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 Increased GPP in the warm spring offset the reduced GPP by summer drought in 31 
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Abstract: Large spatial-scale effects of climate extremes on gross primary production (GPP), 33 

the largest terrestrial carbon flux, are highly uncertain even as these extremes increase in 34 

frequency and extent. Here we report the impacts of spring warming and summer drought in 35 

2012 on GPP across the contiguous US (CONUS) using estimates from four GPP models: 36 

Vegetation Photosynthesis Model (VPM), MOD17A2H V006, Carnegie-Ames-Stanford 37 

Approach (CASA), and Simple Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA). 38 

VPM simulations are driven by Moderate Resolution Imaging Spectroradiometer (MODIS), 39 

North American Regional Reanalysis (NARR) climate data, and C3 and C4 cropland maps 40 

from the United States Department of Agriculture (USDA) Cropland Data Layer (CDL) 41 

dataset. Across 25 eddy covariance flux tower sites, GPP estimates from VPM (GPPVPM) 42 

showed better accuracy in terms of cross-site variability and interannual variability (R
2 

= 0.84 43 

and 0.46, respectively) when compared to MOD17 GPP. We further assessed the spatial and 44 

temporal (seasonal) consistency between GPP products and the Global Ozone Monitoring 45 

Experiment-2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) over CONUS during 46 

2008-2014. The results suggested that GPPVPM agrees best with SIF across space and time, 47 

capturing seasonal dynamics and interannual variations. Anomaly analyses showed that 48 

increased GPP during the spring compensated for the reduced GPP during the summer, 49 

resulting in near-neutral changes in annual GPP for the CONUS. This study demonstrates the 50 

importance of assessing the impacts of different types and timing of climate extremes on GPP, 51 

and the need to improve light use efficiency models by incorporating C3 and C4 plant 52 

functional types. 53 

Key words: gross primary production; C3 and C4 cropland; solar-induced chlorophyll 54 

fluorescence; Vegetation Photosynthesis Model; spring warming; drought 55 



1. Introduction 56 

Terrestrial ecosystems play a major role in the global carbon cycle, offsetting 57 

approximately 25-30% of the CO2 emitted by human activities since the 1950s (Le Quéré et 58 

al. 2009). Gross primary production (GPP), the amount of CO2 sequestered by vegetation 59 

through photosynthetic assimilation before accounting for respiratory losses, is the largest 60 

component of the global terrestrial carbon flux (Beer et al. 2010). Therefore, a small 61 

fluctuation in GPP could have significant impact on atmospheric CO2 concentrations. 62 

However, the composition, structure, and functioning of terrestrial ecosystems are expected 63 

to be substantially altered by increases in the duration or/and frequency of climate extremes 64 

such as droughts, heatwaves, or intense precipitation events (Frank et al. 2015). It is a major 65 

challenge to understand and project the response of terrestrial ecosystems to climate extremes 66 

(Reichstein et al. 2013). In particular, droughts, together with the frequently co-occurring 67 

heatwaves, are among the most widespread natural disasters, and could have large impacts on 68 

annual GPP, ecosystem respiration, and net carbon balance (Frank et al. 2015; van der Molen 69 

et al. 2011). 70 

The impacts of climate extremes, especially heatwaves and droughts, on GPP have 71 

been thoroughly investigated for selected events (Ciais et al. 2005; Parazoo et al. 2015; Wolf 72 

et al. 2016; Yuan et al. 2016). However, how climate extremes affect the carbon cycle is still 73 

poorly known at the landscape, regional, and global scales (Pan and Schimel 2016). To 74 

investigate the impacts of climate extremes on GPP at ecosystem and landscape scales, three 75 

approaches have been separately or jointly applied: eddy covariance (EC) flux tower 76 

measurements (von Buttlar et al. 2017; Welp et al. 2007), remote-sensing data (Hilker et al. 77 

2014), and biogeochemical models (Zscheischler et al. 2014). Since the 1990s, the EC flux 78 

tower method has provided directly observed evidence for the seasonal changes of terrestrial 79 



carbon fluxes, which increases our understanding of the underlying mechanisms of terrestrial 80 

ecosystem responses and their feedbacks to climate extremes at the site scale (Reichstein et al. 81 

2007). However, in-situ EC sites are limited by their relatively moderate-size footprints of 82 

observation and the number and distribution of FLUXNET sites are limited, making it 83 

difficult to assess the impacts of climate extremes on the carbon cycle at regional, continental, 84 

and global scales. The GPP data derived from eddy covariance flux towers (GPPEC), though 85 

limited in their spatial coverage, are currently the best available data to validate GPP 86 

estimates from process-based and data-driven GPP models. In contrast, optical and 87 

microwave remote-sensing data provide larger scale insights into the vegetation structure, 88 

including leaf area index, and light absorption by canopy (Chen 1996; Disney et al. 2006; 89 

Ollinger 2011). Recently, solar-induced chlorophyll fluorescence (SIF) data have been 90 

derived from satellite-based observations to estimate GPP, as it is tightly linked with 91 

photosynthesis (Frankenberg et al. 2011; Porcar-Castell et al. 2014). However, SIF has a very 92 

weak signal and accounts for about 2% of the total light absorbed by vegetation. Satellite 93 

retrieved SIF measurements have comparatively large amounts of noise, and the recent SIF 94 

data products are often aggregated in temporal and spatial domains resulting in a coarse 95 

spatial and temporal resolution (monthly, 0.5°× 0.5° for Global Ozone Monitoring Instrument 96 

2, GOME-2) (Joiner et al. 2013). The coarse spatial resolution of SIF data products limits its 97 

application because 0.5
o
 gridcells (~50 km at Equator) are often highly heterogeneous. A 98 

final approach uses terrestrial biosphere models to estimate GPP and ecosystem respiration 99 

for a variety of ecosystems at multiple scales. However, the reliability of these models is 100 

constrained by input datasets, model parameters, and model structures (Schaefer et al. 2012; 101 

Schwalm et al. 2010). Hence, a synthesis and comparison of the different approaches can 102 

reveal the shortcomings of  individual approaches, and help to reach a more reliable 103 



assessment of the multiple-scale responses of ecosystems to climate extremes (Pan and 104 

Schimel 2016).  105 

In 2012, the Contiguous United States (CONUS) experienced an abnormally warm 106 

spring and dry summer (Hoerling et al. 2014; Knutson et al. 2013). Record-breaking 107 

temperatures were observed across 34 states during spring and a severe summer drought 108 

followed, especially across the Great Plains and the Midwest Corn Belt. The 2012 US 109 

drought was reported as one of the worst droughts since 1988 and had a comparable 110 

magnitude and spatial extent of those during the 1930s and 1950s (Hoerling et al. 2014; 111 

Rippey 2015). Impacts of this spring warming and summer droughts on terrestrial carbon 112 

fluxes in CONUS have been investigated, using the data from eddy covariance flux tower 113 

sites, GPP from the MOD17 data product, and net ecosystem production (NEP) from 114 

CarbonTracker (CTE2014 and CTE2015) (Wolf et al. 2016). They found that the losses of 115 

NEP in the summer were offset by an unusually large increase of NEP in spring, resulting in 116 

a small gain of annual NEP over CONUS (0.11 Pg C). They also reported that the decrease in 117 

GPP during summer was much larger than the increase of spring GPP, resulting in a moderate 118 

loss of annual GPP (-0.38 Pg C) over CONUS in 2012. However, there are large uncertainties 119 

among the various GPP products (Schaefer et al. 2012); for example, the MOD17 GPP 120 

product has large uncertainties in croplands (Turner et al. 2006; Xin et al. 2015). Therefore, 121 

there is a need to evaluate various GPP models and their GPP data products, which will help 122 

us to better understand and assess GPP responses to spring warming and summer drought in 123 

2012.   124 

In this study, we analyzed GPP data products from four GPP models: (1) the 125 

Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004a; Xiao et al. 2004b), which has 126 

been well validated at both site (Dong et al. 2015; Doughty et al. 2018; Jin et al. 2013; Wagle 127 



et al. 2015) and regional scales (Zhang et al. 2016a; Zhang et al. 2017) in previous studies. In 128 

this study, we modified the model for cropland by separating C3 and C4 crops with detailed 129 

Cropland Data Layer data; (2) MOD17 (Running et al. 2004), which is also used to evaluate 130 

the 2012 spring warming and summer drought impact on GPP in Wolf et al. (2016); (3) 131 

SiBCASA-GFED4 (van der Velde et al. 2014), and (4) CASA-GFED3 (van der Werf et al. 132 

2006; van der Werf et al. 2010). SiBCASA-GFED4 and CASA-GFED3 models are biosphere 133 

models used in CarbonTracker Europe (CTE2014) (van der Laan-Luijkx et al. 2017) and 134 

CarbonTracker (CT2014) (Peters et al. 2007), respectively, which provided the prior 135 

biosphere carbon fluxes (NEP, GPP - Respiration) in the two carbon tracker systems. We 136 

evaluated the GPP estimations from the four datasets with in-situ GPP data from eddy 137 

covariance flux tower sites and SIF data from GOME-2. The objectives of this study are 138 

threefold: (1) to demonstrate the potential of differentiating C3 and C4 croplands for 139 

improving GPP estimates (using VPM as an example) and validate the GPP estimates against 140 

FLUXNET data; (2) to quantify and understand the spatial-temporal consistency of GOME-2 141 

SIF data and GPP estimates from various models; and (3) to assess the impacts of spring 142 

warming and summer drought on GPP at the pixel, biome, and continental scales.   143 

2. Materials and Methods 144 

2.1 Vegetation Photosynthesis Model (VPM) 145 

We used the VPM model (Xiao et al. 2004a; Xiao et al. 2004b) to estimate GPP from 146 

2008 to 2014 over CONUS. We followed the original model framework but further 147 

differentiated between C3 and C4 croplands, since C3 and C4 crops have different maximum 148 

light use efficiencies (εmax). The National Agricultural Statistics Service (NASS) Cropland 149 

Data Layers (CDL) from the United States Department of Agriculture (USDA) were used to 150 

calculate the area percentages of C3 and C4 croplands within each 500 m pixel over individual 151 



years (Boryan et al. 2011). According to the USDA report, the major C4 crop-types included 152 

corn, sorghum, sugarcane, and millet, and other crop-types were considered as C3 croplands. 153 

The GPP of each pixel was estimated by area-weighted averaged GPP (Equation 1), which 154 

was derived from area fraction maps of C3 and C4 croplands and MCD12Q1 land use datasets: 155 

  GPP = [(fC3 × εmax-C3 + fC4 × εmax-C4) × Tscalar × Wscalar] × APARchl                         (1) 156 

where fC3 and fC4 were the area fraction of C3 and C4 crops inside each cropland pixel, 157 

respectively. APARchl is photosynthetic active radiation (PAR) absorbed by chlorophyll in 158 

the canopy and is estimated from enhanced vegetation index (EVI) (Huete et al. 1997) as 159 

following: 160 

                                 APAR_chl = 1.25 × (EVI – 0.1)                                           (2) 161 

This equation was modified from the previous model version (Xiao et al. 2004a; Xiao 162 

et al. 2004b), and has been applied in generating a global GPP product (Zhang et al. 2017). 163 

The coefficients 0.1 and 1.25 were used to adjust for sparsely vegetated or barren land and 164 

have been evaluated using the solar-induced chlorophyll fluorescence data. 165 

The maximum light used efficiency values for C3 croplands (εmax-C3) and C4 croplands 166 

(εmax-C4) were specified as 0.035 mol CO2 mol
-1

 PAR (~1.8 g C m
-2

 day
-1

 MJ
-1

 PAR), and 167 

0.053 mol CO2 mol
-1

 (PAR) (~ 2.7 g C m
-2

 day
-1

 MJ
-1

 (PAR)) (1.5 times larger than C3 types), 168 

respectively (Li et al. 2013). Tscalar and Wscalar are the temperature and water regulation factor 169 

and calculated as: 170 

Tscalar=
(T-Tmin)(T-Tmax)

[(T-Tmin)(T-Tmax)]-(T-Topt)
2                                                   (3) 171 

Wscalar=
1+LSWI

1+LSWImax
                                                               (4) 172 



where T is the air temperature, derived from the NCEP/NARR climate data. Tmin, Tmax, and 173 

Topt represent the minimum, maximum, and optimum temperatures for photosynthesis, 174 

respectively, which are biome-specific and assigned values as in Zhang et al. (2016a). 175 

LSWImax is the maximum land surface water index within the plant growing season, and we 176 

applied a temporal smoothing method using nearby four years (two years before and two years 177 

after) to eliminate potential bias (Zhang et al. 2017). 178 

2.2 Input datasets for VPM simulations in CONUS during 2008–2014 179 

Regional simulations of VPM model require climate, vegetation indices, and land 180 

cover data. Here we briefly describe the input datasets used: (1) NCEP/NARR reanalysis 181 

meteorological data, (2) MODIS surface reflectance and land cover data, and (3) NASS CDL 182 

data.  183 

2.2.1 NCEP/NARR climate data 184 

The NCEP/NARR data was downloaded from (http://www.esrl.noaa.gov/psd). It 185 

contains meteorological variables such as air temperature, precipitation, and downward 186 

shortwave radiation from 1979 to present at a spatial resolution of 32 km and a temporal 187 

resolution of 3 hours. The original 3-hourly NARR data were aggregated into daily data by 188 

calculating the maximum, mean, and minimum air temperature in a day (
o
C), and the 189 

cumulative sum of downward shortwave radiation in a day. The resulting daily data were 190 

further aggregated to 8-day intervals (following the MODIS 8-day temporal resolution) by 191 

calculating the maximum, mean, and minimum temperature (
o
C), and the cumulative sum of 192 

downward shortwave radiation within an 8-day period. We also interpolated these climate 193 

variables (32-km spatial resolution) to 500-m using the same algorithm reported in a previous 194 

publication  (Zhang et al. 2016a). As previous studies have shown, the NARR downward 195 

http://www.esrl.noaa.gov/psd


shortwave radiation is systematically overestimated, so we adjusted it by applying a 196 

correction factor of 0.8 as proposed in a previous study (Jin et al. 2015). 197 

2.2.2 MODIS surface reflectance and land cover product 198 

The latest version of MODIS surface reflectance product, MOD09A1 V006, was used 199 

to calculate EVI (Huete et al. 1997) and Land Surface Water Index (LSWI) (Xiao et al. 200 

2004b). A temporal algorithm was applied to EVI to gap-fill the missing data or bad-quality 201 

data (Zhang et al. 2016a).  202 

The MODIS land cover product (MCD12Q1 V005) provides annual global maps of 203 

land cover at 500-m spatial resolution during 2001-2013 (Friedl et al. 2010). We used the 204 

MCD12Q1 data at 2013 to represent year 2014. The IGBP land cover classification scheme 205 

in the MCD12Q1 is used in this study (see Fig. 1a). The IGBP land cover map was then used 206 

to derive biome-specific model parameter information for VPM simulations.  207 

2.2.3 USDA NASS CDL dataset 208 

Annual national CDL datasets with a spatial resolution of 30-m were available for our 209 

study period (2008–2014) 210 

(https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). The CDL 211 

datasets contain over 100 cropland types, and have very high classification accuracies for 212 

most crops (over 90% accuracy for major crop types such as soybean and corn) (Boryan et al. 213 

2011). For the VPM simulations, annual CDL datasets in 2008–2014 were aggregated to 214 

generate data layers at 500-m spatial resolution that represent the ratio of C3 and C4 215 

vegetation within individual 500-m gridcells for each year (Fig. 1b). The C4 cropland layer 216 

included corn, sorghum, sugarcane, and millet, and all other crops were C3. 217 

https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php


2.3 Evaluation of GPP estimates during 2010–2014 from VPM  218 

2.3.1 GPP data from eddy covariance flux tower sites  219 

Eddy covariance data from the FLUXNET2015 dataset were used to assess GPPVPM. 220 

We used 25 FLUXNET sites across CONUS according to their data availability during 2008–221 

2014, for which a summary about these sites is shown in Table 1 and Fig. 1a. The 222 

FLUXNET2015 dataset used a standard workflow to process the data from the eddy 223 

covariance flux tower sites (http://fluxnet.fluxdata.org/data/). The net ecosystem exchange 224 

(NEE) of CO2 between ecosystems and the atmosphere was gap-filled and then partitioned 225 

into GPP and ecosystem respiration (ER) using two methods, the nighttime based and the 226 

daytime based approaches (Lasslop et al. 2010; Reichstein et al. 2005). We calculated 227 

average daily GPPEC as the average of daily GPP estimated by the two methods. Then, we 228 

calculated 8-day average GPPEC by aggregating the average daily GPPs. For each 8-day 229 

interval, only the shortwave radiation and net ecosystem exchange (NEE) observations with 230 

more than 75% of good quality, gap-filled data were kept.  231 

 232 

http://fluxnet.fluxdata.org/data/


 

We evaluated the seasonal and cross-site performance of GPPVPM across biomes at 8-233 

day and interannual scales. We classified the land cover maps into four major types: forest 234 

(FOR), grassland (GRA), cropland (CRO), and others (OTH) based on the MCD12Q1 235 

landcover data. The evergreen needleleaf forest, evergreen broadleaf forest, deciduous 236 

broadleaf forest, decidous needleaf forest, and mixed forest were lumped together as forest. 237 

Grassland and cropland were the same classification scheme as MCD12Q1, while all the 238 

other land cover types, such as savannas, shrublands, wetlands, and sparsed vegetated area, 239 

were considered as OTH. To examine the ability of the model to capture the interannual 240 

variability of GPP, we compared the anomaly of annual GPP for GPPEC and GPPVPM. 241 

Specifically, we compared GPPVPM  and GPPMOD17 to the anomaly between GPPEC in each 242 

site year and average GPPEC over all the site years for each site. The slope, root mean square 243 

error (RMSE), and R
2
 of the regression models were used to evaluate the difference between 244 

modeled and eddy-covariance derived GPP. 245 

2.3.2 Solar-induced chlorophyll fluorescence (SIF) data from the GOME-2  246 

SIF is a very small amount of energy emitted by plants and has been demonstrated to 247 

be highly correlated with GPP (Guanter et al. 2014; Wagle et al. 2016; Zhang et al. 2016a). In 248 

this study, we used the monthly GOME-2 SIF data (V26) during 2008–2014 (Joiner et al. 249 

2013). GOME-2 measurements are in the ultraviolet and visible part of the spectrum (240 - 250 

790 nm) with a high spectral resolution between 0.2 and 0.5 nm and with the footprint size of 251 

80×40 km
2
. SIF is retrieved using a principle component analysis method in the 734 to 758 252 

nm spectral window which overlaps the second peak of the SIF emission. The retrievals are 253 

quality-filtered and aggregated into 0.5˚ grids and a monthly interval (Joiner et al. 2013).  254 



 

2.4 Inter-comparison of GPP estimates among VPM and other three models 255 

We compared GPPVPM with the latest version of MOD17 GPP product (Running et al. 256 

2004), MOD17A2H V006 (GPPMOD17) at both site and regional scales. GPPMOD17 is estimated 257 

at a spatial resolution of 500-m and a temporal resolution of 8-day, which matches the spatial 258 

and temporal resolutions of GPPVPM. MOD17 is also a LUE model and simulates GPP as the 259 

product of APARcanopy and light use efficiency (εg). εg is determined by εmax and scalars that 260 

capture environmental limitations such as vapor pressure deficit and air temperature. εmax 261 

values are specific for different biome types (e.g., forest, shrub, grass, crop) (Running et al. 262 

2004), but the product does not account for the differences of εmax between C3 and C4 263 

croplands, and εmax for croplands is substantially too low (Turner et al. 2006; Xin et al. 2015). 264 

We also compared GPPVPM with GPP simulated by CASA-GFED3 (GPPCASA). CASA 265 

estimates Net Primary Productivity (NPP) based on the light use efficiency method (Monteith 266 

1972, 1977) and further estimates GPP with an assumption GPP = 2 * NPP. εmax for 267 

predicting NPP in CASA is set uniformly (0.55 g C MJ
-1

 PAR) for different biomes (Potter et 268 

al. 2012; Potter et al. 1993; Randerson et al. 1996). The CASA-GFED3 GPP product used a 269 

calibrated εmax for the Midwestern region, which was derived from crop yield observations, 270 

meteorological data, and remotely sensed FPAR (Lobell et al. 2002), and thus corresponds 271 

with much higher GPP values (roughly 45%) over the Midwestern US (Hilton et al. 2015). 272 

GPPCASA is used to generate prior biogenic CO2 fluxes for the CarbonTracker system  (Peters 273 

et al. 2007) at a spatial resolution of 1°×1.25° every 3 hour. We resampled the data into 1°×1° 274 

and aggregated them into monthly values in this study. 275 

The GPP estimates by the SiBCASA-GFED4 model (GPPSiBCASA) (van der Velde et al. 276 

2014) were also compared with regional GPPVPM. GPPSiBCASA is used to generate prior 277 

biogenic CO2 fluxes in the Carbon Tracker Europe system (van der Laan-Luijkx et al. 2017). 278 

SiBCASA combines the biophysical and GPP components from the Simple Biosphere model 279 



 

(version 2.5) with the heterotrophic respiration (RH) from CASA model, and calculates the 280 

exchange of carbon, energy, and water at a temporal resolution of 10-min and at a spatial 281 

resolution of 1°×1° (Schaefer et al. 2008; van der Velde et al. 2014). GPP is calculated for 282 

both C3 and C4 plants by implementing a modified version of the C3 enzyme kinetic model 283 

(Farquhar et al. 1980) and the C4 photosynthesis model (Collatz et al. 1992). The C4 284 

distribution map used in SiBCASA is a static map with the mean C4 fraction in global 1°×1° 285 

grids (Still et al. 2003). The aggregated monthly GPPSiBCASA data is used for the comparison. 286 

The impact of climate extremes on the GPP and SIF over the CONUS was evaluated 287 

using the four GPP datasets and GOME-2 SIF data. The seasonal cycle and anomaly of 288 

GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA and SIF in the year 2012 were compared to that in 289 

the baseline year (the average of the year 2008, 2009, 2010, 2013 and 2014). The uncertainty 290 

range of the anomaly was calculated as the standard deviation (SD) of the anomaly between 291 

2012 and selected different baselines. We randomly chose at least three years from the year 292 

2008, 2009, 2010, 2013 and 2014 to calculate the baseline, so there are 16 options (𝐶5
3 +  𝐶5

4 293 

+ 𝐶5
5). As GPPSiBCASA, GPPCASA and SIF datasets have a spatial resolution of 1.0°×1.0°, both 294 

GPPVPM and GPPMOD17 datasets (500-m spatial resolution) were aggregated to 1.0°×1.0°. The 295 

SIF data (0.5°×0.5°) was also aggregated to 1.0°×1.0°. We then used the area-weighted 296 

method to calculate annual total GPP (Pg C year
-1

) and average SIF over CONUS. 297 

3. Results 298 

3.1 Seasonal dynamics and interannual variation of GPP at flux tower sites 299 

GPPVPM agreed reasonably well with the seasonal dynamics and peak values of 300 

GPPEC at most sites (Fig. 2). The coefficients of determination (R
2
) varied from 0.32 (US-301 

SRC) site to 0.96 (US-Ne2 and US-UMB). GPPVPM showed very high accuracy for the 302 

cropland sites relative to GPPMOD17 (see Fig. 2 and Table 1). At the US-Ne1 and US-Ne2 303 



 

maize sites, the regression between GPPVPM and GPPEC show a high R
2
 value (> 0.95) and a 304 

low RMSE value (< 2.0 g C m
-2

 day
-1

), while the regression between GPPMOD17 and GPPEC 305 

show a moderate R
2
 value (~0.50) and a large RMSE value (7.0 g C m

-2
 day

-1
) (Table1).  306 

At the 8-day scale, GPPVPM agrees better with GPPEC than does GPPMOD17, and 307 

GPPVPM effectively captures the seasonal dynamics of GPP for all the four biomes (Fig. 3–a, 308 

b). For croplands, GPPMOD17 shows significant underestimation with a slope of 0.37 while 309 

GPPVPM presents only slight underestimation with a slope of 0.97. The improvement in 310 

GPPVPM is most prominent in these C4 cropland sites, such as US-Ne1 and US-Ne2 (Fig. 2 311 

and Table 1), with peak value of GPPVPM and GPPEC in the growing season that are larger 312 

than 20 g C m
-2

 day
-1

, while that of GPPMOD17 is less than 10 g C m
-2

 day
-1

. Across all 25 sites, 313 

GPPVPM explains about 84% of the seasonal dynamics of GPPEC with RMSE of 1.7 g C m
2
 314 

day
-1

, while GPPMOD17 only explains only about 55% with a RMSE value of 2.6 g C m
-2

 day
-1

.   315 

 316 

The interannual variation of GPPVPM was best for croplands, followed by forest, 317 

grasslands, and other biomes (Fig. 3c). In addition, the anomaly of annual GPPVPM in 318 

croplands, grasslands, and forest biomes has much higher consistency with GPPEC than does 319 

GPPMOD17 (Fig. 3–c, d). In other biomes (5 sites), both GPPVPM and GPPMOD17 had relatively 320 

low accuracy.   321 

 322 

 323 



 

3.2 Spatial-temporal consistency between model-based GPP and SIF over CONUS in 324 

the baseline years and drought year 2012 325 

We compared the spatial distribution of maximum monthly mean GPP (g C m
2
 day

-1
) 326 

from the four GPP products and annual maximum monthly mean SIF in the baseline year and 327 

drought year 2012 at 1°×1° resolution (Fig.4 a–j). The maximum monthly mean GPP in 2008, 328 

2009, 2010, 2013, and 2014 were used as baseline year. The three GPP products (GPPVPM, 329 

GPPCASA and GPPSiBCASA) and SIF show the peak photosynthesis in the Mid-western corn-330 

belt region (Fig. 4a-j), which was consistent with the results reported by Hilton et al. (2017). 331 

GPPMOD17 did not have such a spatial pattern for maximum monthly GPP because it did not 332 

include higher photosynthetic capacity for C4 vegetation as did the other three models (VPM, 333 

CASA and SiBCASA). Compared to the baseline years, most of gridcells had lower GPP and 334 

SIF values during the drought in 2012. The correlation analysis (Fig. 5a–d; Fig. 5e–h) 335 

showed that the maximum monthly GPPVPM and SIF have the strongest linear relationship, 336 

followed by SIF/GPPSiBCASA, SIF/GPPCASA, and SIF/GPPMOD17. 337 

 338 

 339 

For annual total GPP, all four GPP products showed very similar spatial patterns with 340 

SIF, with relatively high annual GPP (> 1500 g C m
-2

 year
-1

) in the forested Southeastern US 341 

and low annual GPP in the western regions where grasslands and deserts are dominant 342 

(Fig .4k–t). In 2012, GPPVPM had a decrease in the Midwestern corn-belt region and Great 343 

Plains, and an increase in the eastern temperate forest region, which is consistent with the 344 

spatial patterns of SIF. Annual GPPMOD17 had an obvious decrease in the Midwestern corn-345 

belt area but a slight increase in the eastern forest area in 2012. Annual GPPSiBCASA had no 346 

significant differences between the baseline and drought year 2012. Annual GPPCASA had 347 



 

large increases in both the Midwestern corn-belt region and temperate forest area. The 348 

correlation analysis (Fig. 5i–l) showed that annual GPPVPM had a stronger linear relationship 349 

with SIF (R
2
 = 0.94) in the baseline years than SIF/GPPSiBCASA (R

2
 = 0.76), SIF/GPPCASA (R

2
 350 

= 0.75), and SIF/GPPMOD17 (R
2
 = 0.70). We found similar results for the drought year 2012 351 

(Fig. 5m–p), which suggested that the models performed similarly during baseline and 352 

drought years. 353 

 354 

 355 

GPP estimates from all models had a high correlation with SIF (>0.9) in the wetter 356 

eastern region but a low correlation in the dry western region, partly due to the very low SIF 357 

signal and relatively large signal-to-noise ratio (Fig. 6 a–h). The percentages of the total 358 

number of gridcells with a Pearson correlation coefficient larger than 0.9 in the baseline year 359 

was ~65% for SIF/GPPVPM, ~55% for SIF/GPPCASA, ~50% for SIF/GPPMOD17, and ~47% for 360 

SIF/GPPSiBCASA  (Fig. 6i–l). The four GPP models had no obvious differences in simulating 361 

the seasonal dynamics of GPP between the baseline year and drought year 2012 (Fig. 6).  362 

 363 

 364 

The histograms of the slope values (GPP = a × SIF + b) among these four GPP 365 

models differed substantially. The slope values for the SIF/GPPVPM were concentrated 366 

between 4 and 7 g C mW
-1

 nm
-1

 sr
-1

 (~53% of all gridcells), while that for SIF/GPPMOD17 367 

were between 2 to 5 g C mW
-1

 nm
-1

 sr
-1

 (~60% of all gridcells). The slope values for the 368 

SIF/GPPCASA and SIF/GPPSiBCASA were more evenly distributed than that of SIF/GPPVPM. 369 

Sun et al. (2017) found the GPP-SIF relationship is consistent across different vegetation 370 



 

types when comparing SIF with GPPEC, but it is more divergent when comparing SIF with 371 

modelled GPP because of the systematic GPP biases. The GPP-SIF slope for the four GPP 372 

products in this study is also divergent over CONUS, but the VPM GPP-SIF slope is more 373 

convergent than the other three models (Fig. 7). 374 

 375 

 376 

3.3 Spatial-temporal consistency of GPP and SIF anomalies over CONUS in 2012 377 

To evaluate the impacts of spring warming and summer drought on GPP in 2012, we 378 

compared the anomalies of GPP from GPPVPM, GPPMOD17, GPPSiBCASA, and GPPCASA to the 379 

anomalies of SIF in the spring, summer, and the entire year at 1°×1° (latitude and longitude) 380 

resolution (Fig. 8). The anomalies of GPP and SIF were calculated as the differences between 381 

year 2012 and the baseline year. The baseline year was calculated as the average of 2008, 382 

2009, 2010, 2013, and 2014. Geographically, the anomaly of all the four GPP products and 383 

SIF showed very interesting spatial patterns at the seasonal and annual scales (Fig. 8).  384 

 385 

 386 

 In the spring season, the middle and eastern CONUS experienced an increase in GPP 387 

anomaly while western CONUS experienced a decrease, which was consistent with the 388 

spatial pattern of SIF anomaly (Fig. 8a–e). The magnitudes and spatial extent of GPP 389 

anomaly vary among the four GPP models. For GPPVPM and GPPMOD17, the large increases in 390 

GPP (larger than 100 g C m
-2

 season
-1

) occurred mostly in the Southern Great Plains and part 391 

of the Midwestern corn-belt region. For GPPCASA, large increases in GPP occurred mostly in 392 



 

the Midwestern and Southeast regions. The correlation analyses between GPP products and 393 

SIF (Fig. 9a–d) showed that GPPVPM and SIF had the strongest linear relationship (R
2
 = 0.67), 394 

followed by SIF/GPPMOD17 (R
2
 = 0.58). SIF/GPPCASA (R

2
 = 0.56), and SIF/GPPSiBCASA (R

2
 = 395 

0.48).  396 

 397 

 398 

 In the summer season, most regions in CONUS experienced decreased GPP and SIF 399 

associated with drought (Fig. 8f–j). The Great Plains and Midwestern corn-belt regions 400 

experienced the largest reductions in GPP (larger than 150 g C m
-2

 season
-1

). The spatial 401 

extents of decreased GPP in GPPVPM and GPPMOD17 were greater than those in GPPSiBCASA 402 

and GPPCASA. GPPVPM, GPPCASA, and GPPSiBCASA displayed strong increases in the southeast 403 

regions, which was consistent with the spatial pattern of SIF anomaly. Overall, GPPVPM 404 

agreed best with SIF (R
2
 = 0.71), followed by SIF/GPPCASA (R

2
 = 0.50), SIF/GPPMOD17 and 405 

R
2
 of 0.45), and SIF/GPPSiBCASA (R

2
 = 0.19) (Fig. 9e–h).  406 

 407 

 408 

For the entire year, annual GPPVPM, GPPMOD17, and GPPSiBCASA mainly decreased in 409 

the western US and corn-belt regions, and annual GPP increased mainly in the eastern and 410 

southern forest area, which was consistent with the spatial pattern of SIF (Fig. 8k–o). Only 411 

GPPCASA reported strong increases in GPP in the corn-belt region. The correlation analysis 412 

showed that none of the four GPP products agreed well with the spatial pattern of annual 413 

mean SIF anomaly at the annual scale, with R
2
 values varying from 0.14 to 0.27 (Fig. 9i–l). 414 



 

When aggregated over the entire CONUS by season, the four GPP products and SIF clearly 415 

showed an increase in GPP in the spring and a reduction in the summer, indicating the warm 416 

spring and droughty summer had opposite effects on GPP (Fig. 8 and Table 2). The spring 417 

warming led to an increase in GPP by 0.25-0.48 Pg C season
-1

, where GPPCASA showed the 418 

largest increase and GPPSiBCASA showed the least. During the summer, the four GPP products 419 

showed a decrease in GPP by 0.21-0.42 Pg C season
-1

, where GPPCASA decreased the most 420 

and GPPSiBCASA decreased the least. The annual total GPPVPM and GPPCASA had an increase 421 

of 0.11 and 0.18 Pg C year
-1

, while the annual total GPPMOD17 and mean SIF had a 422 

decrease of 0.12 Pg C year
-1

 and 0.12 mW m
-2

 nm
-1

 sr
-1

. The annual total GPPSiBCASA 423 

remained neutral in 2012. 424 

3.4 Impacts of spring warming and summer drought on GPP by biomes in 2012 425 

To quantify the impact of spring warming and summer drought on GPP across biomes, 426 

we calculated total GPP from the four models for the four main biomes. In the spring of 2012, 427 

all four models showed increased GPP for the four biomes (Fig. 10 and Table 3), and the 428 

non-forest experienced a stronger increase in GPP than forest. In the four models, CASA 429 

showed a larger increase in GPP in the spring than other three models in the four biomes, 430 

while SiBCASA showed the lowest increase in GPP over most biomes. For the drought 431 

summer, all four models showed strong decreases in GPP, and the grassland and cropland 432 

experienced the strongest decrease, followed by other biomes. Among the four models, 433 

MOD17 showed the largest decrease in GPP in the summer, while SiBCASA showed the 434 

least decrease. For the entire year, grassland and cropland experienced a decrease in GPP, 435 

while forest and other biomes experienced an increase or no change. 436 

 437 



 

 438 

4. Discussion 439 

4.1 Improving GPP estimates of C3 and C4 croplands 440 

Accurate estimation of cropland GPP is important for food production and security. 441 

The MOD17 GPP data products have been widely used for crop studies (Guan et al. 2016; 442 

Xin et al. 2015). However, several studies have reported that the MOD17 data product 443 

substantially underestimates GPP in croplands. One reason is that εmax for croplands in the 444 

MOD17 model is too low (~1.04 g C MJ
-1

) (Turner et al. 2006; Wagle et al. 2016; Xin et al. 445 

2015). Site-level studies have indicated that the typical εmax for C3 crops range from 1.43 to 446 

1.96 g C MJ
-1

 (Chen et al. 2011; Kalfas et al. 2011; Yuan et al. 2015), and εmax for C4 crops 447 

range from 2.25 to 4.06 g C MJ
-1

 (Xin et al. 2015; Yuan et al. 2015). Several model 448 

comparison studies have also showed that both process-based GPP models and LUE models 449 

have poor performance when estimating GPP in croplands (Schaefer et al. 2012; Verma et al. 450 

2014). Recently, Guanter et al. (2014) used GOME-2 SIF to estimate GPP in croplands using 451 

the linear relationship between SIF and tower-based GPP at flux tower sites, and they found 452 

these SIF-based GPP estimates in croplands were 50-60% higher than GPP estimates from 453 

the ecosystem models over the US Corn Belt. In this study, our εmax values for C3 croplands 454 

(1.80 g C MJ
-1

) and C4 croplands (2.7 g C MJ
-1

) were based on previous site-level studies (Li 455 

et al. 2013; Xin et al. 2015). The improved ability of VPM to capture the seasonal dynamics 456 

and interannual variability of croplands was partly attributed to more appropriate choices of 457 

εmax values.  458 

Another reason for the large error in estimating cropland GPP by the MOD17 and 459 

other  models can be attributed to the fact that we have very limited knowledge on the spatial 460 

distribution of the C3 and C4 croplands within individual 500-m MODIS pixels and their 461 



 

temporal dynamics over years (Reeves et al. 2005; Still et al. 2003; Wang et al. 2013). 462 

However, in this study we used the fine-resolution, annual CDL cropland maps. The results 463 

demonstrated the potential of annual C3/C4 cropland maps at high spatial resolution to 464 

improve cropland GPP estimates from the individual pixel to country-wide scales. Although 465 

there are several existing global C3/C4 maps, they are relatively coarse in spatial resolution 466 

and produced only for a specific year. An early study developed a static C3/C4 fraction map 467 

with a spatial resolution of 1°×1° by defining the favorable climate zones for C3/C4 and 468 

combing the global spatial distribution of crop fractions and national harvest area data for 469 

major crop types (Still et al. 2003). Another study developed a global distribution map of 470 

croplands and pastures at a 5 min by 5 min (~10 km) spatial resolution in 2000 by combining 471 

agricultural inventory data and satellite-derived land cover data (Ramankutty et al. 2008). 472 

Recently, several studies made very limited progress in mapping C3 and C4 plants (both 473 

croplands and grasses) when using remote sensing data and simple algorithms (Foody and 474 

Dash 2007; Wang et al. 2013). The development of CDL datasets include the use of satellite-475 

based imagery, supervised image classification methodology, and numerous high-quality 476 

ground truth data collected to help determine the multi-spectral rules from time-series 477 

imagery that best predicted the land cover category. For grasslands, it was reported that there 478 

was a strong linear relationship between the percentage of C3 grass and the season-long 479 

cumulative vegetation index (Foody and Dash 2007). These phenological features and time-480 

series MODIS data were used to classify C3 and C4 grasslands in the Great Plains (Wang et al. 481 

2013). Given the importance of C3 and C4 plant function types in estimating GPP, it is 482 

important for the remote sensing community to increase its effort in mapping C3 and C4 483 

croplands and grasslands at site, regional, and global scales. 484 



 

4.2 The timing and location of climate extremes and their impacts on terrestrial 485 

ecosystems 486 

Climate extremes such as heatwaves and droughts can reduce vegetative growth, 487 

trigger large-scale tree mortality, and turn terrestrial ecosystems from carbon sinks into 488 

sources (Ciais et al. 2005; Yuan et al. 2016). The warm spring and hot and dry summer in 489 

2012 over CONUS offered a unique opportunity to investigate several major questions on the 490 

impacts of climate extremes on terrestrial carbon cycle at the regional and continental scales 491 

(He et al. 2018; Sippel et al. 2016; Wolf et al. 2016). Many studies have reported that 492 

terrestrial ecosystems in CONUS have served as carbon sinks in recent decades (Hurtt et al. 493 

2002; Pacala et al. 2001), ranging from 0.30 to 0.58 Pg C per year during the 1980s and 494 

1990s, which accounts for 30% of fossil-fuel emissions from the USA. Wolf et al. (2016) 495 

analyzed MOD17 GPP data and NEP data from CTE2014 during 2001–2012 and reported 496 

that the increase of NEP in the spring compensated for the loss of NEP in the summer, which 497 

resulted in a small carbon sink (0.11 Pg C year
-1

 in 2012) for CONUS. This result suggests 498 

the importance of assessing the impacts of climate extremes, which depend on timing, 499 

duration, and location, on terrestrial carbon budgets at the annual and continental scales 500 

(Sippel et al. 2017; von Buttlar et al. 2017).  501 

Wolf et al. (2016) analyzed MOD17 GPP data in 2001-2012 and reported that GPP 502 

loss in summer in 2012 over CONUS was twice as large as the increase in GPP in the spring 503 

of 2012, resulting in a large annual loss of GPP (-0.38 Pg C). Though we used a different 504 

baseline, our analysis of MOD17 GPP data in 2008–2014 also shows that the decrease in 505 

GPP in the summer of 2012 was substantially larger than the increase in GPP in the spring of 506 

2012, resulting in large annual loss of GPP (-0.12 Pg C) (Fig. 8). However, the results from 507 

GPPVPM, GPPSiBCASA, and GPPCASA showed that the GPP increase in the spring is close or 508 



 

slightly larger than GPP loss in the summer of 2012, the annual GPP anomaly ranging from 509 

0.01 (GPPSiBCASA), to 0.11 Pg C (GPPVPM), to 0.18 Pg C (GPPCASA), while the GOME-2 SIF 510 

anomaly showed a decrease in 2012 (Fig. 7). The differences in modeling GPP responses to 511 

spring warming and summer drought among these four models are likely to affect our 512 

understanding of the responses of ecosystem respiration (ER) to spring warming and summer 513 

drought. As NEP is the sum of GPP (carbon gains) and ER (carbon losses), the large decrease 514 

in GPP (e.g., -0.38 Pg C year
-1

 in 2012, GPPMOD17) from the previous study (Wolf et al. 2016) 515 

implied a slightly larger decrease in ER, which could then result in a small carbon sink (0.11 516 

Pg C year
-1

 in 2012). In addition, since CASA-GFED3 and SiBCASA-GFED4 are the 517 

biosphere models used by CarbonTracker (CT2014) and CarbonTracker Europe (CTE2014) 518 

to generate prior biosphere carbon fluxes, the spatial-temporal differences in GPP distribution, 519 

magnitude, and anomaly from these two models are likely to affect CarbonTracker and 520 

CarbonTracker Europe outputs. Previous studies have reported that atmospheric CO2 521 

inversions are sensitive to the land surface prior fluxes, especially at fine scales and the areas 522 

with sparse or no available observations (Peylin et al. 2013; Zhu et al. 2014). Therefore, 523 

methods to incorporate more reliable carbon flux estimates from atmospheric CO2 inversions 524 

is critically needed for us to better understand the terrestrial carbon cycle. 525 

4.3 Differential responses to climate extremes across biomes 526 

Numerous studies have reported the negative impacts of high temperature and 527 

droughts on vegetation productivity (Ciais et al. 2005; Welp et al. 2007; Wolf et al. 2016; 528 

Yuan et al. 2016). Short-term drought or heatwaves lead to stomatal closure, membrane 529 

damage, and disruption of photosynthetic enzyme activities, all of which reduce GPP. If 530 

plants experience continuous drought, they may respond to drought stress by structural or 531 

physiological adjustments such as decreased leaf area index, changes in the root-shoot ratio, 532 

or changes in leaf angle (Frank et al. 2015). But different species have adopted different 533 



 

strategies to deal with water stress. These strategies can be broadly classified as dehydration 534 

tolerance or dehydration avoidance (Bacelar et al. 2012). Plants with a dehydration tolerance 535 

strategy usually grow rapidly when water is available but will senesce and/or become 536 

dormant during drought. Plants with a dehydration avoidance strategy tend to grow more 537 

slowly and maintain greenness during drought by increasing water extraction from the soils 538 

and reducing water loss from transpiration. Our study showed that the impacts of spring 539 

warming and summer drought on the change in GPP varied across biomes (Fig. 10). This 540 

change was not only due to the characteristics (timing, magnitude) of the heatwaves and 541 

drought at specific regions (Fig. 11), but also species-specific plant drought responses and 542 

strategies (von Buttlar et al. 2017; Wolf et al. 2014). Our results show that grasslands 543 

experienced the largest reduction in GPP while forests had the largest increase. This 544 

difference may be explained by the observation that grasslands are drought sensitive, and 545 

more susceptible to heatwaves and droughts as they have less accessibility to soil water 546 

(shallow roots) and higher turn-over rates (Frank et al. 2015). Trees usually have deeper roots 547 

and better access to soil water, thus forests are considered to be less affected by heatwaves 548 

and drought (Frank et al. 2015; van der Molen et al. 2011; Zhang et al. 2016b).  Grasslands 549 

occur in the most severe drought-affected areas, while most forests are in the northwestern 550 

and eastern part of CONUS, which were either not affected by the 2012 drought or were 551 

classified as abnormally dry (D0) by the U.S. drought monitor (Fig. 11). Cropland systems 552 

are different from natural systems by the frequent human intervention (for example, irrigation 553 

or changing planting date). Consequently, the impacts of climate extremes on croplands are 554 

expected to be highly modulated by human management (Lobell et al. 2012; van der Velde et 555 

al. 2010). However, cropland over the Corn Belt, the most important crop area in the US, is 556 

mainly rainfed (Leng et al. 2016), leading to a similar GPP response to drought for cropland 557 

and grasslands. 558 



 

 559 

4.4 Uncertainties and remaining issues 560 

The uncertainty of ecosystem models remains a challenge for carbon cycling research. 561 

Extreme climate events were found to dominate the global interannual variability of GPP 562 

(Zscheischler et al. 2014). At present, most ecological models do not accurately represent the 563 

responses of major ecosystem processes to climate extremes and do not accurately track the 564 

interannual variability of GPP (Reichstein et al. 2013). For example, previous studies 565 

indicated that improving GPP estimates for most models requires better representation of 566 

water stress effects on photosynthesis (Schaefer et al. 2012; Verma et al. 2014; Yuan et al. 567 

2014). In this study, VPM, MOD17, and CASA are all light use efficiency models, but use 568 

different water regulation scalars. VPM uses a water-related vegetation index (LSWI) as the 569 

water constraint, MOD17 uses vapor pressure deficit (VPD), and CASA uses the 570 

evapotranspiration supply/demand ratio (actual evapotranspiration/potential 571 

evapotranspiration). LSWI is found to be a good indicator of soil moisture when taking all the 572 

biomes into consideration (Zhang et al. 2015). However, it may not work well for forested 573 

areas because of the lower spectral sensitivity to water stress (Sims et al. 2014). VPD 574 

represents the impacts of atmospheric dryness on vegetation photosynthesis because stomatal 575 

conductance changes with VPD. However, soil moisture also plays an important role in 576 

regulating GPP by affecting leaf cell turgor pressure or stomatal conductance, thereby 577 

directly affecting photosynthesis (Hashimoto et al. 2013; Leuning et al. 2005). The 578 

evapotranspiration ratio requires well simulated hydrologic fluxes in soils where additional 579 

information (e.g. soil texture, soil/rooting depth) is required. This information is usually not 580 

easy to collect and comes with uncertainties. Therefore, more effort is needed to quantify the 581 

model uncertainties and improve model structure. 582 



 

Since SIF can be directly observed from space, has a very good relationship with GPP 583 

(Guanter et al. 2014; Wagle et al. 2016; Zhang et al. 2016a), and is a good indicator of 584 

agricultural drought (Sun et al. 2015), we used SIF as a reference to which we compared the 585 

impacts of spring warming and summer droughts on vegetation photosynthesis. However, we 586 

acknowledge that GOME-2 SIF has some uncertainties, especially in the western part of 587 

CONUS (Fig. 6) due to the relatively large signal-to-noise ratio (Zhang et al. 2016a). SIF 588 

retrievals from recently launched satellites (OCO-2, Sentinel-5 Precursor, and FLEX-589 

Fluorescence Explorer) with higher spatial resolutions and observations tailored for SIF may 590 

improve our understanding of the impacts of climate extremes on vegetation. 591 

In this study, we only considered the impacts of climates extremes on terrestrial 592 

ecosystems within a year. However, droughts may affect terrestrial ecosystems across months 593 

or even years, depending upon plant functional types (Frank et al. 2015; von Buttlar et al. 594 

2017). Extreme events could cause plant functional loss, changes in the community structure 595 

of ecosystems, increased wildfires, and pest and pathogen outbreaks, all which may 596 

necessitate a long recovery period (van der Molen et al. 2011). Further, species’ response to 597 

climate extremes vary widely, and some impacts could persist long after extreme events 598 

(Rammig et al. 2014). Analysis of the responses of terrestrial ecosystems to climate extremes 599 

should be conducted over the next few years. 600 

5. Conclusions 601 

The spring warming and summer drought of 2012 across CONUS had substantial 602 

impacts on the terrestrial carbon cycle and offered a unique opportunity to investigate the 603 

responses of photosynthesis (GPP) and respiration processes at large scales. We presented an 604 

improved VPM model that incorporates C3 and C4 croplands and can better capture the 605 

seasonal dynamics and interannual variation of GPP than the MOD17 product when these 606 



 

models are compared to GPPEC data from eddy covariance flux tower sites. Spatial-temporal 607 

comparisons among GOME-2 SIF, GPPMOD17, and GPPVPM products during 2008–2014 608 

showed strong consistency between GOME-2 SIF and GPPVPM data products. Anomaly 609 

analyses of (1) annual GPP from three other models (VPM, SiBCASA, and CASA) and (2) 610 

GOME-2 SIF data between the baseline years (2008, 2009, 2010, 2013, 2014) and drought 611 

year 2012 suggested that increased GPP during the warm spring compensated for decreased 612 

GPP during the dry and hot summer, resulting in close to net neutral changes in annual GPP. 613 

The results from this study clearly highlight the importance of assessing the impacts of co-614 

occurring climate extremes at seasonal and annual scales over large spatial domains. Our 615 

results demonstrate the need to further improve GPP models, which could increase the 616 

accuracy and reduce uncertainties in GPP estimates of terrestrial ecosystems.  617 
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 1053 

Fig. 1. (a) Land cover map of CONUS derived from MCD12Q1 in 2011 and (b) the C4 crop 1054 

percentage within a 500-m MODIS pixel derived from 30-m cropland data layer. 1055 

Abbreviations denote the IGBP land-use classes. WAT: Water, ENF: Evergreen Needleleaf 1056 

Forest, EBF: Evergreen Broadleaf Forest, DNF: Deciduous Needleleaf Forest, DBF: 1057 

Deciduous Broadleaf Forest, MF: Mixed Forest, CS: Closed Shrublands, OS: Open 1058 

Shrublands, WS: Woody Shrublands, SAV: Savannas, GRA: Grasslands, PW: permanent 1059 

wetlands, CRO: Croplands, UB: Urban and Built-up, MOS: Cropland/Natural vegetation 1060 

mosaic; SNO: Snow and Ice; BAR: Barren or sparsely vegetated. In Fig. 1a, we also labeled 1061 

the locations of the eddy covariance flux tower sites used in this study. 1062 

  1063 



 

 1064 

Fig. 2. Seasonal dynamics and interannual variations of the tower-based GPP (GPPEC), GPP 1065 

simulated by VPM (GPPVPM), and GPP simulated by MOD17 (GPPMOD17) at 25 flux sites at 1066 

8-day intervals (please note the different y-axis scales). 1067 

  1068 



 

 1069 

Fig. 3. Comparison of GPPEC, GPPVPM, and GPPMOD17 across eddy covariance flux tower 1070 

sites (forest, grassland, cropland, and others) during 2008 to 2014: (a) 8-day GPPEC and 1071 

GPPVPM, (b) 8-day GPPEC and GPPMOD17, (c) anomaly of annual GPPEC and GPPVPM, and (d) 1072 

anomaly of annual GPPEC and GPPMOD17. FOR: forests, CRO: croplands, GRA: grasslands, 1073 

OTH: other types. When all the sites were combined, the relationship between GPPVPM and 1074 

GPPEC was y = 0.92 x (R
2
 = 0.84, RMSE = 1.7 g C m

-2
 d

-1
) at the 8-day time scale, while the 1075 

relationship between GPPMOD17 and GPPEC was y = 0.68 x (R
2
 = 0.55, RMSE = 2.6 g C m

-2
 1076 

day
-1

 at the 8-day time scale. At the inter-annual scale, the relationship between the annual 1077 

anomaly of GPPVPM and GPPEC is y = 0.73 x (R
2
 = 0.48) while the relationship between the 1078 

annual anomaly of GPPMOD17 and GPPEC was y = 0.45 x (R
2
 = 0.37).  1079 



 

 1080 

Fig. 4. Spatial distribution of maximum monthly mean GPP (a–d; f–i) from GPP models 1081 

(VPM, MOD17, SiB-CASA and CASA) and maximum monthly mean SIF (e, j) from 1082 

GOME-2 (e, j) in the baseline years (the average of 2008, 2009, 2010, 2013, 2014) and 1083 

drought year 2012,  and spatial distributions of annual GPP (k–n; p–s) from GPP models and 1084 

annual mean SIF from GOME-2 (o, t) in the baseline years and drought year 2012. 1085 
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 1087 

Fig. 5. Relationships between the maximum monthly mean GPP (a–d; e–h) from GPP models 1088 

(VPM, MOD17, SiBCASA and CASA) and monthly mean SIF from GOME-2 for each pixel 1089 

across CONUS during the baseline years (the average of 2008, 2009, 2010, 2013 and 2014) 1090 

and drought year 2012, and relationship between total annual GPP (i–l; m–p) from GPP 1091 

models (VPM, MOD17, SiBCASA, and CASA) and mean annual SIF from GOME-2 in the 1092 

baseline year (the average of 2008, 2009, 2010,  2013 and 2014) and drought year 2012 (all 1093 

of the relationships are significant with p<0.001). 1094 

 1095 



 

 1096 

Fig. 6. Spatial distribution of Pearson correlation coefficient between monthly SIF and GPP 1097 

products from VPM, MOD17, SiBCASA, and CASA for baseline year (the average of 2008, 1098 

2009, 2010, 2013, and 2014) and drought year 2012, and the corresponding frequency 1099 

distribution (black and red bars) and accumulative frequency (black and red dashed lines) of 1100 

the Pearson correlation coefficient for the four models in the baseline years and 2012. 1101 
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 1103 

Fig. 7. Spatial distribution of the regression slope between monthly SIF and GPP products 1104 

from VPM, MOD17, SiBCASA, and CASA for the baseline year (the average of 2008, 2009, 1105 

2010,  2013, and 2014) and drought year 2012, and the corresponding frequency distribution 1106 

(black and red bars) and accumulative frequency (black and red dashed lines) of the Pearson 1107 

correlation coefficient for the four models in the baseline years and 2012. 1108 
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 1110 

Fig. 8. Spatial-temporal anomalies of GPPVPM , GPPMOD17, GPPSiBCASA, GPPCASA, and SIF 1111 

during spring, summer, and annually across CONUS in 2012 relative to the baseline (2008, 1112 

2009, 2010, 2013 and 2014). Seasonal cycle and anomaly of total monthly GPPVPM, 1113 

GPPMOD17, GPPSiBCASA, GPPCASA and SIF in 2012 relative to the baseline. Numbers shown in 1114 

the last row of graphs are the anomaly of total GPP in spring (March–May), summer (June–1115 

August), fall (September–November) and the whole year (January to December). 1116 
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 1118 

Fig. 9. Correlation between the anomaly of seasonal/annual GPP from GPP models (VPM, 1119 

MOD17, SiBCASA, and CASA) and the anomaly of seasonal/annual mean SIF from GOME-1120 

2 across CONUS during the baseline years (the average of 2008, 2009, 2010, 2013 and 2014) 1121 

and drought year 2012 (all of the correlations are significant with p<0.001).  1122 
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1124 
Fig. 10. Seasonal cycle and anomaly of total monthly GPPVPM, GPPSiBCASA, GPPCASA, and 1125 

GPPMOD17 in (a) forest, (b) grassland, (c) cropland and (d) others. Numbers shown in the 1126 

bottom panel in each row are the anomalies of total GPP for each biome in spring (March–1127 

May), summer (June–August), fall (September–November) and the whole year. 1128 
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 1130 

Fig. 11. Drought-affected areas over CONUS on August 14, 2012 . 1131 

 1132 



 

Table 1. Name, location, vegetation type, and available years (within 2008–2014 study period) of 25 eddy covariance flux tower sites in this 1133 

study. RMSE, R
2
, and slope are the root mean square error, coefficient of determination, and regression slope of the regression analysis, 1134 

respectively, between tower-derived GPP and simulated GPP from VPM and MOD17. 1135 

Site ID Latitude Longitude IGBP Time 
slope R

2 RMSE (g C m-2 d-1)   
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Table 2. The anomaly of total GPP between 2012 and the baseline (the average of 2008, 1138 

2009, 2010, 2013 and 2014) in spring (March–May), summer (June–August), fall 1139 

(September–November) and the whole year. The uncertainty range of the anomaly was 1140 

calculated as the standard deviation (SD) of the anomaly between 2012 and different 1141 

baselines. We randomly chose at least three years from the year 2008, 2009, 2010, 2013 and 1142 

2014 to calculate the baseline, so there are 16 options (𝐶5
3 +  𝐶5

4 + 𝐶5
5). 1143 

Anomaly of GPP 

(Pg C) 
VPM MODIS CASA SiBCASA 

Anomaly of SIF 

(mW m
-2

 nm
-1

 sr
-1

) 

Spring 0.41 ± 0.04 0.30 ± 0.03 0.48 ± 0.05 0.25 ± 0.03 0.31 ± 0.05 

Summer -0.27 ± 0.05 -0.42 ± 0.02 -0.26 ± 0.06 -0.21 ± 0.04 -0.28 ± 0.05 

Annual 0.11 ± 0.08 -0.12 ± 0.02 0.18 ± 0.10 0.01 ± 0.08 -0.12 ± 0.10 

 1144 

  1145 



 

Table 3. The anomaly of total GPP estimates from VPM, MOD17, SiBCASA and CASA for 1146 

different biomes between 2012 and the baseline (the average of 2008, 2009, 2010, 2013 and 1147 

2014) in spring (March–May), summer (June–August), fall (September–November) and the 1148 

whole year. 1149 

Anomaly of GPP (Pg C) Spring Summer Fall Annual 

VPM 

Forest 0.07 -0.01 0.00 0.07 

Grassland 0.10 -0.15 -0.04 -0.07 

Cropland 0.09 -0.07 -0.05 -0.02 

Others 0.13 -0.04 0.00 0.11 

MOD17 

Forest 0.04 -0.05 -0.01 0.00 

Grassland 0.07 -0.14 -0.04 -0.10 

Cropland 0.08 -0.15 -0.04 -0.10 

Others 0.08 -0.11 -0.01 0.00 

SiBCASA 

Forest 0.04 -0.01 -0.01 0.03 

Grassland 0.06 -0.06 -0.04 -0.03 

Cropland 0.08 -0.10 -0.04 -0.05 

Others 0.07 -0.04 -0.02 0.05 

CASA 

Forest 0.07 0.00 -0.01 0.08 

Grassland 0.11 -0.15 -0.04 -0.07 

Cropland 0.13 -0.06 -0.04 0.03 

Others 0.15 -0.04 -0.01 0.13 

 1150 

*Forest including: evergreen needleleaf forest, evergreen broadleaf forest, deciduous 1151 

broadleaf forest, deciduous needleleaf forest, mixed forest; Grassland: grassland; Cropland: 1152 

cropland; Others: closed shrublands, open shrublands, savannahs, woody savannahs, 1153 

permanent wetlands, cropland/natural vegetation mosaics.  1154 
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