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Abstract 

Overarching goal of this paper was to evaluate automated and semi-automated methods of 
mapping wetlands using Landsat ETM+ and SRTM data.  

Automated methods consisted of: (a) slope derived from SRTM, (b) Tasseled cap Wetness Index 
(TCWI), (c) Normalized Difference Water Index (NDWI), (d) multi-band vegetation indices 
(MBVIs), (e) two band vegetation indices (TBVIs), (f) normalized difference vegetation index 
(NDVI), and (g) data fusion involving ETM+ and SRTM and then classifying the same. The best of 
these indices or methods provide an accuracy of less than 30 percent with high errors of 
omissions and\or commissions.  

Semi-automated methods consisted of 3 key techniques: (a) image enhancements to highlight 
wetlands, (b) image display to discern precise boundaries of wetlands, and (b) digitizing directly 
off screen to separate wetlands from their neighboring landscape. The most useful displays of 
ETM+ image enhancements (e.g., ratios) and band combinations, displayed as false color 
composite (FCCs) of RGBs were: (a) NIR/SWIR2, NIR/red, NIR/green; (b) NIR, Red, SWIR1; and 
(c) red, green, blue. The near-infrared (NIR) is centered at 0.825 μm and the short-wave 
infrared bands 1 and 2 (SWIR1 and SWIR2) are centered at 1.650 μm and 2.22 μm. The 
SRTM slope threshold of less than 1 percent was also very useful in delineating higher-order 
floodplain wetland boundaries.  

The wetlands were delineated with an accuracy of 86.4 percent using the semi-automated 
methods. The total wetland area in the Limpopo river basin was 12.5 percent of the total basin 
area of 41.5 million hectares. The overall accuracy of the 4 aggregated wetland classes in the 
basin was 82 percent with reasonable errors of omissions (20 percent) and low errors of 
commissions (12 percent).  

Keywords: wetlands, remote sensing, mapping, delineation, automated methods, 
semi-automated methods, Limpopo river basin. 

Introduction 

Wetlands are ecosystems of very high interest for agricultural development as well as for 
environmental conservation. The ability of wetlands to act as sponge that can hold water for a 
longer period of time as compared to the surrounding areas and their higher soil fertility have 
made wetlands attractive for agricultural development. With ballooning population and increasing 
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pressure on arable lands, sustainability of many wetland ecosystems around the world is 
becoming problematic. Wetlands are also performing many functions that are beneficial to the 
environment and humans and if used unwisely these benefits will be destroyed. Hence, the 
importance of characterizing and mapping wetlands in order to identify and implement proper 
management planning at national, regional, and local levels is beginning to be well appreciated 
(Earth Satellite Corporation, 2002, Thenkabail et al., 2000b, Thenkabail and Nolte, 2000; 
Thenkabail and Nolte, 1996, 1995).  

The wetland surveys of the world have been mostly localized surveys (EarthSat, 2002; Stefano 
and Pierre, 2004; Charles, 2000; Patrick et al., 2003; Drew, 1999). However, over the past 
decade several studies (Janel et al. 1997; Thenkabail and Nolte, 2000, Thenkabail et al., 2000b, 
Stefano and Pierre, 2004; Charles and Hara, 2000; Patrick et al., 2003; Drew, 1999) have 
identified the potential of satellite remote sensing data and techniques for mapping different types 
of wetlands at different spatial scales covering larger areas (e.g., river basins, Nations).  The 
Earth Satellite Corporation together with Isciences LLP (2002) examined the utility of Remote 
Sensing imagery for wetland classification and delineation. The important lesson they learnt 
through this investigation was the potential use of imagery in conjunction with GIS datasets to 
investigate the interconnectivity of wetland sites within a larger geographic region. Hence they 
concluded that these types of analyses at larger spatial scales would greatly enhance capabilities 
to assess and understand these vulnerable ecosystems as a whole instead of as an isolated 
entity. 

Almost all wetland inventories and mapping, at present, limit themselves to large flood plains, 
swamps, and water bodies with or without irrigated areas (USACE, 1987). However, a large 
proportion of the wetlands are inlands, along the stream network and\or occurring as isolated 
patches. Most of the inland valleys that remain wet during most parts of the year, give rise to 
many localized wetland ecosystems that are named as dambos (also called as inland valleys, 
fadamas, mbugas, and vleis). They usually occur along the lower-order streams and are too small 
to appear on most maps. However, these inland valleys constitute about 9-18 percent of the 
African landscape (Thenkabail and Nolte, 2000, 1995) and constitute very important ecosystems 
of interest to both conservationists and agricultural developmentalists. Perennial or seasonal 
water bodies with smaller land extents and many other small to medium scale localized wetlands 
have also to be studied and included in the wetland statistics within the basin. For example, the 
FAO statistics shows that there may be 40,000-60,000 hectares of swamps and floodplains in the 
Limpopo river basin in Southern Africa but ignores almost all of the inland wetlands.  

The remote sensing approach is the only way for consistent mapping of overwhelming proportion, 
if not all of the wetlands of the World. This will need development of methods and datasets for 
rapid delineation of wetlands, to map their spatial distribution, and to identify their specific 
characteristics such as biophysical, ecological, hydrological, and socio-economic values. The US 
Army Corps of Engineers (USACE) Wetlands Delineation Manual (1987) also supports such 
delineation without field visit: “in a routine wetland determination when the quantity and quality of 
information obtained are sufficient for wetland determination onsite inspections of the study area 
may not be necessary”.  However, at larger spatial scales, applicability of remote sensing 
techniques could vary significantly at different localized areas due to the higher degree of 
variability in the spectral signatures of the associated ground features. The complexities in these 
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ecosystems in terms of their vegetation, soil and hydrological features themselves impose many 
limitations for identifying, mapping and characterization of wetland ecosystems. Thereby, the 
need to investigate methods that can consistently map wetlands over large areas becomes 
important. 

Given the above background, this study investigates globally applicable methodologies for 
delineating, classifying, and characterizing the wetlands over larger areas. The Landsat Geocover 
for nominal year 2000 and the SRTM data, which are well processed, available free, and have 
global coverage, were selected so the methods developed at one location can be applied 
elsewhere. Emphasis will be to delineate and classify small (e.g., dambos or inland valleys) as 
well as large wetlands including human-made wetlands such as irrigated areas and artificial 
tanks. The methodology development was conducted in a large river basin (Limpopo in Southern 
Africa) with considerable variability and complexity; so that the methods are robust enough to be 
applied elsewhere in the World. This research was conducted within the scope of the Global 
Wetland Inventory and Mapping (GWIM) project using remote sensing and secondary data 
initiated by The International Water Management Institute (IWMI). The overarching goal of the 
GWIM is to map, characterize, and classify the wetlands of the world at various scales or pixel 
resolutions through a wide range of partnerships including the Ramsar Convention.  

Methods 

Study area 

The Limpopo River basin straddles four countries: Botswana, Zimbabwe, South Africa and 
Mozambique (Figure 1). The total basin area is 42.5 million hectares, of which nearly 50 percent 
is in South Africa (Table 1). Limpopo is large basin (41.5 million hectares). The wetlands in the 
basin are hardly utilized for agriculture and the diversity of basin from the dry lands of upper 
catchments to floodplains in Mozambique where the river drains to the Indian Ocean is ideal to 
develop methodology. Also, in Africa, unlike Asia, most of the wetlands are still un-utilized for 
agriculture. A large proportion of these areas are known to possess rich soils and sufficient soil 
moisture to grow at least one crop, with a possibility of second dry season crop. Wetlands in the 
Limpopo River Basin are predominantly dambos (seasonally or permanently saturated areas, 
also referred to as pans) and riverine wetlands. 
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Figure 1. Location of the study area.  

Table 1. Distribution of land extents amongst the four countries within the Limpopo River 
Basin. 
 
Country Basin area within the country 

(million ha) 
Area within each country as a 

percentage of total basin area (%) 
Botswana  8.0 19.3 
Mozambique  8.8 21.1 
South Africa 18.6 44.8 
Zimbabwe   6.1 14.8 
Total 41.5 100 

According to the Koppen classification (Koppen, 1918 cited in FAO, 2005) the basin is 
predominantly semi-arid, dry, and hot with an average rainfall of less than 400mm. Yet, the area 
where the river drains to Indian Ocean in Mozambique is a large flood plain with great potential 
for agriculture. The basin generally experiences short rainfall seasons with 95 percent occurring 
between October and April. The South African Highlands part of the basin is temperate while the 
Mozambique coastal plain is mainly warm and humid. Population density in the basin is around 
25-50 people per km2, which although not high compared to other river basins of the World, is still 
one of the most populated basins in Africa (FAO, 2005). In general the basin has a high level of 
water deficiency. A short and intense rainy season, with highly unreliable rainfall leads to frequent 
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droughts. Crop production is not secure. The overwhelming proportion of the basin area is arid or 
semi-desert with significant flood plains in Mozambique that has rich agricultural potential, 
seasonal wetlands, and highlands. The wetlands in the basin have become more attractive units 
for their rich soils and year around soil moisture, which is favorable for cropping even during dry 
season and drought years. Therefore, the wetlands and their important features could be more 
prone to disappear unless they are not managed in a sustainable manner.  

Definition of wetlands 

The definition of wetlands is the key for proper mapping and inventory of wetlands. In our 
definition, we have included both the natural and man-made (e.g., irrigated areas, reservoirs) 
wetlands for delineation and mapping. According to the Ramsar Convention on Wetlands, 
"wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or 
temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine 
water the depth of which at low tide does not exceed six meters." Further it explains that the “ 
wetlands may incorporate riparian and coastal zones adjacent to the wetlands, and islands or 
bodies of marine water deeper than six meters at low tide lying within the wetlands". In the US 
Army Corps of Engineers Wetlands Delineation Manual (USACE, 1987) wetlands are defined as: 
“Those areas that are inundated or saturated by surface or ground water at a frequency and 
duration sufficient to support, and that under normal circumstances do support, a prevalence of 
vegetation typically adapted for life in saturated soil conditions. Wetlands generally include 
swamps, marshes, bogs, and similar areas.”  In our mapping effort both the above definitions 
from these two sources were taken into consideration. 

Data  

Landsat ETM+ 30 m and the Shuttle Radar Topographic Mission (SRTM) 90 m were the primary 
data sources used in this study. Both have global coverage, available free, well calibrated and 
processed, and available from reliable sources. Methodologies developed using such data 
sources can be applied anywhere in the world. A brief description of the datasets used in the 
study is given below and are streamlined in standard formats as in IWMI’s data storehouse 
pathway (http://www,iwmidsp.org): 

Satellite sensor data  

A total of 24 tiles (Figure 2) of orthorectified Landsat ETM+ images for the nominal year 2000 
were downloaded from the Earth Science Data Interface (ESDI) at the Global Land Cover Facility 
(http://glcfapp.umiacs.umd.edu) of the University of Maryland. The images were from either dry or 
wet season; which were mosaicked separately and analyzed. 
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Source: Global land Cover Facility, University of Maryland 

Figure 2. Landsat ETM+ images used in the study - Distribution of wet season and dry season 
Landsat ETM+ images.  

SRTM Data 

The Space Shuttle Radar Topography Mission (SRTM) data of the world at 90 meter horizontal 
resolution is gap filled and made available through the Consortium for Spatial Information (CSI) 
web portal (http://srtm.csi.cgiar.org/). 

Secondary data 

Monthly mean rainfall data for the period from 1961 to 2000 were obtained from Dr. Tim Mitchell 
of the Climate Research Unit of the University of East Anglia, UK. Elevation, slope, drainage 
network, and catchment boundaries were derived using SRTM DEM 90 m dataset available for 
free download from the data archive of the United States Geological Survey (USGS). 
Topographic map sheets of 1:25000, 1:100000 and 1:50000 were used where available. 

Ground-truth (GT) data 

Ground-truth data on spatial location, land cover, agricultural land use, soil moisture status, 
hydro-geomorphic, and topographic characteristics were collected from selected sample sites 
during the period from 28 June – 20 July 2005. A total of 220 Points (Figure 3) were collected. 
Stratified random sampling design was adopted for the selection of sample sites. Stratification 
was based on the accessibility of the sites from road-network. Structured field survey forms were 
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used in data recording. Spatial locations were obtained from GPS readings. Ground cover 
percentages for each sample site were estimated using four random samples of 30 m × 30 m 
size. Data on agricultural land use, soil moisture status and hydro-geomorphic characteristics 
were recorded based on visual observations.  

 

Figure 3. Spatial distribution of Ground-truth data points in the study area 

Delineation of wetlands 

Automated and semi-automated approaches investigated for delineating the wetlands are shown 
in Figure 4. Data processing, extraction of information and analyses were performed using 
ERDAS (Earth Resources Digital Analysis System) Imagine (Version 9.0), Earth Resource 
Mapping software (ERMapper version 7.0), ArcGIS 9.0, and Arc View (version 3.2) software 
packages.  
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Figure 4. Illustration of automated and semi-automated methods for wetland delineation. 

Automated methods used for wetland delineation 

In this section, the results of automated wetland delineation via generation of drainage network 
from SRTM data are discussed. This is followed by the evaluation of wetland delineation using 
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the thresholds of SRTM derived slopes. Finally, the strengths and limitations of the Landsat 
ETM+ derives indices (Table 2) in automated wetland delineation are investigated. 

Table 2. Indices and their thresholds for automated wetland delineation (only the selected 
best indices and their thresholds used to delineate wetlands). 

Index or parameter Definition 

Range 
-1.0 to 1.0 
dimensionless  
or  
0 to 100 % 

Threshold 
values 
that best 
delineated 
wetlands 

a. Slope derived 
from SRTM DEM 

Percentage slope derived using spatial 
analyst tools available in Arc GIS 

0 to 100 <0.5 % 

b. Normalized 
Difference 
Vegetation Index 
(NDVI) 
(Rouse et al., 1974) 

34

34

ρρ
ρρ

+
−

=NDVI  

ρ
3 and ρ4 are the reflectance values derived 

from the bands 3 (Red) and 4 (NIR) of 
Landsat ETM+ data respectively. 

-1.0 to +1.0 
-0.25 to 
0.10 

c. Tasseled-cap 
Wetness Index 
(TWI) 
(Crist and Cicone, 
1984) 

TWI =  ([B1] * 0.1509 + [B2] * 0.1973 + 
[B3] * 0.3279 + [B4] * 0.3406 + [B5] * -
0.7112 + [B7] * -0.4572) 
B1 to B7 are the DN values of the 
respective bands of Landsat ETM+ data. 
This index represents the overall degree 
of wetness over the area as reflected by 
image data. 

0 to 100 0 to 30 

d. Normalized 
Difference Water 
Index (NDWI) 
(McFeeters, 1996) 

42

42

ρρ
ρρ

+
−

=NDWI  

ρ
2 and ρ5 are the reflectance values derived 

from the bands 2 (Green) and 4 (NIR) of 
Landsat ETM+ data respectively. 

-1.0 to+ 1.0 -0.15 to 0 

e. Mid Infrared Ratio 
(MIR) 
(Coppin and Bauer, 
1994) 

5
4

Band
BandMIR =  

Band 4 and 5 are NIR and Mid Infra-red 
bands of Landsat ETM+ data respectively. 

0 to 4 >0.25 

f. Ratio Vegetation 
Index (RVI) 
(Tucker, 1979) 

3
4

Band
BandRVI =  

Band 4 and 3 are NIR and Red bands of 
Landsat ETM + data respectively 

0 to 6 <0.6 

g. Green Ratio (GR) 
(Lo, 1986) 

2
4

Band
BandGR =  

Band 4 and 2 are NIR and Green bands of 
Landsat ETM+ data respectively. 

0 to 4 0.5 to 0.8 
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h. Ratio of indices 
(this study) 

RoI = B4/B7 * B4/B3 * B4/B2 0 - 240 12.5 - 20 

i.  Reflectance of 
SWIR 1 band  (this 
study) 

Band 5 
where, Band 5 is the Shortwave Infra-red 
band 1 of Landsat ETM+ data.  

0 to 47 <1 

A. Drainage derived from SRTM data 

Wetlands are mainly along the lower elevations in the landscape, along the flow paths or 
drainage systems. These are areas of inland valley bottoms and flood plains. Therefore the 
delineation of stream lines could be used as a better indication for mapping inland wetlands that 
are associated with the valley bottoms and the hydromorphic valley fringes. Drainage network 
was delineated using spatial analyst tools in ArcGIS software which is available for hydrological 
analyses. This involved a step-by-step procedure in which flow direction, flow accumulation, and 
stream network are derived in respective order. The DEM was first corrected by filling up the 
sinks using the tool ‘fill’ in ArcGIS This ensures that water will flow over the DEM without any 
stagnation. The ‘Flow Direction’ and ‘Flow Accumulation’ tools were used in respective order and 
these two layers were then used to generate the stream network. While generating the stream 
network different threshold levels were applied to get a satisfactory level of accuracy of stream 
network delineation. Threshold is the minimum number of pixels that is considered to constitute a 
drainage link. The best threshold levels were selected through visual interpretations made on the 
derived stream network overlays on Landsat and SRTM DEM data.  This process is automated 
and rapidly delineates the drainage networks.  

B. Slope derived from SRTM data (see table 2) 

Slope determines the relative topographic position of the landscape at every point in space; thus 
determining uplands from lowlands. Theoretically, slope is a better indicator of topographic 
position than elevation. This is because, the same elevation can be present in two different 
locations while one can be uplands and another is lowland. In contrast, slope is always 
determined relative to the elevation of the surrounding pixels. As a result, lowland pixels get 
separated from upland pixels. 

C. Indices derived from Landsat ETM+ data (see table 2) 

The threshold values recommended in Table 2 for different indices were based on “trial and error” 
experimentation conducted using these indices and varying their thresholds to determine 
maximum seperability of the wetlands from other land units. Thereby, the best threshold values 
for delineating wetlands appear for different indices and reflectance or radiance band values 
(Table 2) of Landsat ETM+ data. There were numerous other indices and bands that were used 
to separate wetlands, but only the best are presented in Table 2 and discussed.  
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Semi-automated methods for delineating wetlands 

Semi-automated methods have the following distinct steps: 

A. Image enhancement techniques to highlight the wetlands from the neighboring landscape (see 
Figures 5a, 5b, 5c, and Table 2).  

B. Image display techniques involving the use of various false color composites (FCCs) of 
Landsat ETM+ data (see Figures 5a and 5b). 

C. Onscreen digitization to delineate wetlands (Figures 5a, 5b and 5c) from non-wetlands.  
Screen digitization was done on the colour enhanced and “zoomed in” images. For the lowland 
areas of the basin (where the Limpopo river drains to the sea) where the visual interpretation of 
Landsat ETM + data with the application of above techniques was problematic, wetland areas 
were delineated using SRTM derived elevation thresholds. Wetlands within this lower flood plain 
area of the basin were characterized by the elevated ground water tables due to their location at 
a lower elevation much closer to the coast line.  

Following image enhancement techniques provided best distinguishable features that facilitated 
accurate delineation of wetland boundaries when “zoomed in” and viewed onscreen; 

(a) FCC of Landsat ETM+ band ratios - NIR/SWIR2: NIR/red: NIR/green (Figures 5a, 5b); 

(b) FCC of NIR: Red: SWIR1; and  

(c) True Colour Composite (TCC) of Red: Green: Blue. 

Where, band 1 = blue, band 2 = green, band 3 = red, band 4 = NIR, band 5 = SWIR1, and band 7 
= SWIR2. 
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Figure 5a 

 

Figure 5b 
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Figure 5c  

Figure 5. Delineation of wetlands through semi-automated process. Wetlands are highlighted 
using image enhancement and display techniques (e.g., Figure 5a, 5b) and delineated (e.g., 
Figure 5c) through online digitizing process. 

Accuracy of wetland delineation 

Wetlands were first delineated using the methods described in this paper prior to the field visit. 
Hence, the accuracy of wetland classifications was based on an independent ground-truth data 
set (see section 3.3.3). The ground-truth mission was conducted after delineating the wetlands 
using automated (section 3.4.1) and semi-automated (section 3.4.2) methods. Therefore, the GT 
dataset formed an ideal dataset for determining the accuracies of wetland mapping. Selection of 
wetland ground-truth points was based on the information provided by local wetland experts who 
had an independent view on different wetland types and knowledge on their spatial occurrence 
over the region. 

Percentage accuracy of mapping wetlands was determined by overlaying a total number of 220 
wetland points (Figure 3) which were identified during the ground truth on the delineated wetland 
map. 

Wetland Classification 

Delineated wetlands (Figure 5) were classified separately taking the wet and dry season images 
(Figure 2). The image data was first normalized by converting to reflectance (see Thenkabail et 
al. 2002, 2004a, 2004b) using an inbuilt model in ERDAS Imagine. A hierarchical class grouping 
was adopted to label and identify the classes (Thenkabail et al., 2006, 2005). To classify wetland 
classes, unsupervised ISOCLASS clustering algorithm in ERDAS Imagine was used, separately 
on wet and dry season images. The classification was initiated with a maximum number of 50 
classes separately for both sets of images.  
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Class identification and labeling 

Following the classification, class statistics were viewed and used in class identification and 
labeling process which involved following steps (also see Figure 6). 

A. Bispectral plots: 

Unsupervised class means for Landsat ETM+ band 4 (near-infrared) versus band 3 (red) were 
plotted to obtain the bi-spectral plots (see Figure 7a through 7c). This provides one of the key 
steps in class identification process. 

 

Figure 6. Wetland classification and class identification process. Illustration of methods for 
wetland class identification and labeling. 



Kulawardhana et. al. / JOSH  (2007) 62-96 
 

Journal of Spatial Hydrology 
76 

 

 
 
Figure 7a (cont.) 

 
Figure 7b (cont.) 
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Figure 7c  (cont.) 
 
 

 
 
Figure 7d. 

Figure 7. Hierarchical classes at different levels reduced from initial 50 classes. Bi-spectral 
plots show hierarchical classification and labeling process at 3 different levels: for 15 classes 
(Figure 7a), 8 classes (Figure 7b), 4 classes (Figure 7c) and NDVI of 50 classes (Figure 7d).  
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B. Ground truth data 

The quantitative and qualitative observations that were made during ground-truth including the 
extensive series of geographically precise digital photos were used in class identification and 
labeling process. 

C. Normalized Difference Vegetation Index (NDVI)  

The NDVI values of the unsupervised classes were plotted (see Figure 7d) to assist in class 
identification process. Wetlands with barren lands and\or with sparse vegetation have lower NDVI 
as a result of soil moisture that is relatively higher than the surrounding uplands. When wetlands 
have natural vegetation or crops the NDVI will vary depending on vegetation density and vigor. 
The NDVI values were used in conjunction with ground-truth data to assist in interpretation. 

D. Hydro-geomorphic and topographic features 

The valley bottoms along the lowlands (e.g, inland valleys) are easily tracked on high resolution 
satellite imagery from their neighboring uplands. Data from topographic maps (especially from 
1:50,000 or better) were used where available. 

E. Contextual and textural characteristics  

False color composites (FCCs) were used to identify distinct features on the imagery that helped 
distinguish lowlands from uplands. These differences were mainly resulted from the differences in 
vegetation type and conditions as well as the moisture differences between the uplands and 
lowlands. 

F. Hierarchical classification scheme 

Based on the above information (point A to E), stepwise aggregation of identified classes were 
illustrated in Figure 7a through Figure 7d for the wet season images. The most disaggregated 
classes are shown in Figure 7a and most aggregated classes in Figure 7c. Similar approach was 
used to determine the classes in dry season images. Wetland class names were refined with the 
equivalent Ramsar Classification names where appropriate. 

Accuracy assessment of the wetland classes 

The ground sample points (Figure 3) were overlaid on each of the land use\land cover (LULC) 
maps to determine the classification accuracies and errors of each class. Correspondence 
between classified and ground verified cover types was determined using a confusion matrix 
approach in Arcview. The levels of accuracies and errors at different classification levels were 
estimated and compared amongst different hierarchical classification levels. 

Following equations were used to derive percentage accuracies, errors of omissions, and errors 
of commissions: 

Equation    8 
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 100*
X class of points GT of no. Total

X'' classon  falling that X'' class of points GT of no. Total  (%)accuracy  Overall =            Equation    8 

 
100*

X class of points GT of no. Total
X'' classon  fallingnot  X'' class of points GT of no. Total (%)omission  ofError =          Equation 9 

 
100*

X class of points GT of no. Total
X'' classon  falling classesother  of points GT of no. Total  (%) commission ofError =         Equation 10 

 

Results and Discussion 

Accurate delineation of the wetland boundaries is the major challenge in wetland mapping. The 
results of the automated (see section 3.4.1) and semi-automated (see section 3.4.2) methods are 
presented and discussed. 

Automated approach for delineating wetland boundaries: SRTM derived 
drainage network 

The SRTM derived stream density (Sd) and stream frequency (Sf) were compared with the Sd and 
Sf values derived from Landsat ETM+ data (see Table 3). The optimal Sd and Sf values derived 
from SRTM data were higher by about 200 to 400 percent when compared with the same values 
derived from Landsat ETM+ (Table 3). The number of streams generated by SRTM data depends 
on the level of threshold value used in the algorithm for deriving the stream network from SRTM 
data. However, there are significant limitations of SRTM derived Sd and Sf. They are (see Figure 
8); (a) spurious / non existing streams; (b) absence of stream width; (c) spatial dislocation of the 
stream network; and (d ) non-smooth or pixilated boundary of the stream. 

 

 
Figure 8. Problems associated with wetland delineation by automated approach using 
SRTM data. The SRTM derived wetlands have the illustrated limitations: (1) spurious streams, (2) 
absence of stream width, (3) dislocation of streams from their actual location, and (4) non-smooth 
boundaries. 
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Table 3. Wetland drainage systems mapped using SRTM vs. Landsat ETM+. Stream density 
(Sd) and stream frequency (Sf) as derived from two different methods: (a) SRTM drainage (b) 
Landsat ETM + data. 
 

Stream density (Sd) 
(km/ km2) 

Stream Frequency (Sf) 
(#/ km2) Sub 

catchment 
Area 
(km2) 

SRTM 
Landsat 
ETM+ 

SRTM 
Landsat 
ETM+ 

1 1450 0.7 0.4 0.3 0.1 
2 3400 0.8 0.2 0.3 0.03 
3 1100 0.7 0.4 0.3 0.1 
4 1900 0.7 0.4 0.3 0.1 
Average 0.7 0.3 0.3 0.1 

Automated approach for delineating wetland boundaries: Thresholds of 
SRTM slopes and Landsat ETM+ Indices 

Different threshold levels of: (a) SRTM derived slopes, and (b) Landsat ETM+ derived indices 
(Table 4) were investigated for automated and rapid delineation of wetlands. Many of the 
automated approaches (Table 4) were useful in delineating open water bodies of large surface 
areas, flood plains, and associated wetlands. None of the methods were, however, effective in 
delineating the wetlands of smaller widths, especially the riverine wetlands associated with the 
lower order streams in upper reaches of the basin. They also failed in delineating many of the 
localized wetland areas of smaller sizes and the wetlands of seasonal occurrence. As a result, 
the wetlands delineated by automated approaches showed very low accuracies and\or very high 
errors (see Table 4). Indeed, when the accuracies are increased the errors of omissions or 
commissions shoot up to unacceptable levels. For example, the tassel cap wetness index (TCWI) 
with value range of -40 ≤ a < 0 provides, seemingly, moderate accuracy of 57 percent. However, 
the error of commission of 343 percent clearly implies that large areas that are not wetlands also 
get added in as wetlands. In the past studies TCWI is being extensively used for mapping 
wetlands (McFeeters, 1996; Li et al, 1998). It is related to soil features, including moisture status 
(Jensen et al, 1995). This is mainly because of the sensitivity of the longer infrared channels to 
soil (Karnieli, 2000). Spectral data coming from the near infrared (band 4), mid infrared (bands 5 
and 7), red (band 3) and green (band 2) region of the spectrum were used in the present study in 
many of the indices. Madra (2005) shown that the spectral data coming from red and near-
infrared region of the spectrum clearly distinguishes the wetlands from non wetlands within the 
lower part of Limpopo basin within Gaza province of Mozambique. NDVI is a good measure of the 
health and vigor of the vegetation cover and therefore been used widely in wetland related 
studies (Li et al, 1998; Hogg et al, 2006). Numerous studies have shown strong correlations 
between NDVI and plant primary productivity, biomass, leaf area index (Tucker et al, 1986; 
Running et al, 1994; Justice et al., 1985). Therefore, it could be used mainly to capture the 
differences among different types of wetland vegetations and also for distinguishing the wetland 
boundaries from the surroundings. However, in the present study, the best of these indices 
provided only an accuracy of less than 30 percent with high levels of errors of omissions and 
commissions. The major limitation observed with almost all the different threshold levels of each 
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index was the greater levels of commission error. For example the distribution of wetlands within 
lower Limpopo flood plain in Gaza province of Mozambique as delineated by Madra (2005) using 
scaled NDVI threshold value of less than 98 (NDVI= 0.23) showed greater similarity to the  
distribution of wetlands that were delineated in the present study using semi-automated 
approaches. However, in our attempts to delineated wetlands using similar threshold values of 
NDVI (<-0.25) mapped only 3% of the wetlands within the basin. Findings of the same study by 
Madra (2005) showed that different methods applied for wetland delineation using medium 
resolution satellite images resulted greater differences in spatial and area coverage of delineated 
wetlands. They also showed that larger wetlands could be identified in all methods but were not 
useful for wetlands of smaller widths. The best possible results reported in the present study are 
given in Table 4. This clearly implies the inappropriateness of the automated approaches for 
delineating wetlands at larger spatial scales. A primary cause for this is because when wetlands 
have vegetation canopies or agriculture, they can look similar to uplands with similar vegetation 
or agricultural crop cover. Even when, the lowland vegetation is characteristically different from 
uplands, the difference in spectral reflectivity may not be consistently significant over space. 
 
Table 4. Accuracies and errors of automated methods for wetland delineation.  
 

 Data used Threshold value 

Accuracy of 
wetland 
delineation 

(%) 

Errors of  
omission  

(%) 

Errors of 
commission  

(%) 

a. a ≤ 0 1 99 3 

 0 ≤ a < 0.5 29 71 160 

 0.5 ≤ a < 1 31 69 206 

 1 ≤ a < 2 20 80 165 

 2 ≤ a < 20 18 82 160 

 

Slope derived 
from SRTM 

a ≥ 20 1 99 8 

b. a ≤ (-0.25) 3 97 1 

 (-0.25) ≤ a <  0 14 86 19 

 0≤ a <  0.1 29 71 496 

 0.1 ≤ a <  0.2 12 88 73 

 0.2 ≤ a <  0.4 34 66 142 

 

Normalized 
Difference Vegetation 
Index  
(NDVI) 

0.4 ≤ a <  0.6 9 92 27 

c. a ≤ (-40) 26 74 322 

 (-40) ≤ a < 0 57 43 343 

 0 ≤ a <  10 11 89 29 

 10 ≤ a < 30 6 94 7 

 

Tasseled-cap  
Wetness Index 
(TCWI) 

a ≥ 30 1 99 0 

d. a < (-0.30) 17 83 239 

 (-0.30)≤ a <(-0.25) 22 78 202 

 

Normalized 
Difference Water 
Index (NDWI)  (-0.25)≤ a <(-0.20) 24 76 142 



Kulawardhana et. al. / JOSH  (2007) 62-96 
 

Journal of Spatial Hydrology 
82 

 (-0.20) ≤ a <(-0.15) 18 82 71 

 (-0.15) ≤ a < 0 14 86 42 

 a ≥ 0 5 95 5 

e. 0.3 ) ≤ a < 0.5 1 99 5.7 

 0.5 ) ≤ a < 1.25 42 58 425 

 1.25 ) ≤ a < 1.75 22 78 144 

 1.75 ) ≤ a < 2.5 24 76 90 

 

Ratio 4/7 

a ≥ 2.5 12 88 36 

f. 0 ≤ a < 0.6 3 97 5 

 0.6 ≤ a < 0.8 8 92 76 

 0.8 ≤ a < 0.95 12 88 121 

 0.95 ≤ a < 1.0 4 96 41 

 1 ≤ a < 1.5 33 67 291 

 

Ratio 4/3 

1.5 ≤ a < 2.25 40 60 188 

g 0 ≤ a <  0.5 2 98 1 

 0.5 ≤ a <  0.8 3 97 10 

 0.8 ≤ a <  1.0 12 88 112 

 1.0 ≤ a < 1.25 22 78 220 

 1.25 ≤ a < 1.30 5 95 35 

 1.30 ≤ a < 1.6 24 76 175 

 1.6 ≤ a < 1.8 15 85 81 

 1.8 ≤ a < 2.5 17 83 64 

 

Ratio 4/2 

 a ≥2.5 1 99 2 

h 0 ≤ a < 0.3 2 98 11 

 0.3 ≤ a < 1.0 21 79 216 

 1.0 ≤ a < 1.5 12 88 114 

 1.5 ≤ a <  2.5 13 87 111 

 2.5 a 5.0 19 81 127 

 5.0 ≤ a < 7.5 13 87 54 

 7.5 ≤ a < 10 7 93 27 

 10 ≤ a < 12.5 4 96 15 

 12.5 ≤ a <  20 5 95 17 

 

Ratio 4/7 * 4/3*4/2 

a ≥ 20 2 98 8 

i 
Reflectance of SWIR-
1 band   

a < 1 1 99 0 

  1 ≤ a ≤ 4 1 99 2 

  4 < a ≤ 5 1 99 4 

  5 < a ≤  7 3 97 18 

  7 < a ≤  10 12 88 71 

  10 < a ≤ 15 35 65 331 
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  15 < a ≤  20 33 67 346 

  20 < a ≤  25 14 86 119 

  25 < a ≤  30 2 98 17 

  30 < a ≤  40 0 100 1 

  40 < a ≤  47 0 100 0 

A limitation for application of the automated technique was the single date imagery used in this 
study. However, this could not be avoided since the main goal of the study was to develop 
methods for a consistent global wetland mapping making use of freely available high resolution 
satellite imagery, and secondary data. The use of multi-date high resolution (30 m or better) 
imagery at global level is not feasible given the resource requirements to handle very large 
volumes of data. In an earlier study, Thenkabail et al. (1996; 1999) showed that the use of single 
date dry season images provided very good seperability between the uplands and the lowlands. 
This is because, during dry season, lowlands have significantly: (a) higher moisture, and (b) 
greener vegetation when compared with dry uplands. Acquisition of global mosaic of high 
resolution imagery only for the dry season alone is a complex proposition. However, a large 
proportion of images available in the data archive of the University of Marylands’ Global Land 
Cover Facility (http://glcf.umiacs.umd.edu/data/) are from dry season. Madra (2005) showed that 
the spectral data coming from red and near-infrared region of the spectrum clearly distinguishes 
the wetlands from non wetlands within the lower part of Limpopo basin in the Gaza province of 
Mozambique. The NDVI has also been widely used in wetland related studies (Li et al, 1998; 
Hogg et al, 2006). Numerous studies have shown strong correlations between NDVI and plant 
primary productivity, biomass, leaf area index (Tucker et al, 1986; Running et al, 1994; Justice et 
al., 1985). Therefore, it could be used mainly to capture the differences among different types of 
wetland vegetations and also for distinguishing the wetland boundaries from the surroundings. 
The TCWI has also been extensively used in wetland related studies (McFeeters, 1996; Li et al, 
1998). It is related to soil features, including moisture status (Jensen et al, 1995). All of these 
earlier studies in which the similar approaches have been used for delineation and mapping 
wetlands have been carried out at much lower spatial scale while our attempts were to map the 
wetlands at much larger spatial scale. However, The huge difference that exist across the basin 
in terms of the climate, soil, and many other geo-morphological features have made its wetlands 
to differ widely across different regions over the basin; making the application of automated 
approaches that use particular indices and threshold untenable. Even though the above 
limitations are associated with the automated approaches for wetland delineation the main 
advantage of them is the reduction in time and human interference. Hence, it is still worth while to 
explore the possibilities of using them at various spatial scales.  

Semi-automated approach for delineating wetlands: image enhancement, 
display, and digitizing 

Various enhancement models were tested to determine the best technique for obtaining a better 
contrast among wetland versus non-wetland land cover types across different regions over the 
basin. The most useful displays of ETM+ image enhancements (e.g., ratios) and band 
combinations that highlighted the wetlands from non-wetlands, when displayed as RGB (red, 
green, blue) false color composite (FCC) combinations were:  
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• ETM+4/ETM+7, ETM+4/ETM+3, ETM+4/ETM+2 (or simply: 4/7,4/3,4/2); 

• ETM+4, ETM+3, ETM+5; and 

• ETM+4, ETM+5, ETM+2.  

A typical RGB FCC display for highlighting wetlands from non-wetlands is illustrated in Figure 5a 
and 5b. The wetland boundaries were digitized directly off screen using these enhancements and 
displays. The 4/7, 4/3, 4/2 (NIR/SWIR2, NIR/red, NIR/green) combination captured most of the 
wetlands, but when the above technique failed to distinguish wetlands from other land cover 
classes,  other combinations were scanned to digitize any missing wetlands. Every other 
possibility such as the SRTM slope threshold is used to add wetlands that were missing from 
combinations displayed above. The same band combinations were also remarkable for 
delineating both fresh water and salt water pans that were concentrated mostly in upper reaches 
of Olifants sub basin that occurs within South African part of the basin. Harvey et al. (2001) have 
followed similar approaches for delineation and mapping of wetlands within Northern territory of 
Australia. They have shown that the use of contextual and textural characteristics as seen on 
Landsat and SPOT images as desirable to map vegetation communities in wetland environments, 
especially for those with highly heterogeneous structural composition where similar vegetation 
communities occur in different forms and densities. 

The stream density (Sd) and stream frequency (Sf), the two indicators of wetlands, delineated by 
semi-automated methods using Landsat ETM+ data are compared with the Sd  and Sf  obtained 
from the topographic maps (Table 5; Figure 9) . The results showed that when compared with 
1:250,000 topographic maps the Sd  and Sf  values were comparable (Table 5; Figure 9). For 
example, the Sf from 1:250,000 topographic maps was 0.58 (numbers per square kilometers) 
when it is compared with an Sf value of 0.62 from Landsat ETM+ . The Sd from Landsat ETM+ 
(0.42 kilometers\square kilometers) was significantly higher than the Sd from 1:250,000. However, 
the Sd and Sf obtained using 1:50,000 topographic maps were 100 to 300 percent higher than the 
Landsat ETM+ derived Sd and Sf. The results imply that the performance of ETM+ data in 
delineating wetlands using semi-automated methods was similar to that of 1:250,000 topographic 
maps but misses a large number of wetlands when compared to 1:50,000 topographic maps. 
There are 2 important advantages in the Landsat ETM+ derived wetlands when compared with 
topographic map derived wetlands; (a) areas of wetlands: presence of stream width helps derive 
areas of wetlands; and (b) Land use\ land cover (LULC) characterization of wetlands: availability 
of data in multiple bands will help derive land use\ land cover (LULC) characteristics of the 
wetlands. 
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Table 5. Performances of Landsat ETM+ in comparison with topographic maps in 
delineating wetlands. Stream density (km\km2) and stream frequency (# /km2) delineated using 
semi-automated techniques on Landsat ETM+ and topographic maps.  

 
 

 

Figure 9. Comparison of wetlands delineated using Landsat ETM+ vs. topographic map. 
Illustration of the wetlands delineated using 1:50,000 topographic map overlaid on wetlands 
delineated using Landsat ETM+ through semi-automated process.  

Wetland distribution and areas of the Limpopo River basin 

The spatial distribution of the wetland areas are shown in Figure 10. The total area of wetlands 
delineated within the basin was 5.2 million hectares (Mha) which accounts for 12.5 percent of the 
total basin area of 41.5 million hectares. In contrast, the World Resources Institute (2004) 
reported Limpopo wetland areas to be only 3 percent. This is because the WRI study only 
accounts for large flood plains as wetlands. This is often the problem with most wetland mapping 
and inventory studies. Indeed, the overwhelming proportion of the wetlands are along the lower 
order streams (see Figures 10) that are only visible from high or very high resolution imagery. 
The wetlands boundaries mapped in this study is comprehensive that includes the following 
categories: (a) seasonal and perennial, (b) large flood plains, (c) small inland valleys along the 
lower order streams, (d) pans or natural depressions, and (e) human made irrigation systems.  

Data used 
Stream 

frequency 
Stream 
density 

Area of 
wetlands 

 (# /km2) (km\km2) (km2) 

Landsat ETM+  0.58 0.42 71.1 

Topographic maps of 1:250,000 scale 0.62 0.31 Not possible 

Topographic maps of 1:50,000 scale 1.03 1.2 Not possible 
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Figure 10. Wetlands of the Limpopo river basins. The wetlands of the Limpopo river basin 
delineated using the semi-automated approach described in this paper. Of the 41.5 Mha basin 
area 12.5 % (5.2 Mha) was wetland area. 

Distribution of wetlands among the four countries varied significantly (Table 6) with: (A) low 
percentages for Zimbabwe (3.8 percent of the total basin area within the Country) and Botswana 
(4.2 percent)- both of which are upstreams of the basin; (B) Moderate percentages for South 
Africa (8.9 percent) which has most of the middle reaches of the basin; and (C) High percentage 
for Mozambique (24.7 percent) which is in the lower reaches of the basin.  

Table 6. Distribution of wetland land extents among four countries within the Limpopo 
River basin. 
 

Country Basin Area within 
the country 

(Mha) 

Area of 
wetlands 

(Mha) 

Wetland area as a % of 
total basin area within each 

country (percent) 
Botswana  8.0 0.8   4.2 
Mozambique  8.8 2.1 24.7 
South Africa 18.6 1.7   8.9 
Zimbabwe   6.1 0.6  3.8 
Total 41.5 5.2 12.5  
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The lower Limpopo flood plain is characterized almost entirely by flat terrain where most of the 
areas measuring 100m below mean sea level (INGC et al., 2003). These topographic features as 
well as the hydrological conditions have made the soils to hold much moisture throughout the 
year. There are numerous wetlands which are inundated during rainy seasons. The net basin 
wetland areas are 12.5 percent. In an earlier study for West Africa, Thenkabail et al. (2000b, 
1996, 1995) showed the wetland areas varied between 9 to 18 percent.  

Accuracy of wetland delineation 

The accuracy of wetland delineation with the use of above semi-automated approaches was 
assessed based on ground truth data. The overall level of accuracy reported for wetland 
delineation was 86.4 percent; with an additional 7.7 percent of ground truth points falling within 1 
pixel (30 m) of wetland area (Table 7). In automated and other methods of wetland delineation, 
Sader et al. (1995) have shown that the spectral overlap between wetland and upland cover 
types is a problem frequently identified in the application of remote sensing techniques to wetland 
environments. The use of spectral enhancement techniques as well as with the use of human 
interpretations during the process of screen digitizing, the problem of spectral overlap among 
wetland and non-wetland cover types was minimized to a great extent. Hence a high level of 
accuracy could be achieved for wetland delineation even for such large river basin. 

Table 7. Accuracy of wetland delineation using semi-automated methods.  
 Accuracy1 (%) 
Completely within digitized boundaries 86.4 
Just outside (within 30 m) the digitized boundaries   7.7 
completely outside the digitized boundaries   5.9 
Total 100 
1Percent of wetland ground-truth points falling on delineated wetlands 

Classes of wetlands and their spatial distribution 

The delineated wetland dataset was classified using unsupervised ISOCLASS classification 
algorithm and classes were identified and labeled as illustrated in Figure 6 and Figure 7a through 
9d. Hierarchical classification system was adopted and classes at 4 different aggregation levels 
(24, 15, 8, and 4 classes) were identified (Table 8) and illustrated (e.g., Figure 11 for class 8 and 
Figure 12 for class 4). The majority of the wetlands within the basin are covered by the natural 
vegetations (see Figures 11 and 12 and Table 8). The highest percentage was reported for the 
grassland dominant wetlands which accounted for 33.8 percent of the total wetland area within 
the basin followed by the riparian natural vegetations dominant wetlands (35.9 percent) and 
natural vegetation-farmland mixed land cover dominant wetlands (25.3 percent). It is obvious that 
overwhelming proportion of the wetlands remain unexploited for agriculture. As observed during 
the ground truth mission, these wetlands have very high potential for agricultural expansion given 
the richness of soils and moisture availability. Nearly 5 percent of the total wetland area within the 
basin reported to be the water body dominant wetlands. This category however, includes most of 
the inland water bodies that include inland lakes, ponds, reservoirs, perennial streams, fresh 
water and salt water pans, other perennial water bodies, marshy lands, and peat lands.  
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Table 8. Classes of wetlands based on hierarchical classification system. The land use\land cover (LULC) characteristics of the Limpopo wetlands reported at 4 levels 
of aggregation. 
 

Level 1:  24 Classes Level II:  15 Classes Level III:  8 Classes Level IV:  4 Classes 

Class 
# 

Class Name 
Land 

extent
(km2)

Class 
# 

Class Name 
Land 
extent 
(km2) 

Class 
# 

Class Name 
Land 
extent 
(km2) 

Class 
# 

Class Name 
Land 
extent 
(km2) 

1 wetlands, waterbodies dominant 1699 

2 
Wetlands, Riparian zone -water 
(shallow) significant-mixed with 
grass & shrubs 

919 
1 

Wetlands, water 
bodies dominant 

2618 1 
Wetlands, water 
bodies dominant 

2618 1 
Wetlands, water 
bodies dominant 

2618 

3 
Wetlands, grasslands in moist flood 
plains covered with vigorous garss 
mixed with water bodies 

4789 

4 
Wetlands,grass dominant riparian 
natural vegetation-water-significant 

4381 

2 

Wetlands, seasonally 
flooded grass lands/ 
grass dominant 
vegetation cover in 
riparian zone 

9170 

5 
Wetlands, grasslands in moist flood 
plain covered with vigorous garss  

520 3 
Wetlands,grasslands -
moist/wet low lands -
Vigorous grass cover 

520 

6 
Wetlands, riparian natural 
vegetation -grass dominant very low 
NDVI 

522 4 

Wetlands, grasslands 
covered with less 
vigorous grass -low 
NDVI 

522 

2 
Wetlands, 
grasslands 
dominant 

10211

7 

Wetlands, grass lands dominant - 
short grass, less vigorous and 
disturbed natural vegetations in 
riparian zone 

797 

14 
Wetlands, grasslands-riparian 
natural vegetations-farmlands mixed 

2521 

8 

Wetlands, Riparian 
vegetation (Grass 
dominant, less 
vigorous & dry) with 
some farming 

3318 

17 Wetlands, riparian natural 
vegetation-grass-shrub dominant, V. 
high NDVI 

382 11 Wetlands, riparian 
natural vegetation-
grass-shrub dominant, 

382 

7 
Wetlands, grass 
dominant natural 
vegetations 

6261 

2 
Wetlands, grass 
dominant 

16472 
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V. high NDVI 

18 
Wetlands,riparain natural vegetation 
-grass dominant-moderate 
vegetation cover 

2561 12 

Wetlands,riparain 
natural vegetation -
grass dominant-
moderate vegetation 
cover 

2561 

8 
Wetlands, grasslands in moist flood 
plain with significant farming and 
water bodies 

1864 

9 
Wetlands, grasslands in moist flood 
plains with significant farming 

1093 

10 
Wetlands, farmlands mixed with 
grasslands in moist flood plains 

1424 

5 

Wetlands, Grass lands 
(moist) farmlands 
significant (Low 
vegetation cover) 

4381 

11 
Wetlands, Grass lands (moist) 
farmlands significant (High 
vegetation cover) 

2701 6 

Wetlands, Grass lands 
(moist) farmlands 
significant (High 
vegetation cover) 

2701 

3 

Wetlands -
grasslands-
Farmlands-
Significant 

7083 

15 
Wetlands, farmlands (less intensive 
farming), open lands/ fallow 
farmlands dominant 

1605 9 

Wetlands, Farmlands 
significant (fallow/ 
barren) mixed with 
short grass -very low 
vegetation cover 

1605 

16 
Wetlands, farmlands (Intensive 
farming) 

698 10 
Wetlands, Farmlands 
significant (High Veg 
Cover) 

698 

5 
Wetlands-natural 
vegetation 
farmlands mixed 

2303 

3 

Wetlands, 
farmlands-natural 
vegetations 
mixed 

9386 

12 
Wetlands, Riparian vegetation-
grass, shrubs & farmlands mixed 
(high vegetation) 

3783 

13 
Wetlands, Riparian vegetation-less 
vigorous & sparse -grass & shrubs 
dominant with some farming 

1475 

7 

Wetlands, Riparian 
vegetation (grass, 
shrubs & trees mixed) 
with some farming 

5258 4 

Wetlands, Riparian 
vegetation (grass, 
shrubs & trees 
mixed) with some 
farming 

5258 

4 
Wetlands, 
riparian natural 
vegetations 

23365 
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19 
Wetlands, Riparian natural 
vegetation -sparse vegetation cover 

5302 

20 
Wetlands, Riparian natural 
vegetation -barelands significant 

5775 
13 

Wetlands,riparain 
zone covered with 
sparse cover of trees, 
shrubs and grass-very 
low vegetation cover 

11077 6 
Wetlands, riparian 
zone, sprase veg 
cover 

11077

21 
Wetlands, Riparian natural 
vegetation minimum vegetation 
cover 

1807 

22 
Wetlands,  dry streambed; sand 
beds dominant with few vegetation 
cover 

1144 

14 
Wetlands, riparian 
natural vegetation, 
open lands dominant 

2951 

23 
Wetlands,  moist streambed; sand 
beds/ rocks/ open lands dominant 
with minimum vegetation cover 

2520 

24 
Wetlands,  dry streambed; sand 
beds/ rocks/ open lands dominant 

1559 

15 
Wetlands, stream 
beds, open lands, 
sand, rocks dominant 

4079 

8 
Wetlands-riparian 
zone-minimum 
vegetation cover 

7030 

Total Area 51840 Total Area 51840 Total Area 51840 Total Area 51840 
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Figure 11. Dis-aggregated wetland classes of the Limpopo wetlands. The wetland classes 
are mapped at different levels. Illustrated here is a 8-class classes. 
 

 
 
Figure 12. Aggregated wetland classes of the Limpopo wetlands – Four (4) aggregated 
wetland classes. 
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4.7 Accuracies and errors of Wetland Classification 

Accuracy assessment was done based on ground truth points for different levels of wetland class 
maps. The accuracies and errors for the most aggregated 4 class map are reported in Table 9. 
The overall accuracy was 82 percent (khat = 0.80)   with errors of omission not exceeding 21 
percent and errors of commission not exceeding 13 percent.  
 
Table 9. Accuracies and errors of wetland classes for level IV wetland classes. 
 

Percentage of ground-truth observations of four 
categories classified in to each LULC category Land Use/ Land Cover 

(LULC) category 
C1 C2 C3 C4 

Errors of 
Commission2 (%) 

Water-body dominant 
(C1) 87.5 2.4 0.0 0.0 1.0 
Grassland dominant 
(C2) 8.3 79.8 13.3 12.7 12.5 
Farmland-natural 
vegetation  mixed (C3) 4.2 10.7 80.0 7.0 8.6 
Riparian vegetation 
(C4) 0.0 7.1 6.7 80.3 6.0 

Errors of omission1 (%) 12.5 20.2 20.0 19.7 
 

Overall mapping accuracy:  82%3 
Khat = 0.80 
1Errors of omission is the percentage of ground-truth observations of each LULC category 
omitted in the respective LULC class of the classified map 
2Errors of commission is the percentage of ground-truth observations of other LULC categories 
included in the respective LULC category in the classified map. 
3Overall mapping accuracy is the total percentage of ground-truth observations accurately 
mapped in the classified map. 

For the 8-class map (results not presented) the overall accuracy was 71 percent with errors of 
omission not exceeding 21 percent and errors of commission not exceeding 12 percent. The 14 
and the 24 class maps have lower accuracies and higher errors. However, most of the classes 
spectrally mix within classes. For example,, classes 3, 4, and 5 mix amongst themselves. Madra 
(2005) used similar approach for classification of wetlands within lower Limpopo flood plain within 
Gaza province of Mozambique and reported an overall accuracy of 75% at more specific level of 
classification (8 classes). Accuracies can always be raised if the focus of the study is a small area 
with use of multiple images. But the challenge is to achieve high levels of accuracy over large 
areas through innovative methods. 

5.0 Conclusions 
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The study investigated the automated and the semi-automated methods and protocols for 
delineating and mapping wetlands over very large areas using Landsat ETM+ and SRTM data. 
None of the automated approaches were able to delineate wetlands with reasonable accuracies.  

Semi-automated methods provided high levels of accuracies in delineating and classifying 
wetlands. The semi-automated methods consisted of:  

• image enhancements; 

• image display techniques; and  

• Digitizing of wetland boundaries using various enhancements and displays.  

The best results in highlighting wetlands from non-wetlands were obtained when the images were 
enhanced using ratios and displaying the enhanced images in RGB false color composite (FCC) 
combinations of:  

(a) NIR/SWIR2, NIR/red, NIR/green;  

(b) NIR, Red, SWIR1; and  

(c) red, green, blue. 

Where, Landsat ETM+ band 2 = green; band 3= red; band 4 = NIR, band 5 = SWIR 1, and band 
7 = SWIR 2. 

In addition, the SRTM slope threshold of < 1 percent was found to be very useful in delineating 
higher-order (e.g., floodplain) wetland boundaries. 

The methods were evaluated in the Limpopo river basin (41.5 million hectares) which is spread 
across 4 countries in Southern Africa. The automated methods had poor accuracies and high 
errors of omissions and\or commissions. The semi-automated methods determined the wetland 
areas of Limpopo to be 12.5 percent of the total basin area and were mapped with an accuracy of 
86.4 percent with other 7.7 percent mapped within a pixel of where wetland ought to be. The 
distribution of wetlands varied widely: low percentages along the upstreams of the basins with 3.8 
percent in Zimbabwe and 4.2 percent in Botswana; moderate percentages along the middle of the 
basin with 8.9 percent in South Africa; and a high percentage in the mouth of the basin where the 
river drains to the Indian Ocean with 24.7 percent in Mozambique.   

Hierarchical classification system was used to classify wetlands into different aggregation level. 
Good accuracies were obtained for the 4-class and 8-class maps. The dominant classes were: 
(a) grasslands (33.8 percent), (b) riparian vegetation (35.9 percent), (c) farmlands and natural 
vegetation mosaic (25.3 percent), and (d) water body and marshland wetlands (5 percent). The 
overall accuracy of 4-class wetland classification was high (82 percent) with errors of omission 
less than 20 percent and the errors of commissions less than 12 percent. For 8-classes the 
accuracy was 71 percent and errors of omission 21 percent and errors of commission 12 percent. 
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The feasibility for accurately and rapidly delineating the wetland boundaries of large river basins 
and classifying them, with good accuracies, using Landsat ETM+ data and SRTM data through 
semi-automated techniques has been demonstrated. The same approach and methods can be 
used to map wetlands of the entire World using Landsat ETM+ and SRTM data.  
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