice transplanting schedules for their paddy rice

fields, which poses a great challenge for remote sensing

analyses at large spatial scales.

To identify the changes in the mixture of surface water and

green vegetation in paddy rice fields over time requires spectral

bands or vegetation indices that are sensitive to both water and

vegetation. For each MOD09A1 composite, we calculate

Normalized Difference Vegetation Index (NDVI; Eq. (1)),

Land Surface Water Index (LSWI; Eq. (2)), and Enhanced

Vegetation Index (EVI; Eq. (3)), using surface reflectance

values from the blue, red, NIR (841–875 nm), and SWIR

(1628–1652 nm) bands:

NDVI ¼ qnir � qred

qnir þ qred

ð1Þ

LSWI ¼ qnir � qswir

qnir þ qswir

ð2Þ

EVI ¼ 2:5� qnir � qred

qnir þ 6� qred � 7:5� qblue þ 1
ð3Þ

NDVI is closely correlated to the leaf area index (LAI) of

paddy rice fields (Xiao et al., 2002c). The blue band is sensitive

to atmospheric conditions and is used for atmospheric

correction. EVI directly adjusts the reflectance in the red band

as a function of the reflectance in the blue band, and it accounts

for residual atmospheric contamination and variable soil and

canopy background reflectance (Huete et al., 2002, 1997). The

SWIR spectral band is sensitive to leaf water and soil moisture,

and is used to develop improved vegetation indices that are

sensitive to equivalent water thickness (EWT, g H2O/m
2),

including LSWI (Maki et al., 2004; Xiao et al., 2002a,b).
We have developed an algorithm to identify paddy rice

fields through a temporal profile analysis of LSWI, NDVI,

and EVI (Xiao et al., 2002b, 2005). The algorithm focuses on

the period from flooding/transplanting through rapid plant

growth in the early part of the growing season to the point

where a full canopy exists. Our hypothesis is that a temporary

inversion of the vegetation indices, where LSWI either

approaches or is higher than NDVI or EVI values, may

signal flooding in paddy rice fields. To slightly relax the

simple threshold assumption (LSWI>NDVI) used in the

earlier study with 1-km VGT images (Xiao et al., 2002b), for

500-m MODIS images, we used the following thresholds for

identifying a flooded pixel: LSWI+0.05�EVI or LSWI+

0.05�NDVI (Xiao et al., 2005). After a pixel was identified

as a ‘‘flooding and transplanting’’ pixel, a procedure was

implemented to determine whether rice growth occurs in that

pixel, using the assumption that the EVI value of a true rice

pixel reaches half of the maximum EVI value (in that crop

cycle) within five 8-day composites (40 days) following the

date of flooding and transplanting. Rice crops grow rapidly

after transplanting and LAI usually reaches its peak within 2

months (Xiao et al., 2002c).

This algorithm has proven successful in detecting paddy rice

fields in a variety of climate regimes and types of farm water

management at various spatial scales within China (Xiao et al.,

2002b, 2005). In this study, we will apply the algorithm to an

even larger spatial domain, where climate and agricultural

practices differ from China. As a test of our algorithm’s ability

to detect rice in different environments outside of China, we

took advantage of field validation data provided by colleagues

at the International Water Management Institute (Thenkabail et

al., 2005; http://www.iwmidsp.org/iwmi/info/main.asp). By

using geographic points that they validated as 90% or more

rice area within 90-m2 sampling units, we were able to

confidently extract time series from rice ecosystems to test

our algorithm. Three common rice management regimes were

sampled in different parts of India to test our algorithm,

including a single-rice crop in Bihar state (Fig. 2a), a double-

rice crop in Karnataka state (Fig. 2b), and a double crop (single-

rice+other crop) regime in Andhra Pradesh state (Fig. 2c). In all

three instances, our algorithm identified the periods of flooding

and transplanting at the onset of the rice-growing season.

3.3. Regional implementation of the paddy rice mapping

algorithm

The implementation of our MODIS paddy rice detection

algorithm at the continental scale is a challenging task and

requires careful consideration of many factors that could

potentially affect the seasonal dynamics of vegetation indices,

including snow cover, clouds, water bodies, and other vegetated

land-cover types. We have developed a procedure for regional

implementation of the algorithm by generating various masks

for clouds, snow cover, water bodies, and evergreen vegetation

in an effort to minimize their potential impacts (Fig. 3).

The cloud cover mask is generated through two steps. The

MOD09A1 file includes quality control flags for clouds. We
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MODIS 8-day composites of surface reflectance product (MOD09A1)

NDSI NDVI,              EVI,          LSWI
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Permanent
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Evergreen
vegetation mask

Maps of flooding and rice transplanting (46 maps/yr)

Initial map of paddy rice field

Final map of paddy rice field

DEM

Fig. 3. A schematic diagram illustrating the algorithm for large-scale mapping

of flooding and paddy rice from MODIS 8-day surface reflectance images at

500-m spatial resolution. One year of 8-day MODIS surface reflectance data (a

total of 46 composites) are used as input.
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Fig. 2. The seasonal dynamics of the Normalized Difference Vegetation Index

(NDVI), the Enhanced Vegetation Index (EVI), and the Land Surface Water

Index (LSWI) at selected sites in: (a) a single-rice crop in Bihar, India

(24.693-N, 84.499-E), (b) a double-rice crop in Karnataka, India (14.383-N,

75.755-E), (c) a single-rice+other crop in Andhra Pradesh, India (16.249-N,
80.49-E). Arrows define the approximate start of rice growth for each pixel.

Note that the Andhra Pradesh site is a double cropping system; however, the

non-rice crop (January–April) does not exhibit the flooding signal at the onset

of the growing season.
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extracted the information on clouds and generated masks of

cloud cover for all time periods of each MODIS tile. It was

noticed that a number of pixels had a high blue band

reflectance but were not labeled as clouds in the MOD09A1

cloud quality flag. These pixels tended to have high LSWI

relative to NDVI and EVI, potentially resulting in false
identification of paddy rice areas. An additional restriction

was then applied, whereas pixels with a blue reflectance of

�0.2 were also masked as cloudy pixels. For each MODIS tile,

46 cloud cover maps were generated; all cloud observations

were excluded from further analyses. To determine the

potential influence of clouds on the performance of our

MODIS algorithm, the percent of all land pixels that were

contaminated by clouds was calculated. There is an increase of

cloud cover during the peak of the monsoon season (June–

August), when contamination levels were approximately 40%.

During the remainder of the year, cloud contamination levels

fluctuated between 10% and 30%.

Snow cover has large surface reflectance values in the

visible spectral bands and could potentially affect vegetation

index values, particularly LSWI and EVI. To minimize the

potential impact of those observations with snow cover in the

winter and spring, we used the snow cover algorithms

developed for the MODIS snow product (Hall et al., 1995,

2002) to generate snow cover masks. Normalized Difference

Snow Index (NDSI; Eq. (4)) was first calculated for each 8-

day composite, using surface reflectance values from the

green and NIR bands, and then thresholds (NDSI>0.40 and

NIR>0.11) were applied to identify snow-covered pixels.

Those 8-day observations identified as snow during the year

were excluded from identification of flooding and rice

transplanting.

NDSI ¼
qgreen � qnir

qgreen þ qnir

ð4Þ

There is also a need to separate persistent water bodies from

seasonally flooded pixels (e.g., paddy rice). We first analyzed



X. Xiao et al. / Remote Sensing of Environment 100 (2006) 95–113100
temporal profiles of NDVI and LSWI, and assumed a pixel is

covered by water if NDVI<0.10 and NDVI<LSWI, and

generated a file that counts the number of 8-day periods within

a year that a pixel is classified as water. Second, we assumed a

pixel to be a persistent water body if it was identified as water

in 10 or more 8-day composite periods in the year. Since the

flooding/transplanting period is temporary, flooded rice pixels

are expected to have fewer than 10 composite periods classified

as water. Those pixels identified as persistent water bodies

were not included in the identification of flooding and rice

transplanting.

A mask of evergreen vegetation was generated using a two-

test procedure that employs both NDVI and LSWI time series

data. This step was necessary to remove the influence of vast

regions of moist tropical and mangrove forests in the equatorial

zones. If certain climatic conditions (e.g., flood) occur, these

forests can have the tendency to exhibit some similar temporal

characteristics as paddy rice fields, such as the temporary

increase in LSWI. For the first test, evergreen forest areas tend

to have consistently high NDVI values throughout the year,

while rice pixels tend to have high NDVI values only in a few

8-day periods, mostly prior to harvesting. Evergreen forest

areas were identified as those pixels having NDVI values of

�0.7 over at least twenty 8-day composites during the year.

Since the NDVI forest restriction is a cumulative count, we

used a gap-filled product that corrects NDVI values in the time

series where clouds were present. The second test, using LSWI,

was designed to identify evergreen shrublands and woodlands.

Croplands usually have some periods of time with exposed

soils (after-harvest or land preparation) when LSWI values are

very low. After examining the seasonal dynamics of LSWI for

various vegetation types in the study area, we found that

natural evergreen vegetation rarely has a LSWI value of <0.10.

We assign those pixels with no LSWI values of <0.10 during

the year to be natural evergreen vegetation. For each MODIS

tile, one mask of natural evergreen vegetation was generated,

and those pixels were excluded in the identification of flooding

and paddy rice fields.

The most intensive areas of rice agriculture in the study area

occur in the valleys and deltas of some of the great rivers, such

as the Mekong (Vietnam, Cambodia, Laos, Thailand), Ganges

(India, Bangladesh), and Ayeyarwady (Myanmar). However,

there is some significant topography over much of the study

area that could pose challenges to the implementation of a rice

detection algorithm. Using the GTOPO30 digital elevation

model (Global 30-Arc Second Elevation Dataset; http://

edc.usgs.gov/products/elevation/gtopo30.html), it was deter-

mined that less than 0.5% of the rice area (from national rice

statistics datasets) was situated at elevations greater than 2000

m in our study area. Therefore, we generated an elevation mask

and used it to exclude those areas above 2000 m or with a slope

greater than 2-.
We computed vegetation indices, masks, flooding maps, and

rice maps for all the individual MODIS tiles that cover the

study area. We then used an administrative boundary map of

the study area to generate summaries of paddy rice area at

national, provincial and subnational levels. Our subnational
administrative base map was derived from two sources: (a)

International Rice Research Institute (IRRI; www.irri.org)

maps were used for administrative unit boundaries within the

countries and (b) ArcWorld (ESRI, 1992) maps were used for

international boundaries due to minor misalignments between

national boundaries of individual IRRI maps. For each

individual country, administrative boundary maps (IRRI) were

merged with the respective ArcWorld national boundary map.

Sliver polygons (a result of imperfect boundary matches

between the datasets) were removed. Individual country maps

were joined to form a complete subnational map of the study

area comprising of 1586 polygons.

3.4. Ancillary data for evaluation of MODIS-based paddy rice

map

Accuracy assessment of moderate-resolution (500-m to 1-

km) land-cover products is a challenging task, as these maps

can overestimate or underestimate areas of land-cover types

due to the fragmentation and subpixel proportion of individ-

ual land-cover types. Because of budget constraints and

human resource limitations, we were not able to conduct

extensive field surveys for collection of site-specific data. As

an alternative approach to field surveys, we assembled

national agriculture statistical data (hereafter referred to as

NAS) to compare to the satellite-derived rice estimates. Rice

area statistics were obtained at the subnational level (analo-

gous to a state, a county or district), and represent the total

cropland area sown to rice, which double or triple count land

areas that are multi-cropped with rice. NAS data for most

countries (all except India, Bangladesh, Malaysia, Myanmar)

were obtained from the website of the FRegional Data

Exchange System on Food and Agricultural Statistics in Asia

and Pacific countries_ (http://www.faorap-apcas.org/), a proj-

ect funded by the Government of Japan and executed by the

FAO. The data were supplied by the agricultural statistical

offices of the various countries (Table 2) and, in most cases,

contains data from the same year (2002) as our remote

sensing analysis. NAS data obtained through the Regional

Data Exchange System generally represents the total area

sown to rice and does not subdivide the rice crop into farm

management types (irrigated, upland, etc.). NAS data for

India was obtained from the website of the Ministry of

Agriculture’s Directorate of Rice Development (http://dacnet.

nic.in/rice/). India data was obtained at the district level for

the year 2000 and represents the total area sown to rice. NAS

data for Malaysia was obtained from the website of the

Department of Agriculture (http://agrolink.moa.my/doa/BI/

Statistics/jadual_perangkaan.html). Malaysia data was

obtained at the state level for the year 1999 and represents

the total area sown to rice in each of the two main rice

seasons. NAS data for Bangladesh and Myanmar was

obtained from the Huke and Huke (1997) dataset, a summary

of rice sown area derived from agriculture census statistics

from the early 1990s. Huke and Huke (1997) subdivide rice

sown area into four main categories: irrigated, rainfed

lowland, upland, and a deepwater.

 http:\\edc.usgs.gov\products\elevation\gtopo30.html 
 http:www.irri.org 
 http:\\www.faorap-apcas.org\ 
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Table 2

A summary of the national agricultural statistical datasets, including source

agencies and dates of data used in this study (http://www.faorap-apcas.org/)

Country Date Source agency

Bangladesh 1993 Huke and Huke (1997)

Bhutan 2002 Ministry of Agriculture

Cambodia 2002 Ministry of Agriculture, Forestry,

and Fisheries

India 2000 Department of Agriculture and

Cooperation;

Ministry of Agriculture

(http://dacnet.nic.in/rice/)

Indonesia 2002 BPS (Badan Pusat Statistik)—

Statistics Indonesia

Laos 2002 Ministry of Agriculture and Forestry,

Statistics Division

Malaysia 1999 Department of Agriculture

(http://agrolink.moa.my/doa/

BI/Statistics/jadual_perangkaan.html)

Myanmar 1993 Huke and Huke (1997)

Nepal 2000 Central Bureau of Statistics

Philippines 2002 Bureau of Agricultural Statistics;

Department of Agriculture

Sri Lanka 2002 Department of Census and Statistics

Thailand 2002 Office of Agricultural Economics;

Ministry of Agriculture and

Cooperatives

Vietnam 2002 General Statistics Office

X. Xiao et al. / Remote Sensing of Environment 100 (2006) 95–113 101
IRRI classifies rice ecosystems into four categories:

irrigated, rainfed lowland, upland, and deepwater (Maclean et

al., 2002). Irrigated and rainfed lowland rice is grown in fields

with small levees or dikes. Although irrigated rice accounts for

only half of the world’s rice land, more than 75% of the world’s

rice production comes from irrigated rice due to multi-cropping

and improved technology (Maclean et al., 2002). Rainfed

lowland rice, which accounts for 34% of the world’s rice land,

is flooded for at least part of the cropping season to water

depths that exceed 100 cm for no more than 10 consecutive

days (Maclean et al., 2002). Upland rice fields are generally not

flooded, and dry soil preparation and direct seeding are

common. It is important to note that the agriculture census

data usually report the total area of rice cultivation and do not

separate these four categories of rice fields. Our paddy rice

algorithm is designed to identify those fields that could hold

flooded/irrigated water for a period of a few weeks, and it is

likely that the algorithm would fail to identify large portions of

upland and deepwater rice. Therefore, the comparison between

our MODIS-based map and the national rice statistical data

needs to exclude both upland and deepwater rice, if the data are

available.

We evaluated the MODIS-derived rice map in three ways:

(1) spatial distribution of paddy rice, (2) national level

comparison, and (3) subnational level comparison. We divided

the 13 countries into four general geographical groups to

conduct national and subnational level comparisons: (1) India;

(2) Nepal, Bangladesh, Bhutan, Sri Lanka; (3) Myanmar,

Thailand, Vietnam, Laos, Cambodia; and (4) Indonesia,

Philippines, and Malaysia. These four regional groups were

chosen because of general similarities of climate, landscape,

and cropping systems among the countries in each group.
4. Results

4.1. Spatial distribution of paddy rice agriculture in South and

Southeast Asia from MODIS-derived rice map

Fig. 4 shows the spatial distribution of paddy rice fields in

2002 across South and Southeast Asia at 500-m spatial

resolution (hereafter referred to as MODrice). Paddy rice fields

occur extensively, and are largely concentrated in the valleys

and deltas of the major rivers in the region, such as the Mekong

and Ganges river basins. To better facilitate the comparison

between MODrice and national agricultural statistics (NAS), we

aggregated the 500-m MODrice product to a subnational level

polygon map. There are 1586 subnational administrative units

in the study area, and we calculated percentage of rice area over

the total land area for each of these units, normalizing

comparisons between large and small districts. The spatial

pattern of paddy rice from MODrice (Fig. 5) is in general

agreement with that of NAS (Fig. 6), but there are significant

regional differences. These regional differences are outlined in

more detail in Sections 4.2–4.5.

The MODrice map estimates a total area of 766,810 km2 of

paddy rice fields in the 13 countries, which is about 78% of the

total sown rice area (986,080 km2) from the NAS dataset

(Table 3). At the national level, 9 out of 13 countries have

larger NAS estimates than MODrice estimates. A simple linear

regression model for rice area estimates of 13 countries

between the MODrice and NAS datasets has an r2=0.97 and

a root mean squared error (RMSE) of 31,072 km2. The total

paddy rice area from MODrice is about 80% of the total sown

acreage estimate (957,320 km2) from the Huke dataset (Huke

& Huke, 1997). The Huke dataset provides additional

information on deepwater and upland rice (Table 3). When

we exclude the areas of upland and deepwater rice, the Huke

dataset estimates a rice area of 837,000 km2 (sum of irrigated

and rainfed rice), which is about 8% higher than the MODrice

estimate. At the country level, 9 out of 13 countries have larger

Huke (irrigated plus rainfed rice) estimates than MODrice

estimates (Table 3). A simple linear regression model of rice

area estimates of 13 countries between the MODrice map and

the Huke dataset (irrigated plus rainfed rice) has an r2=0.98

and RMSE of 15,766 km2. Discrepancies between the MODrice

and NAS datasets in some countries can be largely attributed

to: (1) the NAS dataset is a sown area total that includes

multiple cropping practices in a year and (2) failure of the 500-

m resolution MODIS-based algorithm in identifying small

patches of paddy rice fields, primarily in areas where

topography poses restrictions to field sizes. These issues are

further examined in the Discussion section.

4.2. Paddy rice agriculture in India

Rice-growing areas in India are primarily in the eastern

coastal regions and the two great river basins in the northern

part of the country, the Ganges and the Brahmaputra (Fig. 4a).

Of the 44.6 million ha of harvested rice area in 2000, about

46% were irrigated, 28% were rainfed lowland, 12% were

 http:\\www.faorap_apcas.org\ 
 http:\\dacnet.nic.in\rice\ 
 http:\\agrolink.moa.my\doa\BI\Statistics\jadual_perangkaan.html 


Fig. 4. Spatial distribution of paddy rice derived from analysis of MODIS 8-day surface reflectance data in 2002 for (a) South Asia and (b) Southeast Asia. The

resultant paddy rice map has a spatial resolution of 500 m.

X. Xiao et al. / Remote Sensing of Environment 100 (2006) 95–113102



Fig. 5. Spatial distribution of paddy rice area at the district level in 2002, as aggregated from the MODIS-derived paddy rice map at 500 m (see Fig. 4) by

administrative unit (district level). Rice area is displayed as the percentage of the district land area dedicated to paddy rice in (a) South Asia and (b) Southeast Asia.
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Fig. 6. District-level spatial distribution of paddy rice sown area derived from national agricultural statistical data (described in Section 3.4). Rice area is displayed as

the percent of the district land area dedicated to paddy rice in (a) South Asia and (b) Southeast Asia.

X. Xiao et al. / Remote Sensing of Environment 100 (2006) 95–113104



Table 3

National-level rice area estimates (�000 ha) derived from three data sources: Huke and Huke (1997), national agricultural statistics (NAS, see Section 3.4), and the

MODrice algorithm (this study)

Country Huke rice category (�000 ha) NAS

(�000 ha)

Paddy

intensity

MODrice

(�000 ha)

MODrice�paddy

intensity (�000 ha)
Upland Deepwater Irrigated

paddy

Rainfed

paddy

Total

(columns 2–5)

Total

(irrigated+rainfed)

Bangladesh 698 1221 2617 6144 10,680 8761 11,000 1.75a 6322 11,064

Bhutan 4 0 5 17 26 22 19 1.0b 4 4

Cambodia 24 152 305 1418 1900 1723 1995 1.24c 4242 5260

India 5060 1364 19,660 16,432 42,516 36,092 43,278 1.10d 34,447 37,892

Indonesia 1209 2 5926 3878 11,015 9804 11,521 1.40e 6740 9436

Laos 219 0 44 348 611 392 738 1.12f 989 1111

Malaysia 80 0 438 150 668 588 609 1.43g 489 699

Myanmar 214 362 3198 2511 6285 5709 6488 1.43h 6724 9615

Nepal 68 118 730 572 1488 1302 1560 1.07i 811 868

Philippines 165 0 2204 1252 3621 3456 4046 1.70j 1484 2523

Sri Lanka 0 0 628 239 867 867 820 1.46k 783 1143

Thailand 203 342 939 8160 9644 9099 9105 1.15l 9306 10702

Vietnam 322 177 3260 2614 6373 5874 7504 1.83a 4265 7805

Total 8265 3737 39,995 43,735 95,732 83,730 98,683 1.28 76,606 98,118

Sources for paddy intensity statistics are footnoted.
a Maclean et al. (2002).
b No statistics available. An intensity value of 1 was assigned based on its geographic location.
c http://www.cardi.org.kh/Library/AgStats.htm.
d Frolking and Babu (submitted for publication).
e http://www.indonesiaphoto.com/content/view/148/45/.
f http://www.faorap-apcas.org/lao/busdirectory/search_results.asp.
g http://www.fao.org/ag/agl/swlwpnr/reports/y_ta/z_my/my.htm#s125.
h http://www.fao.org/docrep/003/x0736m/rep2/myanmar.htm.
i http://www.riceweb.org/countries/nepal.htm (site visited in 2004).
j http://www.fao.org/ag/agl/swlwpnr/reports/y_ta/z_ph/ph.htm#s126.
k http://www.faorap-apcas.org/srilanka/busdirectory/search_results.asp.
l http://oae.go.th/statistic/yearbook/2001-02/indexe.html.
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upland, and 14% were deepwater (Maclean et al., 2002).

Depending on the location, Indian rice is grown in the kharif

(summer, wet) or rabi (winter, dry) seasons, or both. The

majority of rice is grown during the kharif season, which is a

combination of both rainfed and irrigated. Rice grown in the

rabi season is primarily irrigated.

At the state level (31 states in India), there are similar spatial

patterns of rice fields between the MODrice (Fig. 5a) and NAS

(Fig. 6a) datasets. In many states, the NAS data had greater

fractional areas of rice due to multiple-cropping, such as in

east–central India (Figs. 5a and 6a). The four states that have

the largest amount of upland rice (Orissa, Madhya Pradesh,

West Bengal, and Uttar Pradesh) also tend to have relatively

large differences between the MODrice and NAS rice datasets

(Table 4). At the state level, the MODrice and NAS datasets are

highly correlated, with an r2 value of 0.90 and an RMSE of

8093 km2 (Fig. 7a). These results suggest that the MODIS

algorithm is capable of identifying the majority of irrigated and

rainfed lowland rice fields at the state level, but may miss large

portions of upland rice fields.

There are 457 administrative districts in India. At the district

level, there is a positive correlation between the MODrice and

NAS datasets (r2=0.47, RMSE=809 km2; Fig. 7b), but is

lower than the agreement at the state level. A similar pattern of

decreased agreement from the provincial level to the county

level also occurred in a previous study in southern China (Xiao

et al., 2005). The impacts based on the spatial resolution of
MODIS, such as problems detecting small fields, tend to be

more pronounced at the district level.

4.3. Paddy rice agriculture in Nepal, Bangladesh, and

Sri Lanka

Agriculture in Nepal occurs on a thin strip of plains in the

southern portion of the country and the vast majority of rice is

either irrigated or rainfed (Table 3). At the national level, the

total area of paddy rice fields from MODrice was just over half

of the total rice area from the NAS dataset. At the district level,

the overall agreement between the MODrice and NAS datasets

was positive (r2=0.48, RMSE=198 km2; Fig. 8a), but a

number of districts with under 200 km2 of rice area (NAS) had

little or no rice detected by the MODIS algorithm. It is possible

that these are areas where the increased complexity of

topography restricts the size of rice fields that can occur, with

much of the rice growing on terraced slopes.

In Bangladesh, nearly 50% of the cropland is double

cropped and 13% is triple cropped (Maclean et al., 2002). As

a result, much of the country has areas where the fraction of

sown rice is over 90% of the land area (Fig. 6a). Rice

ecosystems in Bangladesh are dominated by rainfed (over 50%

of the rice area) and irrigated, although significant amounts of

upland and deepwater rice still exist. The national rice area

from MODrice is substantially lower than the total sown area of

rice fields from NAS (Table 3). However, much of this

 http:\\www.cardi.org.kh\Library\AgStats.htm 
 http:\\www.indonesiaphoto.com\content\view\148\45\ 
 http:\\www.faorap-apcas.org\lao\busdirectory\search_results.asp 
 http:\\www.fao.org\ag\agl\swlwpnr\reports\y_ta\z_my\my.htm#s125 
 http:\\www.fao.org\docrep\003\x0736m\rep2\myanmar.htm 
 http:\\www.riceweb.org\countries\nepal.htm 
 http:\\www.fao.org\ag\agl\swlwpnr\reports\y_ta\z_ph\ph.htm#s126 
 http:\\www.faorap-apcas.org\srilanka\busdirectory\search_results.asp 
 http:\\oae.go.th\statistic\yearbook\2001-02\indexe.html 


Table 4

Rice area (�000 ha) estimates for India states derived from three data sources: Huke and Huke (1997), national agricultural statistics (NAS; see Section 3.4), and the

MODrice algorithm

State Huke rice category (�000 ha) NAS

(�000 ha)

Paddy

intensity

MODrice

(�000 ha)

MODrice�paddy

intensity (�000 ha)
Upland Deepwater Irrigated

paddy

Rainfed

paddy

Total

(columns 2–5)

Total

(irrigated+rainfed)

Andhra Pradesh 105 42 3859 0 4006 3859 3828 1.26 2853 3582

Assam 544 272 530 1144 2490 1674 2503 1.10 2134 2339

Bihar 510 457 1954 2473 5393 4427 4987 1 5216 5216

Gujarat 0 0 215 315 531 531 608 1 867 867

Jammu and Kashmir 0 0 266 0 266 266 271 1 276 276

Karnataka 110 0 852 204 1166 1056 1354 1.20 1134 1363

Kerala 30 0 256 273 559 529 463 1.14 242 277

Madhya Pradesh 840 0 994 3228 5062 4222 5298 1 3429 3429

Maharashtra 351 0 331 900 1581 1231 1525 1.01 2152 2183

Orissa 853 67 1556 1928 4404 3484 4495 1.09 2624 2862

Rajasthan 0 0 120 0 120 120 152 1 725 725

Tamil Nadu 20 23 1830 0 1873 1830 2156 1.12 2113 2366

Uttar Pradesh 549 218 2570 2277 5615 4847 5604 1 3126 3126

West Bengal 840 253 1251 3469 5813 4720 5866 1.25 3497 4379

Himachal Pradesh 0 0 85 0 85 85 83 1 45 45

Haryana 0 0 667 0 667 667 905 1 830 830

Punjab 0 0 2024 0 2024 2024 2234 1 2579 2579

Other States 309 32 300 220 861 520 945 1.07 605 647

TOTAL 5060 1364 19,660 16,432 42,516 36,092 43,278 1.10 34,447 38,034

State-level paddy intensity values are from Frolking and Babu (submitted for publication).
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discrepancy is likely to be attributed to the double or triple rice

cropping over a significant portion of the cropland in

Bangladesh. The spatial distribution of the rice is similar

between these two datasets (Figs. 5a and 6a) and the

subnational (region) agreement in area estimates is good

(r2=0.70, RMSE=2021 km2; Fig. 8b).

In Sri Lanka, multiple rice cropping occurs in parts of the

country and all of the rice is either irrigated or rainfed (Table

3). At the national level, the rice area estimates from MODrice

and NAS are quite close (Table 3). However, at the district

level, the correlation in rice area estimates between these two

datasets (Fig. 8c) is the weakest of all of the 13 countries

analyzed in this study (r2=0.31, RMSE=293 km2), likely due

to smaller amounts of scattered rice areas. In most districts of

Sri Lanka, the fraction of the land area that is sown or planted

to rice is under 30% (Figs. 5a and 6a).

4.4. Paddy rice agriculture in Myanmar, Thailand, Vietnam,

Laos, and Cambodia

In Myanmar, rice cultivation occurs throughout much of

the northern part of the country, but the majority of the rice

production occurs in the delta areas of the Ayeyarwady and

Sittoung rivers (Fig. 4a). Of the total rice area, rainfed rice

accounts for 52%, irrigated rice is 18%, deepwater rice is

24%, and upland rice is 6% (Maclean et al., 2002). At the

national level, the difference in rice area estimates between

the MODrice and NAS datasets are within 2360 km2,

approximately 3.5% of the total paddy rice area from MODrice

(Table 3). At the district level, the spatial distribution of rice

fields derived from the MODIS algorithm and NAS are very

similar, except for a slight overestimation by MODrice in the

northern interior areas (Figs. 5a and 6a). At the district level,
the correlation between these two datasets is also good

(r2=0.74, RMSE=679 km2; Fig. 9a).

While rice is distributed over much of Thailand (Fig. 4b),

nearly half of the rice land is located in the northeast interior

region, where the majority of the rice fields are rainfed. At a

national level, the difference in rice area estimates between the

MODrice and NAS datasets are within 2010 km2, about 2.2% of

the total paddy rice area from the MODrice dataset (Table 3). At

the subnational province level, the spatial distribution of rice

derived from MODrice and NAS are very similar, except for a

slight underestimation by the MODIS algorithm in the

northeast rainfed region (Figs. 5b and 6b). At the province

level, the correlation between these two datasets is also high

(r2=0.87, RMSE=481 km2; Fig. 9b).

In Vietnam, much of the rice cultivation is concentrated in

two river deltas, the Mekong (over half of the country’s rice

area) and the Red (Fig. 4b). The rice sown area in 2000 was

about 7.7 million ha and the cropping intensity (ratio of sown

area to land area for a given crop) was about 183% (Maclean et

al., 2002), the highest in the world. The high cropping intensity

is largely due to the triple rice crops that are common in much

of the Mekong Delta area. Over 92% of the total rice area in

Vietnam is either irrigated or rainfed (Table 3). At a national

level, the paddy rice area from MODrice is substantially lower

than the total rice area reported in the NAS dataset (Table 3)

due to the high cropping intensity. At the subnational province

level, the correlation in rice area estimates between the

MODrice and NAS datasets is positive (r2=0.42, RMSE=1183

km2; Fig. 9c), but is weaker than in Thailand or Myanmar.

In Laos, over 35% of the rice crop is upland (Table 3), the

largest percentage of any country in our study. At the national

level, the rice area from MODrice is substantially higher than

the rice area from the NAS dataset (Table 3). However, at the
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subnational province level, these two datasets were well

correlated (r2=0.79, RMSE=457 km2; Fig. 9d), indicating

that the spatial distribution of rice was similar even though the

MODrice estimates were higher.

Rice in Cambodia is concentrated in the lowlands surround-

ing lake Tonle Sap and the lower reaches of the Mekong River

in the southern part of the country (Fig. 4b). The majority of

rice in this poor country is rainfed (Table 3). At the national

level, the paddy rice area estimate from MODrice is substan-

tially higher than the total rice area reported in NAS (Table 3);

possible reasons for this large discrepancy are raised in the

Discussion section. At the subnational province level, the

correlation in area estimates between the MODrice and NAS

datasets is positive (r2=0.44, RMSE=1664 km2; Fig. 9e).

4.5. Paddy rice agriculture in Malaysia, Philippines, and

Indonesia

Most of Malaysia’s rice cultivation occurs in the northwest

corner of the peninsular section, close to the Thailand border

(Fig. 4b), and almost 90% of it is irrigated or rainfed (Table 2).

At the national level, the difference in area estimates between

the MODrice and NAS datasets was relatively small, especially

if the upland component in the Huke dataset is excluded (Table

3). At the subnational state level, these two datasets were well
correlated (r2=0.71, RMSE=350 km2; Fig. 10a) and had

similar spatial distribution patterns of paddy rice fields (Figs.

5b and 6b).

In the Philippines, over 95% of all rice is either irrigated or

rainfed (Table 3), with the remainder being upland. At the

national level, the paddy rice area estimate from MODrice is

less than half the total rice area of the NAS dataset (Table 3),

likely due to a combination of multi-cropping and topographic

restraints on field sizes. At the subnational region level, these

two datasets were moderately correlated (r2=0.60, RMSE=
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534 km2; Fig. 10b). MODrice had much lower fractional rice

areas in several of the central islands than the NAS dataset

(Figs. 5b and 6b).

In Indonesia, irrigated and rainfed rice account for almost

90% of the total rice area, with the remaining 11% being

upland (Maclean et al., 2002). While each of Indonesia’s five

main islands has some areas of intense rice production, heavily
populated Java is the most productive rice area (Fig. 4b). At the

national level, the paddy rice area estimate from MODrice is

lower than the total rice area estimate from the NAS dataset

(Table 3). This discrepancy is likely a result of high cropping

intensities and greater sown area totals in the NAS dataset, as

much of the irrigated and rainfed areas are double cropped in

Indonesia (Maclean et al., 2002). At the subnational province
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algorithm (MODrice) and national agriculture statistics (see Section 3.4) in (a)

Malaysia, (b) Philippines, and (c) Indonesia.
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level, these two datasets were moderately correlated (r2=0.44,

RMSE=4201 km2; Fig. 10c). Spatial distribution patterns of

paddy rice from the MODrice and NAS datasets are similar,

although MODrice has considerably lower fractional rice areas

on primarily double-cropped Java (Figs. 5b and 6b).

5. Discussion

In this study, we used a temporal profile analysis of

MODIS-derived vegetation indices to identify and map paddy

rice over 13 countries in South and Southeast Asia. While there
are several factors that can affect rice mapping using our

MODIS method (sensor temporal and spatial resolution, cloud

cover, snow, seasonally inundated wetlands), at the outset of

our study, we were most concerned about the impact of

frequent cloud cover in subtropical and tropical Asia, where

paddy rice fields are widely distributed (Thenkabail et al.,

2005). An innovative feature of our paddy rice algorithm is that

rice paddies are identified from a relatively short time period of

image data during the flooding and early growth period. One

benefit of this approach is that one does not need cloud-free

observations throughout the entire year or crop cycle for image

classification purposes; one can obtain reasonable results as

long as cloud-free observations occur within the short period of

flooding and rice transplanting. Farmers generally select sunny

days for rice transplanting, because continuous cloudy/rainy

days could reduce the growth of young seedlings, and

excessive water level in the fields could potentially result in

die-back of seedlings. Cloud contamination affects between

35% and 45% of all land pixels during the height of the

monsoon (June–August), and between 10% and 30% of land

pixels the rest of the year. While these levels of cloud

contamination introduce some degree of underestimation in

the MODIS-derived rice areas, the results of this study suggest

that our algorithm to a large degree overcomes the obstacle

associated with frequent cloud cover occurrence in moist

tropical Asia. Our paddy rice mapping algorithm conducts

image classification pixel by pixel and is different from

conventional image classification algorithms that were built

upon spatial pattern recognition (Friedl et al., 2002; Loveland

et al., 2000; Thenkabail et al., 2005; Xiao et al., 2002a). The

latter approach is likely to have large error and uncertainty if

one uses two moderate-resolution maps generated from

algorithms based on spatial pattern recognition to infer land-

cover and land-use changes. The mean and standard deviation

of spectral clusters change when different years of satellite

images are used, and interpretation of land-cover classes

become less objective and more difficult. The temporal profile

analysis of individual pixels is readily applicable to different

years for quantifying changes in crop calendars and multiple

cropping rotations, and thus has a potential for substantially

reducing the error and uncertainty in quantifying land-cover

conversion and land-use intensification.

Although the spatial distribution of paddy rice from

MODrice agrees reasonably with the spatial pattern of rice

agriculture from the agricultural census data (NAS), there are

significant regional differences among the 13 countries. Four

factors may to various degrees contribute to the discrepancies

between the MODrice and NAS rice area estimates. First, both

the NAS and Huke datasets used in this study are sown area

statistics, including double- to triple cropping of paddy rice in a

year, which leads to double or multiple counting of the area of

paddy rice fields. The paddy intensity (ratio of sown paddy

area to paddy land area) is a statistic that can be used to provide

a direct comparison between MODrice and NAS rice area

estimates. If the paddy intensity is used as a multiplier, an

estimate of sown area can be derived from MODrice totals

(Tables 3 and 4). Using this method, discrepancies between
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MODIS- and NAS-derived rice areas of several countries

(Vietnam, Bangladesh, India, Indonesia, and Philippines) were

greatly reduced. While the discrepancies in a few countries

(Myanmar, Cambodia, and Thailand) were increased using this

method of comparison, the overall discrepancy for our Asian

study area was reduced from over 22,000 km2 (without the

paddy intensity multiplier) to just 565 km2 (Table 3). Second,

when using MODIS data at 500-m spatial resolution, the

algorithm could fail to identify paddy rice fields in regions with

complex topographic relief and/or locations where paddy rice

fields are much smaller than the MODIS pixels can resolve

satisfactorily, which leads to underestimation of the area of

paddy rice fields. In an earlier study (Xiao et al., 2005), a

similar pattern was observed as the MODIS rice algorithm

underestimated rice areas in the hilly provinces of southern

China. To explore this phenomenon further, we summarized

the total rice area of the two datasets (MODrice, NAS)

according to elevation (Fig. 11). It is evident that the MODIS

algorithm more consistently approximates the NAS dataset at

lower elevations (<300m), with MODrice totals within 20% of

NAS totals in each elevation range that was analyzed. Almost

80% of all rice paddies occur at elevations less than 300 meters

(Fig. 11); these areas tend to be large, flat river mouths and

valleys with a relatively homogenous land-cover consisting

primarily of rice paddies. At higher elevations, agreements

between MODrice and NAS are much less consistent (Fig. 11),

although the level of consistency does not seem to decrease

with increasing elevation. Third, pixels contaminated by clouds

represent approximately 10–40% of all land pixels, depending

on the time of year. As these pixels are not included in the

MODIS algorithm, this introduces a potential source of

underestimation in MODrice. Fourth, the NAS dataset has its

own uncertainty in the reporting process due to a number of

social and economic issues (including politics, tax), particularly

at subnational levels. For instance, agricultural census statistics

in China are routinely under-reported (Frolking et al., 2002), a

practice that could potentially occur in other nations also.

To decrease the discrepancies one would require fine

resolution satellite images (e.g., Landsat) to be acquired at
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several times during the year. In previous studies that used

moderate resolution images for land-cover classification,

Landsat images were often used for accuracy evaluation (Boles

et al., 2004; Eva et al., 2004; Latifovic et al., 2004; Loveland et

al., 2000). In an earlier study for mapping paddy rice in

southern China, we used a Landsat-based land-cover map to

evaluate the MODIS-based algorithm and resultant map of

paddy rice fields (Xiao et al., 2005). In this study, we do not

have sufficient resources to generate Landsat-derived land-

cover maps for the 13 countries, and we expect that further

evaluation may be carried out after the MODIS-derived paddy

rice field dataset is released to the public for comments. In the

next paragraph, we present a case study in Cambodia to

illustrate the role of Landsat images in accuracy evaluation.

The largest percentage discrepancy in rice area estimates

between the MODrice and NAS datasets occurs in Cambodia

(Table 3). The paddy rice area from MODrice is substantially

higher than rice area reported in the NAS dataset and is largely

concentrated around the Tonle Sap Basin in the northwest part

of Cambodia (Figs. 4–6). The basin covers an area of about

80,000 km2 and total agricultural land area is about 15,787 km2

(Wright et al., 2004). The Tonle Sap Basin is one of the regions

in Cambodia that has a large area of rice fields and high rice

productivity. The wet (monsoon) season usually occurs

between May and October and the dry season occurs between

November and April. Correspondingly, Cambodia has a wet-

season rice crop and a dry-season rice crop. For the wet-season

rice crop, the seedling-bed process starts in late May through

July when the first rains of the monsoon begin to inundate and

soften the land. Rice seedlings are transplanted from late June

through September. Rice harvesting usually occurs in late

November to December. The dry-season rice crop is usually

planted in November in some areas that have trapped or

retained part of the monsoon rains or irrigation infrastructure,

and the cropping cycle (planting to harvest) is about 3 months.

The area of dry-season rice crop is generally small, because of

lack of irrigation infrastructure. We compared the MODrice map

with a Landsat ETM+ image that covers a large part of the

Tonle Sap Basin (Fig. 12). The ETM+ image on January 11,
1500 2000

C
um

ul
at

iv
e 

R
ic

e 
A

re
a 

(%
)

0

20

40

60

80

100

M
O

D
ric

e:N
A

S
 r

at
io

0.0

0.5

1.0

1.5

2.0

2.5

NAS
MOD

rice
NAS Cumulative
MOD

rice
 Cumulative

MOD
rice

:NAS ratio

model; see Methods) for the study area. The solid and dotted lines represent the

s, respectively. The dash line represents the ratio of MODIS-derived rice area to



Fig. 12. A comparison between the MODrice map and a Landsat ETM+ image on January 11, 2002 in the Tonle Sap Basin, Cambodia. The provincial boundary map

is overlaid to aid in the comparison of the two maps. The upper panel is a false color composite of band 4-3-2 of Landsat ETM+ image. In the lower panel, paddy

rice=red color, permanent water body=blue color, and forest mask=green color.
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2002 clearly shows the spatial distribution of wetland

(evergreen forests) surrounding Tonle Sap and areas of

harvested cropland. The paddy rice fields identified in MODrice

are in general spatial agreement with the areas of harvested

cropland in the ETM+ image. The wetland areas immediately

surrounding the open water are likely to be flooded during the

wet season. These flooded forest areas are not identified as

paddy rice fields in MODrice, which indicates that our paddy

rice mapping algorithm successfully eliminates the potential
errors introduced by seasonally flooded wetlands (see Methods

and Fig. 3). We also examined time series of MODIS

vegetation indices (NDVI, EVI, and LSWI) for a number of

rice pixels in the basin. Time series of vegetation indices from

two pixels that are identified as paddy rice (Fig. 13) show that

these pixels have the unique spectral signature we identify as

paddy rice fields. Note that, because of budget limitations, we

were not able to conduct field work in the Tonle Sap Basin to

evaluate our paddy rice map. The time series of MODIS
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vegetation indices and visual interpretation of Landsat ETM+

images suggest that this paddy rice algorithm does identify

irrigated pixels in the basin. The large discrepancy in paddy

rice area between the MODrice and the NAS might be attributed

to either under-reporting of the NAS data or other types of

irrigated croplands.

6. Summary

This study represents our continuing efforts towards

mapping individual crops by studying unique spectral features

of individual crop systems. We have developed a database of

paddy rice agriculture in monsoon South and Southeast Asia

at 500-m spatial resolution, which is to our knowledge the

finest-resolution database of paddy rice at such a large spatial

domain. This is made possible by the availability of water-

sensitive shortwave infrared bands from a new generation of

optical sensors (MODIS and VGT) that enable us to progress

beyond previous mapping algorithms that are primarily

dependent on NDVI as the spectral input. There are certain

sources of error that are inherent to optical sensors, such as

cloud contamination, topographic effects, and resolution

limitations (both spatial and temporal). However, in general,
the output of the MODIS rice algorithm was similar to

datasets derived from census statistics, both in terms of spatial

distribution and area totals. Floods and drought events

associated with the monsoon climate system can substantially

affect the timing and spatial distribution of paddy rice

agriculture in Asia. In the future, we intend to apply this

algorithm to multi-year MODIS data to examine its potential

for quantifying inter-annual variations of paddy rice fields due

to extreme climate events and/or human-driven land-use

changes. Other future efforts may include global application

of this algorithm to provide an updated global dataset of

paddy rice, and exploring the temporal profile analysis

approach for its ability to map other crops (e.g., cotton) that

have a period of significant irrigation at the start of the plant-

growing season.
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