
1.  Introduction
As one of the most important terrestrial carbon sinks, forests play a critical role in regulating global and regional 
carbon budgets (Houghton & Nassikas, 2018; Le Noë et al., 2021). Previous studies have estimated a global forest 
sink of 2.4 Pg C yr −1 for 1990 to 2007 (Pan et al., 2011), which contributes a large fraction of the entire terrestrial 
sink globally (Friedlingstein et al., 2020). The Chinese government has committed to reaching carbon neutrality 
by 2060 (NDRC, 2021), which means the various ecosystem carbon sinks and carbon capture and storage need to 
offset all fossil fuel CO2 emissions (Rogelj et al., 2015). In China, forest ecosystems also dominate the terrestrial 
carbon sink, contributing 80% of terrestrial carbon sinks and 39% of terrestrial carbon stocks while providing a 
least 2.97 Pg C of potential carbon sequestration for 2010 to 2030 (Fang et al., 2018; Tang et al., 2018). In addi-
tion, the identification of forest types is also important for simulating carbon sinks because ecosystem models set 
different model parameters for various forest types (Houghton et al., 1983). For example, the leaf turnover rate 
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of boreal conifer deciduous forests was twice that of boreal conifer evergreen forests (Ryan & Law, 2005), which 
substantially impacts the amount of aboveground litterfall. Since accurate information of forest cover with forest 
types is critical for reducing the uncertainty in estimating China's forest carbon balance and better understanding 
its role in potential carbon sequestration, an urgent need exists to produce cover maps of China's forests.

Although numerous studies have produced land use and land cover (LULC) data sets (Liu et al., 2021), large differ-
ences of forest area in China remain among various data sets. Qin et al. (2015) reported that the forest area estimations 
of five LULC data sets ranged from 174 × 10 4 km 2 to 227 × 10 4 km 2 in 2010, with a 29% difference of forest cover 
percentage among these data sets. Similarly, Yang and Huang (2021) compared the forest area estimations in China 
derived from three LULC data sets and indicated that the difference of forest area estimations is up to 78 × 10 4 km 2 
in 2015, which are account for 35% of corresponding forest area statistics in national forest inventory (NFI) reports.

China currently has the world's largest area of afforestation, benefiting from several afforestation and reforest-
ation projects dedicated to improving ecological conditions that had deteriorated previously (Fang et al., 2001; 
FAO, 2016; Yuan et al., 2014). The forest area has substantially increased from 115 × 10 4 km 2 in the 1980s to 
220 × 10 4 km 2 around 2015 according to NFI data (State Forestry Bureau, 2019). It was also reported that the 
forest area in Asia shifted from a net loss during 1990–2000 to a major net gain during 2000–2010, mainly due 
to the ongoing afforestation in China (FAO, 2016). However, long-term satellite-based LULC data sets have 
shown challenges to reproduce these significant forest increases in China (Yang & Huang, 2021), and major 
discrepancies of forest area exist between data sets derived from satellite-based LULC data and statistical reports 
(Schepaschenko et al., 2015). Yang and Huang (2021) reported that forest area in China only increased by 4.34% 
from 1985 to 2019, while Hansen et al.  (2013) even witnessed a 3.87 × 10 4 km 2 net loss during 2000–2012 
according to satellite observations. Although several LULC data sets produced since the 1980s exist that cover 
long-term time series (Liu et al., 2021), no studies have investigated to see if these data sets can indicate substan-
tial increases of forest areas observed during the past decades.

NFI is identified as a critical national infrastructure for providing forest cover and biomass storage (Zeng 
et al., 2015). Since the second nationwide NFI was implemented from 1977 to 1981 (i.e., NFI2), the standard 
sampling and survey methods were used for the whole country (Zeng et al., 2015). Subsequently, the other seven 
NFIs (NFI3 to NFI9) were continuously implemented with about a 5-year cycle (Lin et al., 2013). Benefiting 
from a large volume of samples across entire China, the forest area derived from NFI has been considered the 
reference data set (State Forestry Bureau, 2003). Previous studies used the NFI data set to estimate forest carbon 
budget (Fang et al., 2001; Piao et al., 2009). However, NFI only provided province-level forest area, which limits 
the applications of terrestrial ecosystems for simulating carbon dynamics (Yuan et al., 2014). Therefore, a very 
urgently needed task is to produce long-term forest cover maps consistent with NFI as a basic data set for ecosys-
tem modeling to robustly evaluate the changes of terrestrial carbon sinks and drivers.

This study aims to classify forest cover in China by combining several current LULC data sets; in particular, we 
reconstructed long-term forest cover maps starting from the early 1980s. The objectives of this study are to (a) 
develop a new method combining multiple LULC data sets and generate new forest cover maps covering China; 
(b) identify and provide maps of the distribution of the forest types, and (c) investigate the forest gain and loss in 
China during the past three decades.

2.  Materials and Methods
2.1.  Data Sets

2.1.1.  National Forest Inventories

To investigate the area, composition, and distribution of forest resources, the State Forestry Bureau of China 
launched nine national forest inventories (NFIs) in 1973–1976, 1977–1981, 1984–1988, 1989–1993, 1994–1998, 
1999–2003, 2004–2008, 2009–2013, and 2014–2018 (State Forestry Bureau,  2019). Forest areas, which are 
composed of needleleaf forests, broadleaf forests, bamboo, and economically important plantation forests, at the 
province scale during the 2nd–9th NFIs were employed in this work.

2.1.2.  Land Use and Land Cover Datasets

Twenty LULC data sets were employed as the fundamental data sources for forest cover reconstruction (Table 1). 
Forest cover was derived from these LULC data sets, and then masked, re-projected, and aggregated into the 
unified spatial extent for China with spatial reference to GCS_WGS_1984 and using a spatial resolution of 0.01°. 
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For the conversion from the data sets with the finer resolution, the 0.01° grid pixel was defined as forest if over 
50% of finer grids within this pixel are clarified as forest in the original data set.

2.1.3.  Satellite-Based Vegetation Index Data Set

We downloaded the third generation Global Inventory Modeling and Mapping Studies (GIMMS-3g) Normalized 
Difference Vegetation Index (NDVI) data sets with a spatial resolution of 8 km and temporal resolution of 15-day 
during 1982–2015 from https://ecocast.arc.nasa.gov. The maximum NDVI of the growing season within about 
5-year forest inventory periods was applied as a priority proxy to determine how many potential forest pixels were 
identified as forests under the same level of consistency.

2.1.4.  Climate Zone Mapping

In general, needleleaf forests are mainly evergreen, except for Larix needleleaf forests, which are deciduous and 
mainly located in the boreal zone. Broadleaf forests are mainly deciduous, except for tropical and subtropical 
broadleaf forests, which are evergreen. Therefore, a climate zone map, accessible from the Resource and Environ-
ment Science and Data Center (http://www.resdc.cn), was applied to further distinguish evergreen and deciduous 
forest types. The original map of climate zones, which consisted of 12 temperature zones, 24 humidity regions, 
and 56 climatic subzones, was integrated into four main temperature zones (boreal, temperate, subtropical, and 
tropical zones) for forest reconstruction.

2.2.  Reconstruction Method of Historical Forest Cover in China

This study developed a new method of reconstructing historical forest cover maps from 1980 to 2015 by inte-
grating multiple readily available LULC data sets (Figure 1). Since different input data, especially for LULC 
and NFI data, have different time-spanning, it is important to match them into a consistent time point (Figure 

Table 1 
Land Use and Land Cover Data Sets Employed in This Study

Datasets Resolution Time range Source

NFDM a 100 m b 1977–1981, 2014–2018 http://www.forestdata.cn

CGLS_LC 100 m 2015 Buchhorn et al. (2020)

CLCD 30 m 1985, 1990–2015 c Yang and Huang (2021)

CLUD 1 km 1980, 1990, 1995, 2000, 2005, 2010, 2015 Liu et al. (2005)

ESACCI_LC 300 m 1992–2015 c ESA (2014)

FROM_GLC 10 m 2017 Gong et al. (2019)

GFC30 a 30 m 2018 Zhang et al. (2020)

GFC a 30 m 2000, 2012 Hansen et al. (2013)

GLASS_GLC 5 km 1982–2015 c Liu et al. (2020)

GLC2000 1 km 2000 Bartholomé and Belward (2005)

GLC_FCS30 30 m 1985, 1990, 1995, 2000, 2005, 2010, 2015 Zhang et al. (2021)

GLCNMO 1 km 2003, 2008, 2013 Tateishi et al. (2011)

GlobCover 300 m 2009 Bontemps et al. (2010)

GlobeLand30 30 m 2000, 2010 Chen et al. (2015)

Li_Forest a 30 m Circa 2010 Li et al. (2014)

MODIS 500 m 2001–2015 Friedl et al. (2010)

MLUD 250 m 2005 Ge et al. (2018)

UMD_LC 1 km 1992 Hansen et al. (2000)

Wang_LC 250 m 2001, 2010 Wang et al. (2015)

Wu_LC 100 m b 1980s http://www.resdc.cn

 aThese data sets only contain forest class and don’t contain other forest sub-type.  bThese data sets originally were digitalized maps and were later rasterized at a 100 m 
spatial resolution.  cThese data sets were updated annually, and other data sets were only updated at several points in time.

 21698961, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007101 by U
niversity O

f O
klahom

a, W
iley O

nline L
ibrary on [03/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ecocast.arc.nasa.gov
http://www.resdc.cn
http://www.forestdata.cn
http://www.resdc.cn


Journal of Geophysical Research: Biogeosciences

XIA ET AL.

10.1029/2022JG007101

4 of 16

S1 in Supporting Information S1). For each study period, we overlaid all available LULC data sets to calculate 
the spatial agreement or consistency of forest cover at each pixel, and the consistency (CON) is defined by how 
many existing data sets classify the investigated pixel as forest (Figure S2 in Supporting Information S1). An 
investigated pixel was identified as forest cover by more LULC data sets (i.e., higher consistency), and then 
the pixel had a larger probability to be identified as the forest (Fang et al., 2020). To determine the threshold of 
consistency for identifying forest, all pixels with positive CON (CON > 0) were selected as the potential forest 
pixels, and they were sorted by descending CON. The pixels at the front of the queue had higher consistency and 
larger possibility to be identified as the forest. Forest areas derived from the NFI data set were used to determine 
the CON thresholds for each province (Figure S3 in Supporting Information S1). Specifically, there were two 
conditions, and we used different strategies to determine the CON thresholds. First, if the total area of all poten-
tial forest pixels (CON > 0) was less than the forest area statistics of NFI in a given province, we considered all 
potential forest pixels as forest and leave the gap of forest area being unfilled. Therefore, the area of the identified 
forest cover was underestimated. Second, if the area of all potential forest pixels (i.e., CON > 0) was larger than 
the reported NFI forest area, we calculated the total area of pixels with the same level of consistency, and then 
accumulated the pixels' area of different levels of consistency from the maximum to the minimum. When the 
reported NFI forest areas (ANFI) were larger than the accumulated areas of CON ≥ m, but less than the accumu-
lated area of CON ≥ m-1 (i.e., Aid1), the m was determined as the thresholds of consistency and all pixels with 
CON ≥ m were identified as the forest. However, it should be noticed that the rest forest area (ANFI-Aid1) should 
still be identified from the pixels with CON = m-1. We hypothesized that under the same level of consistency, a 
higher NDVI value suggests a larger probability of a pixel actually being forest cover. Similarly, we calculated the 
maximum NDVI of the growing season (NDVImax) at the consistency level of m-1 within about 5-year inventory 
periods and sorted the pixels by descending NDVImax. We selected n pixels at the front of the queue as the rest 
forest pixels, and make sure their total area was the closest to the  area of ANFI-Aid1. A forest pixel was identified 
as a pixel with a relatively high consistency between LULC data sets and with a relatively high NDVI value, and 

Figure 1.  Methodology flow chart in the forest reconstruction. The green squares denote forest pixels and the gray ones 
denote non-forest pixels. NFI represents national forest inventory and land use and land cover (LULC) represent LULC data 
sets. Areapotential denotes the total area of all potential forest pixels.
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the total area of all identified forest pixels should equal the statistical forest 
area in the investigated province.

Theoretically, we could use the same method described above to classify 
the forest types into evergreen needleleaf, evergreen broadleaf, decidu-
ous needleleaf, and deciduous broadleaf forests. However, the availability 
of the LULC data sets limited the application of the same reconstruction 
method to these four forest types, because only a few LULC data sets exist 
that provide the distribution of these four forest types in several periods, 
especially before  the 2000s. For example, only one of the available data sets 
provided the distribution of needleleaf and broadleaf forests in 1985, and 
none provided the distribution of evergreen and deciduous forests in 1980. 
Therefore, this study assumed the spatial distribution of these four forest 
types did not change temporally. NFI data sets provide the area of needleleaf 
(Areaneed) and broadleaf forests (Areabroa), but not for evergreen and decid-
uous forests. Therefore, we first separated needleleaf and broadleaf forests 
from the forest cover map by the previous step, then separated each of these 
into evergreen and deciduous forests resulting in the four forest types listed 
above such as evergreen needleleaf forests.

To separate needleleaf and broadleaf forests, we overlaid all 11 data sets 
containing forest types over all eight study periods (Table 1), and a total of 
29 data layers were included. According to the assumption mentioned above, 

two static consistency maps related to needleleaf and broadleaf forests were prepared by summing up all 29 data 
layers (Figure S4 in Supporting Information S1). First, similar to forest reconstruction, we also calculated the 
consistency (CON) of needleleaf forest (CONneed) and broadleaf forest (CONbroa) at each pixel, that is, the number 
of LULC data sets that identified the pixel as the needleleaf or broadleaf forest. At each pixel, there were two 
consistency indexes CONneed and CONbroa, and then we preferentially identified the needleleaf (broadleaf) forest 
at the pixels with CONneed > CONbroa (CONbroa > CONneed) using the same method for identifying forest as above 
introduced. If the total area of identified needleleaf (broadleaf) forests does not meet the reported needleleaf 
(broadleaf) forest area of NFI, we prioritized the data to identify the dominant forest type from the remaining 
forest pixels and then identified another forest type. The dominant forest type in a given province is the forest type 
occupying the majority of the forest area according to the NFI. Theoretically, the total area of the two delineated 
forest types can identify the corresponding prescribed areas from NFI records; the remaining forest pixels will be 
considered as other forest types (bamboo and economically important plantation forests).

Similar to the reconstruction of needleleaf/broadleaf forest types, we further separated evergreen and deciduous 
forest types from needleleaf and broadleaf forest types, individually (Figure S5 in Supporting Information S1). 
Because no area records exist for evergreen and deciduous forest types of NFI data sets, we directly separated 
evergreen/deciduous needleleaf forest types from these needleleaf forest pixels, which were relatively consist-
ently identified as evergreen/deciduous needleleaf forests, and similar operations were conducted for separat-
ing evergreen/deciduous broadleaf forest types from broadleaf forest pixels. The prior knowledge mentioned in 
Section 2.1.4 between climate zone and forest type was employed to further separate the evergreen/deciduous 
forest types from these remaining needleleaf and broadleaf forest pixels, individually.

2.3.  Accuracy Assessment

We employed two different methods to validate the accuracy of the reconstructed forest cover maps, including 
field survey-based and consistency-based validation techniques (Fang et al., 2020). Initially, we randomly labeled 
395 site-specific annual samples from 1985 to 2015 at 5-year intervals, based on very high spatial resolution 
images and archived Landsat time-series images (Figure 2). In addition, we collected 665 and 2791 third-party 
field surveys from the literature acquired in 2010 and 2015, respectively (Qin et al., 2015; Zhang et al., 2021). All 
3851 field surveys were collected to obtain the confusion matrix of the reconstructed forest cover map for each 
period. The overall accuracy (OA) shows the proportion of all field surveys correctly classified. The producer's 
accuracy (PA) shows the proportion of surveyed truth samples properly classified as the target class, and the 
user's accuracy (UA) shows the proportion of samples classified as the target class on the classification map 
confirmed by field surveys.

Figure 2.  Locations of forest field samples used in this study for accuracy 
assessment based on 395, 665, and 2791 field samples collected in this study, 
by Qin et al. (2015) and by Zhang et al. (2021), respectively.
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Additionally, the reconstructed forest cover maps were generated by combining multiple LULC data sets; there-
fore, we indirectly examined the accuracy of the maps by analyzing the consistency between all LULC data sets. 
A reconstructed forest pixel was identified as forest cover by more LULC data sets (i.e., higher consistency), and 
then the reconstructed forest pixel had the larger confidence properly identified as the forest (Fang et al., 2020).

2.4.  Analysis Methods

2.4.1.  Consistency Analysis

Consistency was measured at each pixel and defined as the number of LULC data sets that identified a given pixel 
as a forest type (Gao et al., 2020). For instance, the consistency of three indicated that three out of all available 
LULC data sets classify the forest type the same at a given pixel. Therefore, the more consistent these LULC data 
sets are, the more likely this investigated pixel is actually a forest (Fang et al., 2020).

2.4.2.  Forest Change Analysis

Forest change refers to the forest cover transitions between forest and non-forest during two successive time 
points, and can be classified into change (gain or loss) and non-change (stable forest or stable non-forest) events 
(Winkler et al., 2021). Forest gain is defined as the transition from non-forest to forest, and forest loss is the 
inverse of forest gain, from forest to non-forest (Hansen et al., 2013). During multi-successive time steps, forest 
gain and forest loss may occur successively. Therefore, the gross forest change from 1980 to 2015 includes three 
possible change events (forest gain, loss, gain, and loss), and the occurrence frequencies of gross forest change 
events represent the intensities of forest change.

3.  Results
3.1.  Accuracy Assessment of Reconstructed Forest Cover Data Set

This study reconstructed a new forest cover data set, called the Chinese Forest Cover Data set (CFCD), from 
1980 to 2015 by combining several current LULC data sets. First, we used field surveys acquired from 1985 
to 2015 covering seven study time points to examine the accuracy of data sets. Based on 395 site-specific field 
surveys, the validation shows that the OA increased over time, varied from 75.4% to 93.9%, and producer's and 
user's accuracies varied from 55.5% to 94.3% and from 93.6% to 97.3% for forest type (Table 2), respectively. In 
addition, based on the 665 and 2791 three-party field surveys acquired in 2010 and 2015, the validation shows the 
OA was 93.8% and 99.4%, producer's accuracy was 90.6% and 99.3%, and user's accuracy was 96.8% and 97.0% 
for forest type, respectively.

The confidence of CFCD was measured at each forest pixel and defined as the consistency among all LULC data 
sets. For all forests, there were 4, 4, 6, 5, 11, 8, 12, and 10 LULC data sets employed for reconstructing forest cover 
for all eight study time points. We found that there were 32%, 74%, 48%, 60%, 31%, 45%, 32%, and 35% of recon-
structed forest pixels reaching the corresponding maximum consistency at eight study time points, respectively. 
The proportion of reconstructed forest pixels where the consistency is one was only 1% (Figure 3a). For forest 
types, we noted that the consistency of reconstructed broadleaf forests was larger than that of needleleaf forests 
(Figures 3b and 3c). Notably, there remain few (less than 4%) reconstructed needleleaf and broadleaf  forest pixels 
having no consistency of corresponding forest type according to our method (Figures 3b and 3c).

3.2.  Consistency Evaluation and Comparison of LULC Data Sets

Consistency between existing LULC data sets showed significant spatial variations. Low consistency mainly 
occurred in Northwest China and along the east coast of China (Figure 4). The former was attributed to a harsh 
natural environment and sparse forest cover, which create challenges to the identification of forest types by 
remote sensing, such as in Xinjiang, Qinghai, and Ningxia provinces. The latter was attributed to dense popula-
tion and scattered forest cover, such as that in Tianjin, Shandong, Jiangsu, and Shanghai provinces. High consist-
ency mainly concentrated in Heilongjiang, Jilin, Zhejiang, Fujian, and Taiwan provinces, all of which had a high 
percentage of forest cover.

We also compared the correlation between forest area statistics derived from NFI data and forest area estima-
tions derived from LULC data sets at the provincial scale where wide discrepancies were observed (Figure 5). 
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Compared with NFI, the majority of LULC data sets tended to overestimate the forest area; this tendency was 
more frequent during the early periods, especially before 1990.

3.3.  Spatial and Temporal Changes of Forest Cover

The spatial pattern of forest cover derived from CFCD was basically consistent among various time points from 
1980 to 2015 (Figure 6, Figure S6 in Supporting Information S1). Spatially, Northeast, Southeast, and Southwest 
China were the main forest distribution areas, while sparse forest cover occurred in Northwest, Central China, 
and East China. In addition, evergreen needleleaf forests were mainly located in South China, whereas deciduous 

Table 2 
Confusion Matrix of Reconstructed Forest Cover Map From 1985 to 2015

Year Reference

Classification

User's accuracy Producer's accuracy
Overall 

accuracyForest Non-forest

1985 Forest 116 93 96.7% 55.5% 75.4%

Non-forest 4 182 66.2% 97.9%

1990 Forest 150 59 96.2% 71.8% 83.6%

Non-forest 6 180 75.3% 96.8%

1995 Forest 165 45 96.5% 78.6% 87.1%

Non-forest 6 179 79.9% 96.8%

2000 Forest 183 26 97.3% 87.6% 92.2%

Non-forest 5 181 87.4% 97.3%

2005 Forest 191 20 93.6% 90.5% 91.7%

Non-forest 13 171 89.5% 92.9%

2010 Forest 199 12 94.3% 94.3% 93.9%

Non-forest 12 172 93.5% 93.5%

2015 Forest 197 13 94.3% 93.8% 93.7%

Non-forest 12 173 93.0% 93.5%

2010 a Forest 300 31 96.8% 90.6% 93.8%

Non-forest 10 324 91.3% 97.0%

2015 a Forest 415 3 97.0% 99.3% 99.4%

Non-forest 13 2360 99.9% 99.5%

 aIndicates field survey data available from Qin et al. (2015) and Zhang et al. (2021), respectively.

Figure 3.  Consistency-based confidence of the Chinese Forest Cover Data set, based on 5-year intervals from 1980 to 2015.
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needleleaf forests were concentrated in Northeast China. The evergreen broadleaf forests occurred preferentially 
in South China, while deciduous broadleaf forests were mainly distributed in Northeast China.

Temporally, the CFCD data set can reproduce the long-term changes of forest cover in China very well (Figure 7). 
The forest cover area in China has increased from 115 × 10 4 km 2 in 1980 to 205 × 10 4 km 2 in 2015 with a growth 
rate of 2.2% yr −1 according to the NFI data. The forest area estimations derived from the CFCD data set show 
a rate of increase that is close to that based on forest area statistics derived from NFI. In addition, the CFCD 
data set  also can accurately indicate the temporal changes of the two broadly defined forest types (broadleaf 
and needleleaf forests) since the 1980s. In contrast, the available LULC data sets failed to reproduce the histor-
ical changes of forest cover in China since the 1980s (Figure 7). Almost all data sets underestimated the rate 

Figure 4.  Consistency between all land use and land cover (LULC) data sets for 32 provincial administrative regions and for China as a whole in (a) 1980; (b) 1985; (c) 
1990; (d) 1995; (e) 2000; (f) 2005; (g) 2010; (h) 2015. The numbers in parentheses after the year indicate the amount of LULC data sets involved.
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of increase for forest cover. For example, the CLUD data set showed a constant forest cover area from 1980 to 
2015 but did not indicate the forest gains that have been a benefit of afforestation projects in China. Although 
the GLASS_GLC data set also showed a comparable forest gain in China, the forest area estimations were much 
higher than the forest area statistics from NFI. Additionally, the existing LULC data set. also failed to reproduce 
historical variations of needleleaf and broadleaf forests (Figures 7b and 7c).

The gross forest change extent from 1980 to 2015 was 153 × 10 4 km 2, which accounts for 16% of the total land 
surface in China (Figure 8a). Among all change events, 44% were only forest gain, 4% were forest loss only, and 
52% were a mixture of forest gain and loss. The area of stable forest was 79 × 10 4 km 2, accounting for 69% of 
NFI forest area in 1980. This implies that 31% of the forest in 1980 has been lost. When considering the intensity 

Figure 5.  Scatter plots between forest areas statistics derived from National Forest Inventory data and forest areas estimations derived from land use and land cover 
data at the provincial/administrative unit scale at the following points in time: (a) 1980; (b) 1985; (c) 1990; (d) 1995; (e) 2000; (f) 2005; (g) 2010; (h) 2015.

Figure 6.  Spatial patterns of five types of forests in reconstructed forest cover maps in (a) 1980 and (b) 2015 including: bamboo and economically important 
plantation, evergreen needleleaf, deciduous needleleaf, evergreen broadleaf, and deciduous broadleaf forests.
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of forest change, the hotspot for change mainly occurred in Southern China (Figure 8b). Among provinces, the 
highest forest change region was Fujian Province, and the lowest is Qinghai Province, where 53% and 0.7% of the 
land surface has changed at least once, respectively.

Except during 1990–1995, forest gain and forest loss simultaneously decreased in the past decades, resulting 
in a relatively stable net forest change (Figure 9a). The ratio of area of forest loss over forest gain indicates the 
relative intensity of afforestation or deforestation. A higher ratio (above 70%) was found before 1990 and a lower 
ratio (about 50%) was observed after 1995; this change was mainly attributable to intensified environmental 
protection, partly attributable to a lower accuracy of our CFCD before 1995. The rate of gross forest change was 
4.4 × 10 4 km 2 per year based on our CDCF, and all other long-term LULC data sets underestimated the changes, 
from 26.6% for GLASS_GLC to 93.4% for CLUD (Figure 9b). Notably, very slight variations of forest area esti-
mations (net forest change) versus considerable variations of forest gain and loss (gross forest change) observed 
in both the MODIS and GLC_FCS30 data sets, clearly demonstrate the difference between gross and net forest 
change, because gross change is important for the carbon estimation model (Houghton, 2020; Yue et al., 2018).

Figure 7.  Temporal dynamics of forest area derived from National Forest Inventory and land use and land cover data sets for: (a) all forests; (b) needleleaf forests; (c) 
broadleaf forests.
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4.  Discussion
As one of the most important types of ecosystems, forests play a dominant role in determining the extent of 
the terrestrial carbon sink in China (Liu et  al.,  2014). Forest carbon sinks offer a cost-effective pathway to 
offset fossil-fuel emissions, and even provide the main pathway to achieving a goal of carbon neutrality (Cai 
et al., 2022; Griscom et al., 2017). Especially during the most recent decades, numerous afforestation projects 
have been implemented across large regions in China, so forest coverage has increased to 23% currently from 12% 
in the early 1980s according to NFI data set (State Forestry Bureau, 2019). Another national census of land cover, 
national land survey, also shows a substantial increase of forest area through 2009 to 2019 (Chen et al., 2022), 
which is quite close to the increased area derived from NFI data set. Therefore, quantifying the contributions of 
increased forest coverage to the terrestrial carbon sink is quite important in China (Lu et al., 2018). However, 
the current LULC data sets failed to reproduce temporal changes of forest coverage during the past decades 
(Figure 7), which may be one of the largest uncertainties when quantifying carbon sinks in China (Li et al., 2016). 
Given that the existing LULC data set underestimated the increased rate of forest coverage, the current estimates 
of the carbon sink based on these LULC data sets may actually underestimate the enhanced contributions of 
forests in China.

Figure 8.  Spatial patterns of (a) gross forest change (gain, loss, and gain and loss) and (b) forest change intensity during the 
entire period of this study (1980–2015).

Figure 9.  Comparison of (a) trends and (b) rates of forest change between long-term land use and land cover data sets during the study period.
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The present study highlighted the fact that the currently available LULC data sets little reproduce long-term 
changes of forest coverage consistent with NFI in China. In particular, all LULC projections, except GLASS_
GLC, greatly underestimated the increase in the spatial extent of forests (Figure 7). Especially, our results high-
lighted that these LULC data sets highly underestimated forest change (Figures  7 and  9). According to NFI 
data, the forest area has increased from 115 × 10 4 km 2 in the early 1980s to 220 × 10 4 km 2 around 2015 (State 
Forestry Bureau, 2019), suggesting only the afforestation results in the land cover change over about 11% of total 
land surface in China. While, the deforestation must also occur since the 1980s, and therefore, the percentage 
of gross forest change must be higher than 11%. This study selected 7 data sets covering more than 14 years to 
investigate their performance for indicating gross forest change. GLASS_GLC data set showed the largest gross 
forest change, accounting for 11.05% of total land surface in China since 1980, which was close to the percent-
age resulting from afforestation only. The gross forest change derived from other 6 data sets only accounted for 
1.04%–6.44% (Figure  9b). Underestimated forest change will underestimate the impacts of forest change on 
carbon and water cycles of terrestrial ecosystems in China (Schwärzel et al., 2020; Yu et al., 2022). The CFCD 
data set developed by this study showed the gross forest change extent from 1980 to 2015 was 153 × 10 4 km 2, 
16% of the total land surface in China. It is urgently needed to evaluate the impacts of forest change based on this 
new data set.

Most satellite-based LULC data sets used machine learning methods to classify vegetation types (Friedl 
et  al.,  2010; Gong et  al.,  2019; Zhang et  al.,  2021). Although machine learning classification methods have 
become popular for mapping land cover, the accuracy highly depends on the representativeness, quantity, and 
quality of the training samples employed (Liu et al., 2020). Due to the inadequacy of long-term very high spatial 
resolution images as reference data, labeling adequate training samples across different years remains challenging 
(Pengra et al., 2020). Therefore, the model trained by current training samples was directly applied for classifying 
historical land cover characteristics; this alternative method called transfer learning has been proven to work 
well where the land cover did not witness a significant change (Gong et al., 2019). However, it is not suitable for 
applying transfer learning to map historical forest cover change directly, since China experienced unprecedented 
afforestation from the 1980s. Owing to the unrepresentative training data, a model trained by samples with stable 
land cover has little capacity to capture this forest change in China (Yang & Huang, 2021). High consistency of 
data sources and annual training samples improve the performance of long-term land cover mapping, especially 
for change analysis (Liu et al., 2020; Xu et al., 2018). Moreover, the satellite-based signature difference across 
space is much more significant than that across time. Therefore, capturing temporal dynamics of land cover 
remains more challenging than revealing spatial variation.

This study generated a long-term new forest cover data set (i.e., CFCD) by combining 20 prevailing LULC 
data sets; CFCD can reproduce the long-term forest cover changes that have occurred in China since the 1980s 
when compared with NFI data (Figure 7). In addition, we analyzed the long-term changes in the connectivity of 
forest pixels since the 1980s. Connected forest landscapes, in general, indicate better ecosystem service values 
(Camba Sans et al., 2021). We discovered that solitary forest patches with only one pixel accounted for 0.30% 
of all pixels in 1985 and 0.86% in 1990; small forest patches with an area of fewer than 100 pixels accounted for 
about 10% during 1980–2015 (Figure 10). As the area of forest grows, so does the area of each forest patch, and 
more small forest patches will merge to form larger forest patches.

Some potential uncertainties could affect the accuracy of forest identification. First, the inherent uncertainties of 
existing data sets are propagated into the newly developed data set. Basically, two types of classification errors 
exist: errors of omission (i.e., missed forest pixel) and commission (i.e., overestimated forest pixel) in the existing 
data sets. These existing data sets use different definitions of forests (Table S1 in Supporting Information S1), 
which highly determines the forest area. NFI defines forest as tree cover >20% and coverage area >667 m 2. 
However, most data sets define forest with less tree cover (e.g., tree cover >15% for CGLS_LC data set) (Table S1 
in Supporting Information S1). Therefore, most data sets showed larger forest area estimations than those derived 
from the NFI data set (Figure 7). The higher consistency of forest identification among these data sets indicates 
a better performance of this data set (Fang et al., 2020). Our results showed that there was a high consistency of 
identification among various data sets over most provinces. However, over several provinces, such as Shanghai 
and Tianjin, the consistency was still low, which may imply the low performance over these provinces.

Second, our data set shows a lower identification accuracy in the 1980s and 1990s when compared with those 
after 2000 (Table 2, Figure 3). The accuracy of forest reconstruction highly depends on the numbers and accuracy 
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of available forest cover maps; the more forest cover maps that are available, the more confident the forest recon-
struction is (Fang et al., 2020). The limited number of available LULC data sets before 2000 resulted in a  rela-
tively low accuracy in our forest reconstruction product. Data availability (especially satellite remote sensing 
data) is the essential precondition for large-scale land cover mapping (Liu et al., 2021). Before 2000, Landsat-4/5 
and NOAA AVHRR were rarely limited choices for mapping land cover, and those also are the main data sources 
in CLUD, CLCD, ESA CCI-LC, and GLASSGLC data sets. After 2000, increasing available remote sensing 
data (especially Landsat-7 and MODIS) and free data sharing greatly facilitated land cover mapping studies. 
Several recent studies highlighted that the number of cloud-free satellite images largely determines how well the 
seasonal change of a vegetation index can be retrieved, thus impacting the map accuracy (Shen et al., 2022; Zheng 
et al., 2022). Most products are produced based on Landsat data sets. However, the availability of free-cloud 
imagery during the late periods is better than that during the early periods (Pengra et al., 2020), especially the 
launch of Landsat-7 in 1999 greatly mitigates the imagery limitation of Landsat archives (Wulder et al., 2016). 
Additionally, the availability of very high spatial resolution images (including aerial photographs) also helped 
to provide more essential ground samples for land cover mapping (Pengra et al., 2020). Google Earth Engine 
software, with a vast data archive and powerful computation, provides a new opportunity in land cover mapping 
fields, but inadequate ground samples still constrain any attempt to generate land cover products covering before 
2000 (Tamiminia et al., 2020).

Third, the accuracy of CFCD highly depends on the NFI data. China has already developed an integrated forest 
inventory system that provides valuable information for forest coverage. However, the accuracy of NFI also 
is strongly impacted by the inventory method, number and representativeness of ground sample plots (Lei 
et al., 2009). Especially, there are large differences in accuracy of NFI over the various periods because of evolu-
tion of sampling design and method (Lei et al., 2009). For example, the fourth NFI (1989–1993) started to use 
both ground and remote sensing samples to calculate provincial forest area, and especially since the sixth NFI 
(1999–2003) the number of remote sensing samples substantially increase, which largely improve the accuracy 
of NFI data (Lei et al., 2009). Any uncertainties of NFI data will be propagated into the CFCD. Our study may 
imply the underestimation of forest coverage by CFCD because of lower producer's accuracy in the early periods 
(Table 2). On contrary, the producer's accuracy in the late periods is much higher (i.e., >90% after 2000). In 
addition, the inversed thresholds in the several provinces derived by this method are not reliable, which implies 

Figure 10.  Cumulative distribution of the pixel number of forest patches in China at 5-year intervals for 1985 to 2015.
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the non-negligible uncertainties of this method over several provinces. For example, the consistence threshold of 
Shandong in 2010 is zero (Figure S3g in Supporting Information S1), suggesting the identified forest areas from 
all LULC data sets are less than the forest area derived from NFI. The different accuracy of NFI data over the 
regional scale may be an important reason. Besides large heterogeneity of samples among the various periods, 
there are also spatial heterogeneity of samples (Lei et al., 2009). This study did not made efforts to identify forest 
coverage in these provinces, and thus CFCD generated in this study underestimated forest area compared with 
NFI data.

Finally, a spatial resolution of 0.01° cannot meets the requirements of fine resolution research, such as identifying 
areas of forest fragmentation (Morreale et al., 2021) and forest degradation (Chen et al., 2021). A coarse resolu-
tion indicates the existence of mixed pixels that will obscure forest patches with a small area. Of course, forest 
reconstruction also can generate a forest cover map with a 30 m resolution, but a 0.01° resolution is sufficient as 
forcing data for terrestrial ecosystem models.

5.  Conclusions
We produced accurate forest cover map data sets covering 1980 to 2015, and reproduced forest spatial-temporal 
dynamics consistent with NFI records by combining multi-source data sets. Most available LULC data sets gener-
ally overestimate forest cover area and meanwhile underestimate the rate of gross forest change. Inconsistency 
among existing LULC data sets limits their usefulness for inter-comparison and further application. Forest recon-
struction has been proven to have a huge potential to provide consistent forest cover maps that researchers can 
be confident in using; the reconstruction idea, mainly including forest probability based on consistency analysis 
and the application of prior knowledge, such as forest inventory records and the correlation between climate zone 
maps and forest type, can be applied for other fields.

Data Availability Statement
The land use and land cover data sets used in this paper are collected from the corresponding reference in Table 1. 
The forest inventory records are accessible from the National Forestry and Grassland Data Center of China 
(http://www.forestdata.cn/).
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