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A B S T R A C T   

Numbers and sizes of photovoltaic solar power plants have grown unprecedentedly over the last few years in 
China, which aims to achieve a carbon emission peak by 2030 and carbon neutrality by 2060. Thus, timely and 
accurate monitoring of photovoltaic solar power plants is crucial to the design and management of renewable 
electricity systems in China. Random forest algorithm has been used to map photovoltaic solar power plants at 
multiple scales, however, it always causes several salt-and-pepper noises, limiting its application at larger spatial 
scales. Here we first develop a photovoltaic solar power plant mapping method through integrating time series 
Landsat imagery, random forest, and morphological characteristics. Then we apply this method in Gansu 
Province, which has abundant solar and wind energy resources and provide large amounts of potential lands for 
photovoltaic development, and generate the annual photovoltaic maps from 2015 to 2020. We further analyze 
the spatial-temporal dynamics of sizes and areas of photovoltaic solar power plants and major land cover con-
version of expansive photovoltaic regions. Finally, we discuss the reliability, uncertainties, implications, and 
future development of our improved methods. We find our photovoltaic mapping method can remove most of 
salt-and-pepper noises effectively, and the resultant maps in Gansu for 2020 have very high accuracies with 
user’s and producer’s accuracies of 97.57% and 99.22%, respectively. There are 165.29 km2 photovoltaic solar 
power plants in Gansu for 2020, and most of which are located in the northwestern Gansu. In addition, the 
photovoltaic with patch size > 1 km2 and ≤ 2 km2 (53.4 km2, 32.3%) has largest patch number (39, 15.7%). The 
improved photovoltaic mapping methods and further analysis in this study provide critical information for ac-
curate and automatic classification of photovoltaic solar power plants in the future, as well as the environmental 
and sustainable development of solar energy in China.   

1. Introduction 

Global energy demand is increasing to fulfill the needs of the growing 
human population as fossil fuel consumption has increased significantly 
over the past half-century, around eight-fold since 1950, and roughly 
doubling since 1980, leading to global warming and creating problems 

related to climate change (Aryal et al., 2021; Ritchie et al., 2022). 
Photovoltaic (PV) technology is widely accepted as one of practical so-
lutions to climate change and environmental pollution due to the 
burning of fossil fuels (Creutzig et al., 2017; Jiang et al., 2020), and is 
believed as one crucial approach to the achievement of the United Na-
tions (UN) Sustainable Development Goals (SDGs) (Kruitwagen et al., 
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2021; Xia et al., 2022a). Globally, the capacity of PV solar power gen-
eration has grown by 41% per year since 2009, and increased to 423 GW 
(GW) at the end of 2018, among which 100 GW was newly installed in 
2018, contributing 55% of new renewable energy capacity (Dunnett 
et al., 2020; Kruitwagen et al., 2021). Furthermore, 4240 GW of solar PV 
is projected to be deployed by 2040 (Kruitwagen et al., 2021). 

China is the world’s largest carbon emission economy, and a high 
proportion of its electricity is still generated from fossil fuel combustion, 
which contributes to more than 40% of the national carbon emissions 
(Jiang et al., 2020; Wei et al., 2020). Since 2007, China has spent great 
efforts in developing the PV industry to transform its energy structure, 
and its total installed PV capacity increased from 100 MW in 2007 to 
205,000 MW in 2019, with a compound annual growth rate of 79.8% 
(Dong et al., 2020). Synchronously, China’s carbon emission intensity 
decreased by 48.1% compared with that in 2005, achieving the reduced 
carbon intensity target of 40–45% by 2020 that proposed during the 
2009 Copenhagen Climate Change Conference (Chen et al., 2022). As 
China aims to achieve a carbon emission peak by 2030 and carbon 
neutrality by 2060, PV solar power generation is expected to keep 
growing rapidly across China (Lu et al., 2021; Mallapaty, 2020). 

However, the PV solar cells might also have potential environmental 
and ecological impacts, such as, the changes in albedo and land use and 
land cover, which may give feedback to local climate changes (Stamford 
and Azapagic, 2018; Washington and Meehl, 1993), the habitat and 
biodiversity loss under the PV system during manufacturing (Hastik 
et al., 2015; Holland et al., 2019; Turney and Fthenakis, 2011). Thus, 
timely, automated, and accurate monitoring of PV solar power plants is 
crucial to the design, operation, and management of increasingly 
renewable electricity systems in China, as well as the assessment of so-
cial and ecological impacts (e.g., biodiversity, ecological functions) of 
large-scale PV deployment (Dunnett et al., 2020; Xia et al., 2022a). 

Fieldwork and bottom-up reporting are traditional methods for 
mapping and tracking PV solar power plants (Jiang et al., 2021). 
However, their unacceptable costs in terms of time and efforts and lack 
of geospatial information and precision restrict their widespread use at 
large spatial scales (Jiang et al. 2020, 2021). With the advances of 
spatial-temporal resolutions of sensors, satellite-based remote sensing 
provides images to track land cover changes in near real-time at multiple 
scales and resolutions (Hou et al., 2022; Huang et al., 2022; Tao et al., 
2023; Wang et al. 2020a, 2020b; Yang et al., 2022). Visual interpreta-
tion has been widely used in previous studies for mapping PV solar 
power plants; however, it is often labor-intensive, time consuming, and 
difficult to be extended to large regions at non-acquisition times (Wang 
et al. 2020a, 2020b). As the increase in freely available time series 
remote sensing data, machine learning method (e.g., random forest) or 
objected-oriented analysis method have been the most popular methods 
for mapping and tracking PV solar power plants at the global (Dunnett 
et al., 2020; Kruitwagen et al., 2021), national (Xia et al., 2022a; Zhang 
et al., 2022), or regional scales (Jiang et al., 2021; Tao et al., 2023). 

Random Forest (RF) algorithm was developed by Breiman (2001), 
and has much more advantages than other machine learning classifiers, 
such as nonlinear mining capabilities, overfitting prevention, fast 
training, and quantitative description of the contribution of variables 
(Phalke et al., 2020; Zhou et al., 2020). However, in pixel-based RF 
classification, sudden disturbances in the image signal and different land 
covers with the same spectrum or the same land cover with a different 
spectrum can cause salt-and-pepper noises (Zhang et al., 2022). 
Currently, the common method to remove these noises is visual inter-
pretation (Xia et al. 2022a, 2022b; Zhang et al., 2022), but it is too costly 
in time and effort to be applied at larger spatial scales. Thus, in light of 
the above difficulties, how to monitor PV solar power plants using 
random forests from time-series satellite images with fewer noises re-
quires further research. 

Gansu Province, located in the northwest of China, has abundant 
solar and wind energy resources, and is one of the earliest provinces to 
study and develop solar power plants in China. The installed PV capacity 

increased to 5060 MW in 2014, ranking first in China (Tian and Xue, 
2016). Furthermore, the desertified land area of Gansu Province is 
~192,100 km2, accounting for 45.12% of the province’s total land area 
and 18% of China’s total desertified land area, therefore providing large 
amounts of potential land for PV development (Zhou and Li, 2022). 
Thus, it is an ideal region to develop high-resolution mapping algo-
rithms of PV and analyze the spatial-temporal changes of PV solar power 
plants. 

In this study, we select Gansu Province as study area to (1) develop a 
basic approach to identifying PV solar power plants based on time-series 
Landsat, random forest machine learning method, and the morpholog-
ical characteristics of PV; (2) generate the detailed and accurate PV 
maps of Gansu Province from 2015 to 2020; (3) evaluate the accuracy of 
resultant PV maps; (4) analyze the spatial distribution and temporal 
dynamics of PV from 2015 to 2020 in Gansu; (5) investigate the major 
land cover conversions in those expansive PV regions; and (6) discuss 
the reliability, uncertainties, implications, and future development of PV 
mapping methods. 

2. Materials and methods 

2.1. Study area 

The Gansu Province, which has 14 cities, is located at the intersec-
tion of three main plateaus of China (i.e., the Loess Plateau, Qinghai- 
Tibet Plateau, and Inner Mongolia Plateau), with a total area of 45.59 
× 104 km2 (Wang et al., 2022a) and a wide range of elevations ranging 
from 600 to 5600 m above sea level (Liu et al., 2020) (Fig. 1a). The 
uneven precipitation, which decreases from southeast to northwest with 
annual means ranging from 40 to 800 mm, results in the desert-oasis 
landscape in the western Hexi Corridor due to dry climate, scarce pre-
cipitation, and strong evapotranspiration and complex landform types 
(dominates by mountains and hills) and rich forest and grassland re-
sources in the eastern part (including the Gannan Plateau and part of the 
Loess Plateau) in Gansu (Wang et al., 2022a; Wen et al., 2017). 

2.2. Datasets 

2.2.1. Landsat data 
We use time series Landsat surface reflectance (SR) datasets as sat-

ellite resources to map PV solar power plants in this study. Landsat ac-
quires images at 16-day revisit cycle and 30-m spatial resolution, and all 
images have undergone necessary pre-processing in Google Earth En-
gine (GEE) cloud-based geospatial processing platform, including 
radiometric calibration and atmospheric correction (Wang et al. 2022b, 
2023). We also use the quality assurance band that is generated by the 
CFMask algorithm to identify bad quality observations, including clouds 
and cloud shadows. As the images from September to December in a year 
usually have fewer clouds, cloud shadows, and less green vegetation 
cover, and have been used to map PV solar power plants at multiple 
scales (Xia et al., 2022a; Zhang et al., 2022), here we use all the available 
Landsat imagery from September to December in GEE of Gansu Province 
to identify PV solar power plants in 2015 and 2020. However, we find 
that Landsat imagery has very limited number of good-quality obser-
vations from September to December in 2020 (Fig. 1b) as over 17% 
pixels of Gansu have fewer than 4 good-quality observations and over 
43% pixels have fewer than 8 good-quality observations, especially 
those pixels in southeastern Gansu. In order to avoid the effects of 
limited Landsat data on PV mapping, we integrate the Landsat images 
within 3-year time period to map the PV map of 2020 (2019–2021) and 
map of 2015 (2014–2016). This approach enables us to have enough 
numbers of good-quality observations in each 3-year period as over 93% 
pixels have more than 12 good-quality observations, and only 3.5% 
pixels have fewer than 4 good-quality observations (Fig. 1c). Such data 
compositing approach has been widely used to map global and regional 
land use and land covers, such as coastal wetlands (Wang et al., 2021) 
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Fig. 1. Study area. (a) Location of Gansu Province in China and the distribution of digital elevation model (DEM) in Gansu; (b) Spatial distribution of good-quality 
observation numbers of Landsat imagery in 2020; (c) Spatial distribution of good-quality observation numbers of Landsat imagery during 2019–2021. 

Fig. 2. Workflow of this study. It includes three parts: (1) generation of photovoltaic (PV) solar power plant maps using time series Landsat imagery, random forest 
algorithm, and Google Earth Engine (GEE) platform; (2) post-processing for removing noises based on patch areas and morphological characteristics; (3) accuracy 
assessment of resultant PV maps; and (4) further analyses, including spatial-temporal dynamics of PV and land use conversion for PV solar power plants. 
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and tidal flats (Murray et al. 2019, 2022). 

2.2.2. Published PV maps 
Zhang et al. (2022) published the PV power plant map in 2020 of 

China using Landsat in autumn season and random forest method, and 
released PV solar power plant map and the training dataset in 2020. 
Here we acquire them for inter-comparison and improvement of our 
training sample dataset. 

2.2.3. Land use and land cover map in 2015 
The 30-m land use and land cover (LULC) map of Gansu Province for 

2015 (LULC2015) is acquired from the Data Center for Resources and 
Environmental Sciences, Chinese Academy of Sciences (https://www. 
resdc.cn/DOI/DOI.aspx?DOIID=54) to analyze the major land cover 
changes in those expansive PV regions during 2015–2020 (Fig. S1). 

2.3. Methods 

In this study, we use the pixel-based random forest (RF) algorithm to 
map the PV solar power plants in Gansu Province in the GEE platform for 
2015 and 2020, and analyze their spatial-temporal dynamics. The 
workflow of this study is divided into four parts (Fig. 2): (1) generation 
of PV power plant maps by using time series Landsat imagery, RF al-
gorithm, and GEE platform; (2) post-processing for removing noises 
based on patch size and morphological characteristics; (3) accuracy 
assessment of resultant PV maps, and (4) further analyses, including 
spatial-temporal dynamics of PV, and land use conversion for PV solar 
power plants. 

2.3.1. Sample data for algorithm training and map accuracy assessment 
The locations and numbers of algorithm-training samples are crucial 

for the accuracy and stability of RF classification (Zhou et al., 2020). 
Here we primarily collect published PV and Non-PV training point 
released by Zhang et al. (2022) based on the Landsat-OLI imagery during 
autumn season as our training samples. But we find that it does not cover 
all the PV solar power plant types in Gansu, especially in southeastern 
Gansu, where PV solar power plants are rarely labeled (Fig. 3a, j), and 
thus we further enrich the training dataset by manually selecting and 
labeling PV solar power plants to ensure that the samples can be evenly 
distributed in Gansu Province. Finally, 2142 PV sample points and 3013 

non-PV sample points are collected in this study, and 70% of them are 
used to train the RF classifier and the rest of them are used to validate 
the final PV map. 

2.3.2. Random forest classification 
The first step for RF classification is to determine input variables. In 

this study, we collect three major kinds of input variables, including six 
original Landsat bands (B1-B6, and B7), four vegetation and water 
indices (NDVI, EVI, LSWI, and mNDWI, Eqs (1)–(4)), and four texture 
indices (homogeneity, correlation, contrast, and entropy). Homogeneity 
is a measurement of lack of variability or the amount of local similarity 
in the scene; correlation is a measure of grey level linear dependencies in 
the image, and high correlation values denote a linear relationship be-
tween the grey levels of pixel pairs; contrast is a measure of the amount 
of local variation in pixel values between neighboring pixels, and it is 
high for regions exhibiting large local variations and is the opposite of 
homogeneity; entropy is a measure of the degree of disorder in an image, 
and larger value occurs when the image is texturally non-uniform or 
heterogeneous (Franklin et al., 1996; Zhou et al., 2017). All these four 
texture indices can be calculated using the ee.Image.glcmTexture algo-
rithm provided by GEE team (https://developers.google.com/earth-e 
ngine/apidocs/ee-image-glcmtexture). Then, we choose the maximum, 
medium, and minimum of each variable to train the RF classifier. In 
order to reduce the effects of unmasked cloud and poor-quality obser-
vations, we calculate the 90th percentile, 50th percentile, and 10th 
percentile of each variable from September to December within 3-year 
time period as the input variable of RF classifier. 

The next step for the RF classifier is to set the number of trees (Ntree), 
which is the key parameter in the RF classifier as larger Ntree contrib-
utes to higher accuracy but longer run time and possible supersatura-
tion. In this study, we test the sensitivity of different Ntree during 
10–500, and find that the accuracy is kept stable when Ntree is greater 
than 350 (Fig. 4a). Thus, the number of Ntree is set to 350 in the RF 
classifier. Furthermore, we calculate the importance of each input var-
iable (Fig. S2), and the results show that the original bands and spectral 
indices have greater importance than texture information. We also set 
the rest of the parameters of the RF classifier at GEE’s default following 
Zhang’s study (Zhang et al., 2022) for better inter-comparison. 

NDVI =
ρnir − ρred

ρnir + ρred
(1) 

Fig. 3. Spatial distribution of training points of photovoltaic (PV) and non-PV solar power plants. (a) Spatial distribution of training points of PV and non-PV; (b–j) 
Images from Landsat-8, Google Earth, and Landsat with training points of PV in three Zoom-views. The Landsat-8 images are acquired in 2020-07-27 (Zoom1), 2020- 
08-18 (Zoom2), and 2020-07-19 (Zoom3), respectively. 
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Fig. 4. Learning curve of random forest classifier (a) and the distribution of ratio (area/perimeter) values within PV polygons (b).  

Fig. 5. Post processing for removing noises while mapping PV. (a) Preliminary PV maps with noises in 2020; (b–d) PV maps after removing small-size noises by using 
the “connectedPixelCount()” function in GEE platform. 
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EVI = 2.5 ×
ρnir − ρred

ρnir + 6 × ρred − 7.5 × ρblue + 1
(2)  

LSWI =
ρnir − ρswir

ρgreen + ρswir
(3)  

mNDWI =
ρgreen − ρswir

ρgreen + ρswir
(4)  

where ρblue, ρgreen, ρred, ρnir, and ρswir are the surface reflectance values of 
blue, green, red, near-infrared, and shortwave infrared bands in Landsat 
images. 

2.3.3. Post-processing for removing noises based on morphological 
characteristics 

By using the RF classification, we first generate the preliminary PV 
maps in 2015 and 2020 of Gansu Province. Then we filter continuous 
patches of PV that pixels continuously connect in at least one of eight 
directions to reduce the salt-and-pepper noise with small sizes by using 
the “connectedPixelCount()” function in GEE (Fig. 5). In addition, we 
also find that there are some large nose patches with irregular charac-
teristics after removing small patches, here we calculate the ratio of 
patch area to patch perimeter to represent the morphological charac-
teristics (Eq. (5)), and explore its frequency distribution of all the PV 
training samples (Fig. 4b). The results show that almost all the PV 
samples have ratio > 24, and thus we use the criteria of ratio ≤ 24 to 
remove those remaining irregular noise patches. Then, we generate the 
final PV maps of Gansu Province in 2015 and 2020. 

ratio=
Area

Perimeter
(5)  

2.4. Accuracy assessment of the resultant PV maps 

Stratified random sampling approach, along with very-high spatial 
resolution images from Google Earth Pro, is the most widely used and 
robust approach in accuracy assessment of land cover classification 
(Murray et al., 2019; Pekel et al., 2016; Wang et al., 2020b), by which 
we validate the PV map in 2020. In order to calculate the user’s accuracy 
(measure of commission error) of the resultant map in this study, for 
each 0.05 by 0.05 grid cell, two points are generated randomly within 
the final map of Gansu Province in 2020 acquired using the 
above-mentioned improved algorithms, and a total of 288 random 
points are finally selected. Each point is checked and interpreted visually 
in Google Earth imagery determining its land cover types (PV or 
non-PV). We use the 30% of training dataset (643 points) introduced in 
the Section 2.3.1 to calculate the producers’ accuracy (measure of 
omission error) (Table 1). 

2.5. Inter-comparison of PV solar power plant maps 

We also acquire the published PV map in the same year from Zhang 
et al. (2022) for inter-comparison. They released the PV power plant 
map in 2020 of China using Landsat in autumn season and random forest 
method. Thus, we compare the PV solar power plan areas from our study 
with Zhang’s results. 

2.6. Area calculation of different land covers from the expansion of PV 
solar power plants 

We first extract the 30-m land cover pixels for 2015 within the PV 
map in Gansu Province and different cities. Then we count the numbers 
of 30-m land cover pixels and calculate the areas (pixel number × 900 
m2) and percentages of different land cover types in Gansu and different 
cities. 

3. Results 

3.1. Accuracy assessment of the annual PV map of Gansu in 2020 

The user’s accuracy (measure of commission error) for the PV map in 
this study is 97.57%, and the producer’s accuracy (measure of omission 
error) for the PV map is 99.22% (Table 1). The producer’s accuracy is 
smaller than the user’s accuracy because we integrate the 3-year Landsat 
images during September and December, which enables us to use many 
more Landsat image for classification and have much smaller omission 
PV polygons. The results indicate that the resultant PV maps generated 
in this study have a good agreement between mapped pixels and ground- 
referenced pixels. 

3.2. Patch numbers and sizes of PV solar power plants 

PV solar power plants are unevenly distributed across Gansu Prov-
ince in 2020. There are 248 patch numbers and 16,529 ha patch areas of 
PV solar power plants for 2020 in Gansu, and the PV with patch size > 1 
km2 and ≤ 2 km2 (40, 15.7%) has largest patch areas (53.4 km2, 32.3%) 
(Fig. 6), followed by those with patch size > 2 km2 and ≤ 3 km2 (20.7 
km2, 12.5%). However, the PV solar power plants with patch size > 0.1 
km2 and ≤ 0.2 km2 has largest patch number (44, 17.7%) (Fig. 6a). 
Furthermore, most of PV solar power plants are located in the north-
western Gansu. From the heat map, four larger PV density regions are 
found in our study, including western Jiuquan, Jiayuguan, Jinchang, 
and Tianshui (Fig. 7a). Statistical analysis for each city of Gansu shows 

Table 1 
Accuracy assessment results of PV map for 2020.   

Classified Misclassified Total Accuracy (100%) 

User’s accuracy 281 7 288 97.57 
Producer’s accuracy 638 5 643 99.22  

Fig. 6. PV solar power plants for 2020 in Gansu Province. (a) Patch numbers 
and areas (km2) of PV for 2020; (b) Percentages of patch numbers and areas of 
PV for 2020. 
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that Jiuquan has the largest PV area (5135 ha) in 2020, followed by 
Jinchang (3682 ha), Wuwei (3032 ha), Zhangye (1796 ha), and Jiayu-
guan (1423 ha) (Fig. 7b). Longnan in the southeastern Gansu has no PV 
solar power plants (0 ha), and Gannan (10 ha) and Pingliang (11 ha) also 
have much smaller PV areas than other cities. 

3.3. Temporal dynamics of PV areas in Gansu during 2015–2020 

PV solar power plants also have divergent increased areas by city in 
Gansu during 2015–2020. The spatial distribution of zoom-views dem-
onstrates the detailed expansion of PV (Fig. 8). Only 9929 ha PV are 
found by 2015 in Gansu, most of which are located in northwestern 
Gansu (Fig. 7c), indicating about 6600 ha new PV solar power plants are 
constructed during 2015–2020. Furthermore, Jiuquan (2335 ha), Jin-
chang (1102 ha), and Wuwei (1088 ha) have much larger increased area 
than other cities, and the increased PV areas in the three cities account 
for 69% of the total area in Gansu (Fig. 7d). 

3.4. Land cover change from the expansion of PV solar power plants 

The land-use change analysis shows that the newly constructed PV 
solar power plants in Gansu are mainly converted from four land cover 
types: gobi (63.9%), sparse grasslands (12.7%), other built-up lands (e. 
g., large industrial areas, and mines) (8.9%), and croplands (7.6%) 
(Fig. 9a). Different cities in Gansu also have divergent conversion pro-
portions of major land-use types (Fig. 9b). All the gobi is found to be 
converted to PV in four cities: Jiuquan (89.5%), Wuwei (76.8%), Jin-
chang (74.6%), Zhangye (48.9%), and Jiayuguan (45.5%). The 

conversion from sparse grasslands is found in almost all the cities, 
especially in Lanzhou (64.7%), Baiyin (43.0%), Jiayuguan (39.3%), and 
Zhengye (32.5%). Croplands have the largest conversion proportions in 
Dingxi (84.6%) and Linxia (70.8%). Other built-up lands are mainly 
found in four cities (Jinchang, Zhangye, Jiayuguan, and Wuwei) with 
large PV areas. Baiyin has relatively larger conversion from salina 
(26.6%) than other cities. 

4. Discussion 

4.1. Annual maps of PV solar power plants in Gansu Province 

Timely and accurate monitoring of PV solar power plants is crucial to 
design, operation, and management of increasingly renewable elec-
tricity systems and assessment of the social and ecological impacts of 
large-scale PV deployment (Dunnett et al., 2020; Xia et al. 2022a, 
2022b). Random forest algorithm has been widely used to map different 
land covers at multiple scales, such as global coastal wetlands (Murray 
et al. 2019, 2022), and national PV maps (Xia et al., 2022a; Zhang et al., 
2022). However, it always causes several salt-and-pepper noises induced 
by sudden disturbances in the image signal and different land covers 
with the same spectrum or the same land cover with a different spec-
trum, costing too much time and effort to remove them and limiting its 
application at larger spatial scales (Zhang et al., 2022). In this study, we 
find the PV solar power plants usually have regular characteristics and 
large nose patches have irregular characteristics, thus, we calculate the 
ratio of patch area to patch perimeter for representing the morpholog-
ical characteristics and removing those irregular noises automatically 

Fig. 7. PV areas (ha) for 2015 and 2020 in Gansu. (a) PV density in 2020; (b) PV area in 2020; (c) PV area in 2015; and (d) increased PV areas from 2015 to 2020.  
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Fig. 8. Expansion of PV during 2015–2020. (a) Spatial distribution of PV in 2015 and 2020, as well as four zoom-in views and increased PV areas in Gansu during 
2015–2020; (b–e) Detailed information of PV in 2015 in four zoom-in views; (f–i) Detailed information of PV in 2020 in four zoom-in views. 

Fig. 9. Land cover of expansive PV during 2015–2020 in Gansu Province. (a) Percentage of different land covers within expansive PV solar power plants in Gansu; 
(b) Percentage of different land covers within expansive PV solar power plants in different cities of Gansu. 
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and effectively. In addition, we integrate the Landsat images after 
September within 3-year time period to map the PV maps, which enables 
us to have enough numbers of good-quality observations and smaller 
omission errors of our final PV maps. Furthermore, we also enrich the 
training dataset in Gansu Province based on Zhang’s dataset (Zhang 
et al., 2022). Thus, the accurate and automatic classification method of 
PV solar power plants, and much more Landsat imagery and training 
samples contribute to the smaller commission error of our resultant PV 
maps in Gansu Province. 

The comparison between our PV map of Gansu Province and other 
studies also shows the good accuracy of our results. Our study reports 
16,529 ha PV areas, and Zhang’s study reports 17,855 ha PV in 2020 
(Zhang et al., 2022). The different input Landsat imagery, training 
dataset, and different input variables of RF classifier might explain the 
inconsistency between Zhang’s map and our study (Table 2). First, in 
terms of input image data, Zhang’s study composited the Landsat-8 
images of autumn 2020 (September to November) as Landsat re-
sources and used the whole year of 2020 (January to December) sub-
stitute in the regions where the imagery quality of autumn 2020 was 
poor. However, we use all the Landsat imagery (including Landsat-7 and 
Landsat-8) from September to December during 2019–2021 as the sat-
ellite resources to generate final PV map. Second, in terms of the training 
samples, we enrich and improve the training samples based on Zhang’s 
dataset to make sure they are evenly covered across Gansu Province 
(Fig. 3). Third, in terms of input variables, Zhang’s study used nine 
variables from the Landsat-8 SR images data, including six original 
bands and three spectral indices, as input variables, but our study col-
lects six original Landsat bands (B1-B6, and B7), four vegetation and 
water indices, and four texture indices in the RF classifier. The larger 
numbers of Landsat imagery, training samples, and input variables can 
include more PV solar power plants and more accurate PV information 
in our study (Fig. 10c and d). Furthermore, our study uses the 
morphological characteristics to remove those irregular noises auto-
matically, contributing to the much more effective PV mapping in our 
study (Table 2). However, as the PV polygons from Zhang’s study 
included several non-PV pixels around PV polygons (Fig. 10a and b), 
resulting in the overestimation of PV areas in their study. 

4.2. Sources of errors in annual PV solar power plant maps 

It has been a challenging task to generate annual maps of PV solar 
power plants at large spatial domains. Accuracy of annual PV maps is 
affected by several factors: (1) the mixture of PV and occupied land, (2) 
land cover types with similar spectral features with PV, (3) enough 
training and validation samples representing all the PV types, and (4) 
noises caused by RF classifier and limited satellite image quality. 

Complex landscapes of PV and its occupied land cove types, as well 
as those types with similar spectral features with PV pose great chal-
lenges for PV mapping. For example, some plastic-covered sheds, fac-
tory, regularly shaped factories, and biological soil crust may be 
misclassified as PV in the RF classification (Fig. S3). The numbers of 
occupied land cover types can be much larger when PV solar power 
plants are mapped at much larger spatial scales (Xia et al., 2022a), and 
thus enough training and validation samples representing all the PV 
types are of great importance to the high accuracy of final maps. 
Furthermore, some bad-quality observations (e.g., clouds, cloud 
shadows) may remain after quality filtering, which is likely to generate 
some noises in the final maps (Zhang et al., 2022). Fortunately, these 
noises usually have irregular shape and cover only a very small pro-
portion, and are removed through morphological characteristics and 
visual interpretation in our study. 

There are still some omission errors in the PV mapping algorithms. 
For Landsat images at 30-m spatial resolution, those PV panels with 
areas smaller than 30m by 30m cannot be identified and mapped. In 
addition, some PV solar power plants, which have lower density in 
mountainous areas and have non-PV land cover within a PV polygon, 
tend to be misclassified as non-PV objects (Figs. S3 and S4). For these 
reasons, the areas of PV in our study are likely to be underestimated. 

4.3. Implications and future development of PV mapping 

The RF algorithm integrating Landsat imagery and morphological 
characteristics for mapping PV solar power plants at 30-m spatial res-
olution is critical for better understanding of the detailed spatial infor-
mation of PV solar power plants, and can provide invaluable 
information for the design, operation, and management of increasingly 
renewable electricity systems. This mapping strategy can be used to (1) 
monitor the distribution and trajectory of PV at national or global scales; 
and (2) track the dynamics of PV over the last decades. However, this 
method may still have some errors when it is used in the tropical regions 
because of more frequent cloud cover and in the mountainous areas with 
considerable terrain shadows. In the future, we can integrate more op-
tical satellite data at similar spatial resolutions with Landsat data, such 
as Sentinel-2 and Worldview 3, as well as the microwave images from 
synthetic aperture radar (SAR), to enrich the good-quality observation 
numbers and generate PV maps with higher accuracy. 

In addition, the expansion of PV solar power plants can have po-
tential environmental and ecological impacts (Stamford and Azapagic, 
2018; Washington and Meehl, 1993). The most direct impact of PV 
development on the environment is the changes of albedo resulting from 
the land use changes, which can give feedback to local climate changes 
(Washington and Meehl, 1993). The manufacturing of PV solar cells also 
involves different kinds of hazardous materials during the extraction of 
solar cells, posing substantial threats to the environment at much larger 
spatial scales (Alami et al., 2020). Furthermore, the PV systems also 
have great influence on terrestrial biodiversity and ecosystem functions 
(Holland et al., 2019) through the land-use changes under the PV system 
(Hastik et al., 2015) and installation activities (e.g. vegetation clearing, 
removal of upper soil layers) (Turney and Fthenakis, 2011). Therefore, it 
is necessary to develop technologies and methodologies to better 
monitor and understand interactions between environment, wildlife, 
ecosystems, and large-scale solar systems, as well as their potential 
feedbacks to climate. It is also recommended to develop new and 
high-efficiency technologies for recycling the PV waste to reduce the 

Table 2 
Comparison of PV solar power plant maps between our study and Zhang’s study.   

Our study Zhang’s study Impact of differences 
between two studies 
on the resultant PV 
maps 

Methods for 
removing 
noises 

Ratio of patch area to 
patch perimeter to 
represent the 
morphological 
characteristics 

Visual 
interpretation 

Much more 
automatically and 
effectively in our 
study for removing 
noises 

Landsat 
dataset 

All the Landsat 
imagery from 
September to 
December during 
2019–2021 

Landsat-8 images 
of autumn 2020 

Much larger number 
of good-quality 
Landsat observations 
contributes to more 
PV information and 
accurate PV 
boundaries 

Training 
dataset 

2142 PV samples 
points and 3013 non- 
PV sample points 

2061 PV samples 
points and 3013 
non-PV sample 
points 

Larger training 
points of PV in our 
study contribute to 
PV results with 
greater accuracy 

Input 
variables 
of RF 
classifier 

Six original Landsat 
bands, four 
vegetation and water 
indices, and four 
texture indices 

Six original bands 
and three spectral 
indices 

More input variables 
in our study 
contribute to PV 
results with greater 
accuracy  
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environmental risks and sustaining the raw materials supplies in the 
future. 

5. Conclusions 

Timely and accurate monitoring of PV solar power plants is crucial to 
design, operation, and management of increasingly renewable elec-
tricity systems and assessment of the social and ecological impacts of 
large-scale PV deployment. Random forest algorithm has been widely 
used to map PV solar power plants at multiple scales, but it always 
causes several salt-and-pepper noises, limiting its application at larger 
spatial scales. In this study, we calculate the ratio of patch area to patch 
perimeter to represent the morphological characteristics, and remove 
those noises automatically and effectively. For Gansu Province as 
example, we generate the annual PV solar power plant maps through 
integrating the Landsat images after September within 3-year time 
period in 2015 and 2020. We find our PV mapping method can remove 
most of salt-and-pepper noises effectively, and the resultant maps in 
Gansu for 2020 have very high accuracies with user’s and producer’s 
accuracies of 97.57% and 99.22%, respectively. There are 16,529 ha PV 
in Gansu for 2020, and most of which are located in the northwestern 
Gansu. Jiuquan, Jinchang, and Wuwei have much larger increased areas 
than other cities during 2015–2020, and the increased PV areas in the 
three cities account for 69% of the total increased area in Gansu. The 
newly constructed PV solar power plants in Gansu are mainly converted 
from gobi. The improved PV mapping methods in this study provide 
critical approaches for accurate and automatic classification of PV solar 
power plants at larger scales, and the resultant maps can greatly enhance 

our understanding of the spatial distribution and temporal dynamics of 
PV power development, and the major land cover changes within the 
expansive PV regions in Gansu. 
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