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Gainers and losers of surface and terrestrial water
resources in China during 1989–2016
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Michael A. Menarguez5, Bangqian Chen6, Junbang Wang7, Hui Ye7, Jun Ma 1, Qiaoyan Zhong1, Bin Zhao1 &

Bo Li 1✉

Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and

terrestrial water storage (TWS) in China are critical for sustainable management of water

resources but remain very limited. Here we report annual maps of surface water bodies in

China during 1989–2016 at 30m spatial resolution. We find that SWA decreases in water-

poor northern China but increases in water-rich southern China during 1989–2016. Our

results also reveal the spatial-temporal divergence and consistency between TWS and SWA

during 2002–2016. In North China, extensive and continued losses of TWS, together with

small to moderate changes of SWA, indicate long-term water stress in the region.

Approximately 569 million people live in those areas with deceasing SWA or TWS trends in

2015. Our data set and the findings from this study could be used to support the government

and the public to address increasing challenges of water resources and security in China.
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Surface water resources are important for aquatic and ter-
restrial ecosystems, agriculture, industry, and societies
across local, national, and global scales1–3. China is the most

populous country in the world, and its gross domestic product
(GDP) has increased at an average rate of 10% for more than
20 years4. However, the sustainability of the economic growth
and environmental security of the country are increasingly
threatened by environmental degradation and resource con-
straints, particularly water resources4,5. Some parts of China have
abundant water resources, but other regions are naturally arid
and semi-arid climate and have very limited surface water
resource, such as North China4,6. Furthermore, China has fre-
quently suffered from floods and droughts7,8. Therefore, accurate
and updated information on the spatial–temporal dynamics of
surface water bodies over the past few decades across different
spatial scales are invaluable for better understanding of the roles
of surface water bodies in water security in China, but such
information has not been well documented to the public and
policy-makers, yet.

A number of surface water body data sets at moderate to coarse
spatial resolutions have been generated and used to monitor
surface water bodies, such as the downscaled GIEMS-D15 at 15
arc-s for 1993–20079, the Global Water Body data (GLOWABO)
at 0.5 arc-s resolution in 200010, the 1-km Global Lake and
Wetland Database (GLWD) in 200011, and the global monthly
surface water extent at 0.25° for 1993–200712. However, the
spatial resolutions of these data sets are not high enough (tens of
meters) to identify small inland surface water bodies13.

Satellite-based remote sensing images at high spatial resolu-
tions (tens of meters) have been widely used to map surface water
bodies14–16. After Landsat data (30-m spatial resolution) became
freely available and open access in 200817, several studies have
reported changes in surface water area (SWA) using Landsat
images in China18–22. However, some of these studies used
images for specific dates in different years for comparison18–20,
which might lead to very different results and temporal uncer-
tainties in SWA due to the strong seasonal dynamics and inter-
annual variation of surface water bodies23, and some of these
studies only focused on certain hotspots in China21,22. Further-
more, several studies have reported the area changes of only lakes,
ponds, or reservoirs13,24–26, but did not include other surface
water bodies such as rivers and streams.

Several global surface water maps have been generated by
analyzing Landsat imagery, such as the 30-m GLCF Inland Sur-
face Water data set (GIW) in 200010 and the global 90-m surface
water body map14. These maps were generated by analyzing
Landsat images acquired in specific year(s) and could hardly be
used to document annual and multi-decadal changes of surface
water bodies in China. Recently, the global surface water body
data set released by the Joint Research Centre (JRC) in 2016
reported the monthly dynamics of permanent and seasonal sur-
face water bodies at 30-m resolution from 1984 to 20152. How-
ever, the data set missed most of the surface water bodies in 1994
for China, and failed to detect the large floods in South China
during 1997–1998 (Supplementary Fig. 1), which was considered
the worst flood event in the past 40 years in South China and
resulted in an economic loss of US$20 billion7. In addition, the
JRC data set used the Landsat top-of-atmosphere reflectance data
(no atmospheric correction) as input data, which might introduce
some uncertainties into the resultant maps27. The JRC data set
used many ancillary maps and data products that may reduce the
commission error of maps, but this procedure makes the method
more complex and the resultant maps are affected by those
inaccuracies and uncertainties of the ancillary maps and data sets.

Surface water is one of the major components of the terrestrial
water storage (TWS). The global TWS is estimated to have

surface water (36.08 ± 9.89%), groundwater (37.56 ± 16.57%), soil
water (26.36 ± 7.46%), and others (vegetation water, snow, and
ice)28. The changes in SWA have substantial effects on the
dynamics of TWS29. For example, the expansion of surface water
bodies can recharge groundwater and TWS, and the shrinkage of
surface water bodies can cause a large decrease of TWS and hence
more groundwater was used27,30. Thus, quantifying the rela-
tionship between SWA and TWS could provide valuable infor-
mation about the roles of SWA and groundwater in the
spatial–temporal dynamics of TWS, and could also help us better
understand the effects of floods and droughts on water resources
and the feedbacks between surface water bodies and TWS. To
date, there have been only a few regional-scale studies in China29

and the spatial–temporal relationship between SWA and TWS at
different scales have not been quantified. Both SWA and TWS
can be affected by climate and anthropogenic activities, such as
precipitation23,27, temperature23,27, dam construction31, con-
sumptive use, and agriculture irrigation18,27. To date, there have
been many local-scale studies in China21,22,32, but the overall
information about the effects of climate and anthropogenic
activities on the spatial–temporal variation of SWA and TWS in
China has not yet been fully investigated.

Here, we first use a simple and robust surface water mapping
algorithm21,23,27,32 and all the available Landsat TM/ETM+/OLI
surface reflectance images in the Google Earth Engine (GEE)
cloud computing platform and generate annual maps of surface
water bodies in China from 1984 to 2016 at 30-m spatial reso-
lution. We report annual maps of surface water bodies in China
during 1989–2016, as Landsat image numbers during 1984–1988
in China are small (Supplementary Fig. 12c). Second, we quantify
the spatial–temporal dynamics of SWA and TWS at different
spatial scales during 1989–2016, and investigate the
spatial–temporal relationships between SWA and TWS during
2002–2016. Third, we investigate the effects of climate and
anthropogenic activities (e.g. new dam construction and reser-
voirs, water transfer projects, and human water use) on SWA and
TWS. Finally, we assess the changes in human population in
relation to changes in SWA and TWS, which identify the hotspots
where people have already experienced losses of SWA and TWS.

Results and discussion
Surface water frequency maps and surface water areas during
1989–2016. Surface water frequencies (FW) of individual pixels in
2016 varied substantially across China (Fig. 1a). There were 1444
million pixels with annual surface water frequency of FW> 0 in
2016, amounting to ~1.3 × 106 km2 maximum SWA in 2016. Based
on the surface water frequency in a year, a water pixel was defined
as year-long surface water (FW≥ 0.75), seasonal surface water (0.05
≤ FW< 0.75) or ephemeral surface water (FW< 0.05)21,23,27,32. The
year-long SWA in 2016 was ∼0.155 × 106 km2, most of which was
in large rivers, lakes, and reserves (Fig. 1a) between 80°–90°E and
110°–120°E longitude and 35°–45°N latitude in China (Supple-
mentary Fig. 2a). The seasonal and ephemeral surface water areas in
2016 were 0.571 × 106 and 0.542 × 106 km2, respectively, most of
which were located at the edge of large surface water bodies, small
ponds and streams, and flooded rice fields (Fig. 1a). The 28-year
surface water frequency of individual pixels during 1989–2016 also
had large spatial variation in China (Fig. 1b). There were 181
million pixels with 28-year surface water frequency of FW≥ 0.75,
amounting to 0.163 × 106 km2 SWA, which was 5% higher than
that in 2016. The spatial distribution of annual surface water fre-
quency map in 2016 agreed statistically well with that of 28-year
surface water frequency map (Supplementary Fig. 3), but they did
have notable differences, which might be related to climate, dam
and reservoir construction, water management, and water use.
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At the national scale, we calculated SWA in a year with various
surface water frequencies, ranging from FW> 0 to FW ≥ 0.75
(Fig. 1c). The year-long SWA (FW ≥ 0.75) in China varied from
0.135 × 106 km2 in 1996 to 0.172 × 106 km2 in 1990 over the
period of 1989–2016 (Fig. 1c), and it had the smallest standard
deviation and extremum (Supplementary Fig. 4). The year-long
SWA in China increased significantly during 1991–2016 (slope=
0.36 ± 0.33 × 103 km2 year−1, p < 0.05). The seasonal SWA
(0.05 ≤ FW < 0.75) had large increases during 1989–1998 and
then remained relatively stable during 1999–2016 (Fig. 1c). The
ephemeral SWA (0 < FW < 0.05) had large increases during
1989–2003 and then remained stable during 2004–2016 (Fig. 1c),
and the large drop in ephemeral SWA in 2012 was related to
drought33 and the smaller number of good-quality Landsat
observations (Supplementary Fig. 12b).

We compared the year-long SWA in China from our data set
with the permanent SWA from the JRC data set2 (Fig. 1c). The

JRC data set, which reported the permanent and seasonal surface
water areas at 30-m resolution in the world from 1984 to 20152,
represents significant progress in remote sensing of surface water.
In 2015, the year-long SWA in China from our data set (0.157 ×
106 km2) was moderately (12.9%) higher than the permanent
SWA from the JRC data set (0.139 × 106 km2). Over the period of
1989–2015, the year-long SWA in China in our data set agreed
well with permanent SWA from the JRC data set (slope= 0.98 ±
1.1 × 103 km2 year−1, R2= 0.99, standard error = 0.56 × 103

km2, N= 832), except 1997 and 1998 (Fig. 1c; Supplementary
Fig. 5). The permanent and seasonal surface water areas in South
China in 1997 and 1998 from the JRC data set were substantially
lower than those from our data set (Supplementary Figs. 1 and 5),
which raises concern on the use of the JRC data set for the study
of extreme flood events in South China in 19987. The differences
in SWA estimates between our data set and the JRC data set can
be attributed to the definition of surface water types (year-long vs
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permanent surface water), number of Landsat images used,
Landsat image data types (top-of-atmosphere reflectance vs
surface reflectance), training and validation data, and mapping
algorithms. The JRC data set used the Landsat top-of-atmosphere
reflectance images as data resources, many ancillary maps from
other sources as masks, and 40,124 points for accuracy
assessment of the global surface water maps. In this study, we
used Landsat surface reflectance images, and 18,397 points for
accuracy assessment of the surface water maps of China. The
accuracy assessment showed that the user’s accuracies of our
surface water body maps (year-long surface water: 99.7% (±0.12),
seasonal surface water: 98.6% (±0.47)) are similar to those from
the JRC data set, but the producer’s accuracy of seasonal surface
water of our data set (86.4% (±3.57)) was higher than that of the
JRC data set (68.4%) (Supplementary Table 4). Therefore, our
surface water data set provides improved and reliable information
about the surface water bodies in China during 1989–2016.

Spatial–temporal dynamics of year-long SWA during
1989–2016. Year-long SWA at the provincial level was unevenly
distributed across China with various interannual variations

(Fig. 2a). The mean of year-long SWA (ha) per unit land
area (km2) in a province during 1989–2016 varied between
0.16 ha km−2 in Gansu and Guizhou and 9.5 ha km−2 in Jiangsu.
The standard deviation of year-long SWA per unit land area in a
province ranged from 0.01 ha km−2 in Shanghai to 7.0 ha km−2

in Tibet. All the provinces in the Loess Plateau, the Mongolia
Plateau, the Yunan-Guizhou Plateau, and mountainous areas
(Fujian, Guangxi) had <1 ha km−2 SWA (Fig. 2a). Hebei and
Henan Provinces also had <1 ha km−2 SWA, where annual pre-
cipitation was moderate and unevenly distributed34,35 and surface
and groundwater withdrawal for public water supply and irriga-
tion substantially increased34,36. Xinjiang had <1 ha km−2 SWA
because of its arid climate and large land area. Three provinces in
Northeast China had 1–2 ha km−2 SWA. Provinces in the
Qinghai-Tibetan Plateau had 2–3 ha km−2 SWA because of its
large number of lakes and increased precipitation and glacial
meltwater20,37–39. Provinces in East China and Southeast China
are associated with the lower streams of Yellow River (Shandong),
Yangtze River (Hubei, Jiangxi, Anhui, Jiangsu), Pearl
River (Guangdong), and large lakes (Jiangxi), and thus had
2–3 ha km−2 or higher SWA. Overall, Southwest and Southeast
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Fig. 2 Interannual variations and trends of year-long surface water area during 1989–2016 by province and watershed in China. a Average year-long
surface water area (SWA) (ha) per unit land area (km2) and standard deviation at the provincial scale. b Interannual trends of year-long SWA and standard
errors at the provincial scale. c Interannual trends of year-long SWA at the watershed scale (slope value). d Interannual trends of year-long SWA at the
watershed scale. Note that in 1996 SWA values in Tianjin, Hebei, and Shandong were extremely low (b), which was partially attributed to severe drought in
the year. We analyzed the trend during 1989–2016 with 1996 data and without 1996 data, the slope values of the trend varied slightly in these three places.
Here we keep the entire time series data in the graph, but only using the data without 1996 for regression model.
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China had much more SWA than other regions, especially
North China, which is similar to the spatial patterns of annual
precipitation in China35.

The year-long SWA in a province had divergent interannual
trends during 1989–2016 in China (Fig. 2b). Fourteen provinces
had significantly increasing trends of the year-long SWA
during 1989–2016, ranging from 4.9 ± 1.5 km2 year−1 in Hebei
to 301.1 ± 140.7 km2 year−1 in Tibet. Qinghai Province ranked
the second in its increase of SWA (110.5 ± 52.4 km2 year−1).
Among the provinces under arid and semi-arid climate, Xinjiang
was the only province with significant increase of SWA (100.0 ±
68.4 km2 year−1). Increased annual precipitation and water from
melting glaciers resulted in an increase of year-long SWA in
Xinjiang Province37. In contrast, seven provinces had significantly
decreasing trends of the year-long SWA during 1989–2016,
ranging from −3.9 ± 1.7 km2 year−1 in Beijing to −84.9 ± 32.0
km2 year−1 in Inner Mongolia. The year-long SWA in Inner
Mongolia shrank from 4660.6 km2 in 1991 to 3071.4 km2 in 2009,
a loss of 1589.2 km2 or 34.1%32. The coal mining industry is one
of major reasons for the large loss of lakes in Inner Mongolia, as
the number of mining enterprises in Inner Mongolia increased
markedly from 156 in 2000 to 865 in 2010 and annual coal
production increased from 72 to 789 million tons18.

The year-long SWA in a watershed also had divergent
interannual trends during 1989–2016 (Fig. 2c, d). Sixty-one
watersheds, mostly in the western and northern Tibetan Plateau,
had significantly increasing trends of year-long SWA during
1989–2016, ranging from 0.004 ± 0.001 km2 year−1 in the
Qindanhe Watershed in Shanxi to 6.5 ± 1.1 km2 year−1 in the
Qiangtang Plateau watershed in western Tibet. Water from
melting glaciers and increased annual precipitation over the
recent decades were considered as the major driving factors for
the expansion of large amounts of lakes in the Tibetan
Plateau20,37–39. Annual precipitation increased by 20 mm and
annual mean air temperature increased by 1.6 °C from 2000 to
201440. In addition, successful water conservation through the
Chinese Ecological Protection and Construction Projects also
contributed to the increasing trends of SWA in eastern and
northern Tibetan Plateau41. Forty-four watersheds, mostly in
North China and southeastern Tibet, had significantly decreasing
trends of year-long SWA, ranging from −0.0023 ± 0.0018 km2

year−1 in the Suifenhe watershed in Heilongjiang Province to
−2.4 ± 1.3 km2 year−1 in the Kashgar River watershed in
Xinjiang. The decreasing trends of SWA in North China were
caused by the disappearance of a number of lakes, which was
driven by both natural and anthropogenic factors18,32. The
remaining 104 watersheds had no significant trends in year-long
SWA during 1989–2016. Therefore, in general, the water-rich
regions of the southeastern China were becoming richer (gainers),
whereas the water-poor regions of the northern China were
becoming poorer (losers).

Changes of TWS and SWA during 2002–2016. We assessed the
spatial–temporal dynamics of the year-long SWA and the ter-
restrial water storage (TWS) from the GRACE satellite during
2002–2016 in China. At the provincial scale, ten provinces
had significantly decreasing trends of TWS, which ranged from
−0.1 ± 0.08 cm year−1 in Gansu to −1.7 ± 0.7 cm year−1 in
Shandong (Fig. 3a). For the provinces in North China Plain,
agriculture intensification and increased groundwater use were
the major driving forces for the decreased TWS26. For example, in
Shandong Province the amount of groundwater use exceeded the
amount of groundwater recharge by the natural processes over
the past several decades, and excessive withdrawal of groundwater
resulted in the largest decreasing trend of TWS (−1.7 ± 0.7 cm

year−1) in Shandong34,42. The mass losses of glaciers in Tibet and
Xinjiang contributed considerably to the losses of TWS37,41.
Xinjiang is one of the world’s largest producers of coal, thus
groundwater use by coal mining in the area might have also
contributed to the decrease of TWS43. Qinghai had a significantly
increasing trend of TWS (Fig. 3a), which was related to the
increased SWA with high R square and small standard error
(Fig. 3b, c; Supplementary Fig. 6a, b) and other factors44. Guangxi
and Guizhou Provinces had significantly increasing trends of
TWS and SWA, where substantial vegetation recoveries driven by
various ecological engineering projects were also observed45. In
comparison, Inner Mongolia, Gansu, and Shaanxi, where major
ecological engineering projects were also implemented46, did not
have significant changes of TWS and SWA during 2002–2016,
which raises the concern on the effectiveness of these projects on
conservation of water resources in these provinces.

At the watershed scale, the interannual trends of TWS during
2002–2016 had a distinct spatial pattern (Fig. 3d). Most of the
watersheds in southern Tibet and northern China had signifi-
cantly decreasing trends of TWS (Fig. 3d), but few of them had
significantly increasing trends of SWA (Fig. 3e). The significantly
negative correlations between TWS and SWA in these watersheds
(Fig. 3f) suggest that excessive use of groundwater might have
contributed to the losses of TWS in these watersheds27. A recent
study that examined groundwater level data from 801 wells in
China had reported large decreasing trends of groundwater levels
among the wells in those regions29. Significantly positive
correlations between TWS and SWA over the watersheds in
Northern Tibet and Qinghai with high R squares suggest that
SWA contributed significantly to the TWS dynamics (Supple-
mentary Fig. 6c). A recent study reported strong relationship
between TWS and surface water storage of large lakes (>10 km2)
in the Tibetan Plateau20. Many watersheds along the Yangtze
River had significantly increasing trends of TWS (Fig. 3d). The
temporal dynamics of TWS and SWA in many watersheds in
Guangxi and Guizhou Provinces were highly correlated
(Fig. 3d–f). In total, 18 watersheds (27% of China’s total
land area) had significantly positive correlations between TWS
and SWA, and 59 watersheds (7% of China’s total land area) had
significantly negative correlations between TWS and SWA
(Fig. 3f).

We further investigated the temporal relationships between
TWS and year-long SWA within individual 0.5° gridcells
(longitude/latitude). TWS increased significantly in 1268 gridcells
(34.7% of 3654 gridcells in China), most of which were
distributed in northern Tibet, South China, and Northeast China
(Fig. 3g). TWS decreased significantly in 1408 gridcells (38.5%),
mostly in Xinjiang Province, southern and southeastern Tibet,
and the Yellow River Basin. The southeastern Tibet and Tianshan
Mountains in Xinjiang had relatively higher decrease rates than
other regions because of high retreat rates of glaciers39. Year-long
SWA increased significantly in 996 gridcells (27.3%), mostly in
northwestern Tibet, and the Sichuan, Haihe, and Songhuajiang
Basins (Fig. 3h). SWA decreased significantly in 409 gridcells
(11.2%), mostly in southeastern Tibet, the Tian Shan and Kunlun
Mountains. The substantial losses of both surface and terrestrial
water resources in southeastern Tibet clearly pose threats to water
security and economy in Southern China, as southeastern Tibet is
the headwater of many large rivers in the region. The temporal
relationships between TWS and SWA was significantly positive in
963 gridcells and negative in 268 gridcells (Fig. 3i). Overall, our
results revealed the spatial–temporal divergence and consistency
between TWS and SWA during 2002–2016 in China, and
extensive and continued losses of TWS, together with small to
moderate changes of SWA in North China, indicated long-term
water stress in the region.
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Anthropogenic and climatic drivers for TWS and SWA
dynamics. Large-scale hydrological projects (e.g., dam construc-
tion and long-distance water transfer) have been carried out in
China in an effort to meet the growing needs of water resources
for an increasing population4,47,48. One example is the Three
Gorges Dam (TGD) in western Hubei Province, the largest
hydroelectric dam in the world (Supplementary Fig. 7). It had
large impacts on its neighboring provinces and watersheds along
the Yangtze River since its first impoundment in 2003. The water
level of the TGD reservoir increased to 156 m in September 2006,
172.5 m in September 2008, and 175 m (the maximum height by
dam design) in October 201021,49,50 (Fig. 4a–c). Chongqing,
which is an upstream municipality of the TGD, had stepwise
increases of TWS and SWA during 2002–2010 (Fig. 4a), corre-
sponding well to the water level changes of the TGD reservoir.
These data suggested that the TGD clearly increased upstream
SWA and TWS. In Hubei Province, where TGD is located, TWS
increased in 2003 but then remained relatively stable (Fig. 4b).
However, SWA dropped substantially after 2003, and did not
recover until the mid-2010s. Jiangxi is a downstream province of
the TGD, and both TWS and SWA have dropped substantially
since 2003 (Fig. 4c). These results clearly indicated that the TGD
affected water resources in the upstream and downstream areas,
especially SWA and TWS in the downstream of TGD31,51.

Other human water uses, for agriculture, industry, and human
settlements, also affect the temporal dynamics of SWA and TWS.
In the North China Plain, more than 60% of water resources used
for human activities came from groundwater52. For example, in
Shandong Province42, SWA increased slightly from early 1990s
and early 2000s, and remained stable in late 2000s (Fig. 4d).
Shandong suffered from a severe drought in 2002, as shown by
very low SPEI value in 2002. The Ecological Urgent Water
Replenishing (EUWR) project was implemented to divert water
from the Yangtze River to Nansihu Lake during 2002–2003 to
sustain the lake33, which contributed to the elevated increase of
SWA and TWS during 2002–2004. After the EUWR project,
SWA remained stable during 2004–2016 (Supplementary Fig. 8).
However, TWS continued to decrease substantially after 2004,
clearly suggesting the overexploitation of groundwater34,42. The
production of grain, meat, fruit, and vegetables in Shandong was
~8%, 9%, 12%, and 13% of the total production in China,
respectively53, and water use for agriculture (mostly irrigation)
contributed to prolonged depletion of groundwater in the
province. Therefore, although water transfer project increased
SWA after 2004, excessive withdrawal of groundwater has
resulted in the observed decrease of TWS in Shandong
Province52, which poses serious challenges for decision makers
and stakeholders in the region who tackle and cope with
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increased water stress and rising concerns on water and food
security.

Climate change has affected glacial dynamics, annual precipitation,
and surface water resources in the Tibetan Plateau20,41, which is
known as “the Third Pole” of the world and “Water Tower of Asia”
because of its abundant rivers, lakes, and glaciers37. SWA in Tibet
dropped substantially during 1994–1995, following severe droughts
during 1993–1995, as shown in large negative standardized
precipitation evapotranspiration index (SPEI) values (Fig. 4e), which
takes into account of both precipitation and potential evapotran-
spiration54. SWA in Tibet recovered in the late 1990s as SPEI became
positive in those years. TWS and SWA remained relatively stable
during 2002–2012 but started to drop substantially after 2012 at a
rate of −1.93 cm year−1 (TWS) and −8.2 × 102 km2 year−1 (SWA),
respectively. SWA in Qinghai Province also dropped substantially in
1994–1995 and then gradually recovered in late 1990s and increased
in 2000s (Fig. 4f). Both SWA and TWS peaked in 2012 and then
decreased slowly in 2013–2016. Therefore, as there were no large
dam or reservoir construction projects in the Tibetan Plateau2,
precipitation was the main reason for variations in SWA and TWS in
the Tibetan Plateau20, and glacier meltwater driven by rising
temperature also contributed to the changes in SWA and TWS20,37.

Interannual climate variability and new reservoirs are con-
sidered as major factors contributing to the interannual variations
of SWA at the provincial scale27. For example, in Jiangxi
Province, extensive flood events in 2010 resulted in a large gain of
SWA and TWS, but severe drought in 2011 resulted in a large loss

of SWA and TWS (Fig. 4c). In Guangxi Province, additional new
reservoirs/dams caused an elevated (stepwise) increase of SWA
over years (Supplementary Note 1). Thus, here we used multi-
variate stepwise regression models to identify the effects of four
variables (precipitation, temperature, year-long SWA of the
previous year, and areas of new reservoirs) on the changes of
SWA in each province of China. These variables had little
collinearity with small variance inflation factor (VIF) values
(Supplementary Fig. 9). The statistical analysis indicated that
annual precipitation had a significantly strong positive effect on
SWA in 10 provinces (Supplementary Fig. 10a), and the increased
precipitation in Heilongjiang of Northeast China had the largest
contribution to the increased SWA than do other provinces55.
Annual mean temperature had a strong negative effect on SWA
in Liaoning Province (Supplementary Fig. 10b). The areas of new
reservoirs in 10 provinces in China had significantly positive
effects on SWA, meaning that the areas of new reservoirs
significantly contributed to the increase of SWA in these 10
provinces (Supplementary Fig. 10c). In addition, year-long SWA
in the previous year also had significantly positive effects in 13
provinces, especially in northern and western China (Supple-
mentary Fig. 10d), indicating that there were strong legacy effects
on the SWA dynamics27.

Changes of water resources and population. We investigated the
relationships between the change in water resources (TWS, SWA)
during 1989–2016 and the change in population during
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2000–2015 at the provincial scale (Fig. 5a, b). In the 9 provinces
with significantly decreasing trends in TWS (Fig. 5a), there was a
total increase of 53.4 million people. In the 14 provinces with
significantly increasing trends in TWS (Fig. 5a), there was a total
increase of 146.3 million people. In the 7 provinces with sig-
nificantly decreasing trends in SWA (Fig. 5b), population
increased by 92.2 million. In the 14 provinces with significantly
increasing trends of SWA (Fig. 5b), population increased by 57.1
million. In Beijing, population increased by 10 million and both
TWS and SWA decreased substantially during 1989–2016. In
total, over 135 million population lived in 15 provinces that
experienced significant losses of TWS or SWA during 1989–2016.

To further investigate the likely challenge China’s population
and economy may face in terms of water resources, we analyzed
population and gross domestic product (GDP) in 2015 and the
changes of TWS and SWA during 1989–2016. Human population
and gross domestic product (GDP) data in 2015 had a strong
linear relationship at the provincial scale (Fig. 5c, d). However,
the temporal changes of water resources as measured by the
trends of TWS and SWA varied among the provinces (Fig. 5c, d),

which indicates that each province experienced different water
resource challenges for its population and economy. Guangdong
Province had the largest population, the highest GDP, and a
significantly increasing TWS trend and a non-significant change
in SWA (Fig. 5c), which suggests that water resources are
unlikely to be a major constraint for Guangdong. On the
contrary, Shandong Province ranked second in population and
third in GDP, but it had a significantly decreasing trend in TWS
(Fig. 5c) because of overexploitation of groundwater34,42, which
suggests that Shandong Province is likely to face major challenge
for its water security and economic development. Henan Province
ranked third in population and 5th in GDP, and it also had a
significantly decreasing trend in TWS (Fig. 5c), which suggests
that Henan Province is also likely to face major challenges for its
water security and economic development. Both Shandong and
Henan Provinces had significantly increasing trends in SWA, but
the significantly decreasing trends in TWS in these two provinces
suggest that they need to have large structural changes in
agriculture, which uses a lot of groundwater for irrigation and
industry. Geographically, at the 0.5° gridcell scale, approximately
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460 million (34.9%) people live in 1408 (38.5%) gridcells with
significantly decreasing trends in TWS (Fig. 5e), and 109 million
(8.3%) people live in 409 (11.2%) gridcells with significantly
decreasing trends in SWA in 2015 (Fig. 5f; Supplementary
Table 1).

Surface water resources and water security have been a major
concern in China over the past decades18,29,35,36,38. To date, our
surface water data set at 30-m spatial resolution during
1989–2016 for China is an accurate, updated, reliable, and
spatially detailed data set. Our estimate of ~0.155 × 106 km2 year-
long SWA in China in 2016 reveals that surface water resources in
China are very limited, where over 1.4 billion people now live. In
comparison, a recent study that used Landsat images and the
same mapping algorithms reported ~0.257 × 106 km2 year-long
surface water area in the contiguous United States27, where ~330
million people live. Our results also reveal the large and
geographically divergent trends in terrestrial water storage in
China during 2002–2016. Large and continued losses of SWA and
TWS and decoupling (inconsistency) of temporal dynamics
between TWS and SWA indicate decade-to-century-scale deficit
of groundwater resources in the northern parts of China. As of
2015, ~569 million people lived in the areas that experienced
significant losses of TWS or SWA during 1989–2016. A number
of climate and hydrological models have predicted large
interannual variations in climate in northern China, including
frequent droughts and heatwaves35,45. Further population growth
and climate changes pose enormous challenges for water
resources management in China. The surface water data set and
the findings from this study can be used to assist water resources
managers, stakeholders, decision makers, and the public to
develop evidence-based planning and management of limited
water resources in China, in particular under increasing water
demand and use, more frequent droughts and heatwaves, and
climate change.

Methods
Study area. This study includes 23 provinces, 5 autonomous regions, 4 munici-
palities, and the special administrative regions of Hong Kong and Macau in China
(Supplementary Fig. 11a). It has a large variation in topography, ranging from the
high-elevation Tibetan Plateau to the immense plains and seashore (Supplementary
Fig. 11b). Climate in China also varies substantially, ranging from tropical climate
in the far south to subarctic in the far north and alpine in the higher elevations of
the Tibetan Plateau. The spatial patterns of annual precipitation and mean tem-
perature are complex (Supplementary Fig. 11c, d).

Landsat data. This study acquired all the available Landsat 5/7/8 Surface Reflec-
tance (SR) images between January 1, 1984 and December 31, 2016 in China
(∼338,000 images) in the Google Earth Engine (GEE) cloud processing platform.
For each image, the quality assurance (QA) band was used to identify and remove
the bad-quality observations, including clouds, cloud shadows, cirrus, snow/ice,
and scan-line corrector (SLC)-off gaps56. Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM), as well as the solar azimuth and zenith
angles of each image, were used to remove terrain shadows27. There were large
spatial variations in the number of good-quality observations among individual
pixels over the study period. The larger numbers of good-quality observations in
North China were due to the overlapping Landsat images at the high latitudes and
fewer clouds (Supplementary Fig. 12a). The numbers of Landsat 5, 7, and 8 images
for each year were highly variable over the study period, as more Landsat images
were acquired after the launch of Landsat 7 in 1999 and Landsat 8 in 2013
(Supplementary Fig. 12b). Pixels with no good observation accounted for about
90.1% of all pixels during 1984–1985 (Supplementary Fig. 12c), and they accounted
for 40.6% during 1986–1988, but they accounted for only 3.6% of all pixels during
1989–2016. Because of large number of pixels with the limited observations during
1984–1988, we excluded these years when we carried out the interannual trend
analysis at the provincial and watershed scales (1989–2016). Supplementary Fig-
ure 13 showed the frequency of the numbers of good-quality observation in each
season of China from 1989 to 2016, and about 90% of all pixels had at least 1 good-
quality observations in each season, and 95% of all pixels had at least 1 good-
quality observations in each season after 1990 except 2012 when only Landsat 7
was available (Supplementary Fig. 12b), so the quality of Landsat images in this
study could be used to detect both seasonal and year-long surface water bodies.

In this study, we used three widely used indices (NDVI, EVI, mNDWI) to
identify surface water bodies. These indices are defined as:

NDVI ¼ ρnir � ρred
ρnir þ ρred

; ð1Þ

EVI ¼ 2:5 ´
ρnir � ρred

ρnir þ 6 ´ ρred � 7:5 ´ ρblue þ 1
; ð2Þ

mNDWI ¼ ρgreen � ρswir
ρgreen þ ρswir

; ð3Þ

where ρblue, ρgreen, ρred, and ρswir are blue, green, red, near-infrared, and shortwave
infrared bands of Landsat images.

Terrestrial water storage (TWS) data. The Gravity Recovery and Climate
Experiment (GRACE) Tellus Monthly Mass Grids provide monthly gravitational
anomalies relative to a 2004–2010 time-mean baseline and the monthly liquid
water equivalent thickness (LWET) data in this data set are units of “Equivalent
Water Thickness”, which represent the deviations of mass in terms of vertical
extent of water in centimeters57. The 0.5° monthly LWET data during 2002–2016
(https://grace.jpl.nasa.gov/) were used to calculated annual average LWET data
(terrestrial water storage, TWS), which were used to explore its relationships with
surface water area.

Climate data. The National Centers for Environmental Prediction-Department of
Energy (NCEP/DOE) Atmospheric Model Inter-comparison Project (AMIP-II)
Reanalysis (R-2)58, from their website at www.esrl.noaa.gov/psd/, were used to
calculate annual average precipitation and temperature during 1989–2016 (Sup-
plementary Fig. 11c, d), which were used in this study as predictor variables for
interannual variations of surface water area in China.

The Standardized Precipitation Evapotranspiration Index (SPEI) was designed
to consider both precipitation and potential evapotranspiration and can capture the
main impact of increased temperatures on water demand59. The global 0.5° gridded
SPEI data set, calculated using CRU TS 3.23 data set, covers the period 1901−2015
and downloaded at http://sac.csic.es/spei/. SPEI data set in China during
1989–2015 was used in this study to investigate the effect of climate change on
surface water area and terrestrial water storage in China at the provincial scale.

Reservoir data. Reservoir data in China was acquired from the Global Reservoir
and Dam Database (GRanD) v1.360 (http://globaldamwatch.org/grand/). We used
the areas of new reservoirs from the GRanD data set (Supplementary Fig. 14) to
explore the contribution of new reservoirs to the changes of SWA at the provincial
scale during 1989–2016.

Population and gross domestic product (GDP) data. Population density data
were acquired from the fourth version Gridded Population of the World (GPWv4)
collection (http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). We used the
GPW with 0.5-degree spatial resolution in this study to explore its relationship with
the changes of GRACE TWS trends and surface water areas trends. The gross
domestic product (GDP) data of 2015 in each province (except Taiwan Province)
in China were collected from the China Statistical Yearbooks from the National
Bureau of Statistics of the People’s Republic of China (available at: http://www.
stats.gov.cn/tjsj/ndsj).

Watershed boundary data. The watershed boundary map of China was acquired
from the Resource and Environment Data Cloud Platform of the Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of Sci-
ences (http://www.resdc.cn/data.aspx?DATAID=278). It contains 209 third-order
watersheds in China, and it was used to analyze spatial–temporal dynamics of
surface water area and terrestrial water storage at the watershed scale.

Algorithm to generate maps of surface water body. The water index (mNDWI)
has been widely used to detect surface water bodies61, but it has commission errors
(user’s accuracy) in pixels having a mix of surface water bodies and other land
cover types, especially when the pixel comprises vegetation and water body62. To
reduce the effects of vegetation on identifying surface water body, mNDWI was
combined with two greenness-based vegetation indices (EVI and NDVI) to detect
surface water bodies. For spectral signature analysis of land cover types, we selected
training samples in each of 574 path/row (tiles) of the Landsat Worldwide
Reference System (WRS-2), which cover the entire China. Three water points and
two non-water points were selected visually within each tile based on the very high
spatial resolution images of 2016 in the Google Earth. Altogether, we selected 1722
random water points and 1148 random non-water points to study the distribution
of spectral indices (Supplementary Fig. 15). Approximately 99.42% of the water
points had mNDWI > EVI, 98.22% of the non-water pixels had mNDWI < EVI,
99.07% of the water pixels had mNDWI > NDVI, and 99.09% of the non-water
pixels had mNDWI < NDVI. Thus, we determined that mNDWI > EVI and
mNDWI > NDVI were good criteria to distinguish water body from non-water
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points. As 97.76% of the water pixels had EVI < 0.1 (Supplementary Fig. 15b), EVI
< 0.1 can be used to exclude pixels mixed with water and vegetation. The final open
surface water body detection algorithm was ((mNDWI > EVI or mNDWI > NDVI)
and EVI < 0.1). This mNDWI-VIs algorithm was first implemented to map the
surface water body in the state of Oklahoma, US23, and was then used in the
contiguous United States with high accuracy27. Furthermore, this mNDWI-VIs
algorithm had been compared with other water mapping algorithms (e.g. NDWI,
mNDWI, TCW, and AWEI) using Landsat and Sentinel-2 images, and the results
showed that this algorithm can identify open surface water bodies in Landsat
images with high producer’s accuracy (98.1%) and user’s accuracy (91.0%)63.

Surface water body in each observation of individual pixels was first determined
using ((mNDWI > EVI or mNDWI > NDVI) and EVI < 0.1) (Eq. (4)), then the
surface water frequency of each pixel, which is defined as the proportion of water
observations, was calculated using Eq. (5). Finally, we generated a surface water
frequency map of all pixels in China for each year from 1989 to 2016 in the GEE
platform.

Water ¼ mNDWI> EVI or mNDWI>NDVIð Þ and EVI< 0:1; ð4Þ

FW ¼ Nwater

Ngood
; ð5Þ

where FW is surface water frequency scaled from 0 to 1.0 at individual pixels with
good-quality observations, Nwater is the number of observations identified as
surface water body (Eq. (4)) in a year, Ngood is the number of good-quality
observations in a year, respectively.

Accuracy assessment of surface water body maps. Stratified random sampling
approach, along with very high spatial resolution (VHSR) images from Google
Earth, were most widely used and robust approach in accuracy assessment of land
cover classification, such as the global surface water data set2, the global tidal flats
data set64, and other maps at national and regional scales27,65,66. In this study,
stratified random sampling approach was used to validate the year-long and sea-
sonal surface water body maps, respectively, following the strategy used in the JRC
data set2. A grid (0.2 latitude by 0.2 longitude) was generated in China to collect
samples for accuracy assessment. In order to determine the user’s accuracy
(measure of commission error) of the resultant maps in this study, for each 0.2 by
0.2 gridcell, one point was generated randomly within the surface water body map
in 2016 acquired using the above-mentioned mNDWI-VIs algorithm, and total
8197 random points were selected finally. Each point was checked and interpreted
visually in Google Earth as water and non-water land cover types. Similarly, the
same grid (0.2 latitude by 0.2 longitude) was used again to determine the produ-
cers’ accuracy (measure of omission error). A random point was selected within the
existing published global surface water map67 in each gridcell, following the JRC
data set. Finally, 10,200 random points were generated in this study. Each point
was checked with the surface water map acquired using mNDWI-VIs algorithm
and all the points confirmed as surface water body were used to estimate the
producer’s accuracy. All the validation points were broken down by water class
(year-long and seasonal water body) (Supplementary Tables 2 and 3). Supple-
mentary Figure 16 shows the geographic distribution of all sample points.

The user’s accuracy (measure of commission error) for year-long and seasonal
surface water body in this study was 99.71% (±0.12) and 98.57% (±0.47), respectively.
The producer’s accuracy (measure of omission error) for year-long and seasonal
surface water body was 99.12% ± 0.43 and 86.43% ± 3.57, respectively
(Supplementary Table 4). The user’s and producer’s accuracies for year-long surface
water body were larger than those for seasonal surface water body because seasonal
surface water body comprised many kinds of temporary water, which may be mapped
at one date, but may be missed at another2. In order to compare our accuracy to the
JRC data set, we calculated the producer’s and user’s accuracy of the JRC data set by
water seasonality class without sensors differentiating (Supplementary Table 4). The
user’s accuracy and producer’s accuracy for year-long (permanent) surface water body
in this study were similar with those of the JRC data set, which is well understood and
expected as most of year-long (permanent) surface water body are large size and
should be easy to be identified and mapped. For the seasonal surface water body, the
producer’s accuracy was similar between our data set and the JRC data set, but the
producer’s accuracy from our data set (86.43% ± 3.57) was much larger than that of
the JRC data set (68.4%). Therefore, the surface water body data set from this study is
clearly an improvement over the JRC data set in terms of year-long (permanent) and
seasonal surface water body layers.

Cross-comparison with other data sets. In addition to the stratified random
sampling approach, we acquired the JRC data set2, the Global River Widths from
Landsat data set (GRWL)68, the surface water layer from the Global Land Cover
Facility (GLCF)10, and the Moderate Resolution Imaging Spectroradiometer
(MODIS) 250 m land–water mask (MOD44W) data set69 for cross-comparison at
the provincial scale (Supplementary Fig. 5). The SWA at the provincial scale in
China from 1989 to 2016 had good consistency between this study and the JRC
data set (R2 = 0.99, standard error = 0.56), except for the years of 1997 and 1998
when the JRC data set missed the effect of extensive floods in South China during
1997–1998. The GLCF and MOD44W data sets had smaller SWA than this study

and the JRC data set because those two data sets in 2000 were generated through
image mosaic and existing surface water body data sets, and SWA might be
underestimated because some surface water bodies may be missed in the images at
one date but be found in another2. The GRWL data set focused on characterizing
the global coverage of large rivers and streams, so a large number of surface water
bodies (e.g. small stream, lakes) were missed in the GRWL data set (Supplementary
Fig. 17c, f), which resulted in the much smaller SWA estimates than those of the
JRC data set and this study.

At the watershed scale, year-long SWA estimates in our data set were on the
average 0.20% ± 0.85% greater than those in the JRC data set (Supplementary
Fig. 18a). The difference in most watersheds were between −1 and 1%, and a few
watersheds had larger differences (>1%), which were distributed in the regions with
high altitudes, such as the Hailaer Watershed in Northeast China, the Kaikong River
Watershed in the Tianshan Mountains, and some regions in eastern Tibet. SWA
estimates in most watersheds in the GRWL data set were much smaller than those in
this study (−22.41% ± 75.08), and some regions in North China even had differences
<−100% (Supplementary Fig. 18b), which could be attributed to the fact that the
GRWL data set missed most of small rivers and lakes (Supplementary Fig. 17c, f).

Uncertainties of the annual surface water body maps. Our study, together with
previous works2,10,20,23,27,32, greatly contributed to the current water resource
study. However, we must also recognize that the data quality and the amount of
Landsat images remain to be a concern. As Landsat has a 16-day revisit cycle, it is
inevitable to miss some short-duration surface water events, such as fresh floods,
when observations do not coincide with these surface water events2. Some water
bodies are smaller than 30 m by 30 m, and thus could not be identified and
mapped. For this reason, the areas of seasonal and ephemeral water bodies are
likely to be underestimated in this study. The quality assurance (QA) band is an
important indicator of the Landsat imagery quality and may affect mapping
algorithms. Some bad-quality observations (e.g. clouds, cloud shadows) may
remain after quality filtering, which might have generated some low-frequency
inundation noises over the land surface. Therefore, the spatial–temporal dynamics
of year-long surface water bodies in this study can provide much more reliable
information than those of seasonal surface water bodies. It should also be noted
that in addition to the additional historical Landsat data that will be added into
GEE platform by the United States Geological Survey (USGS) Landsat Global
Archive Consolidation70, more images from other high spatial resolution sensors
(e.g., Sentinel-1, Sentinel-2) are likely to further improve remote sensing of surface
water bodies in the future, which will provide more detailed geospatial data pro-
ducts of surface water bodies for hydrology and water security in China.

Statistical analyses. The land area (km2) of each province and watershed was
generated using the Projected Coordinate System Krasovsky_1940_Albers. SWA in
each province and watershed from 1989 to 2016 was calculated by using the annual
surface water body frequency maps. The SWA per unit land and the trend of year-
long SWA at the provincial and watershed scales were analyzed using linear
regression models with a t-test at the 5% significance level. The summed areas of
year-long surface water body within 0.5° gridcells and GRACE TWS were used to
analyze their relationship using linear regression models.

Interannual dynamics (variations and trends) of SWA and TWS are affected by
new dams/reservoirs, water use, and climate (interannual variations (e.g., floods and
droughts) and trends). Lehner et al.60 reported a comprehensive Global Reservoir
and Dam Database (GRanD) data set, which provides the detailed information
about the global reservoirs and associated dams, including geolocations (latitude
and longitude) of dams and the areas of the reservoirs60. Its latest version (v1.3) was
recently released to the public and used in this study. It contains 923 dams in China,
but 51–55% dams have in-accurate geolocation information (Supplementary
Note 2). In China, 782 dams in the GRanD data set had exact building years, among
which only 218 (24%) dams were built after 1989 (Supplementary Fig. 19). We
calculated the areas of all reservoirs in each province from 1989 to 2016, and did the
multi-variate regression between SWA and climate factors (precipitation (mm) and
average temperature (°C)) and other variables (year-long SWA of the previous year
(103 km2) and areas of reservoirs (km2)) (Eq. (6)). The positive correlations in these
models were defined as slope > 0, and the negative correlation was defined as slope <
0. The uncertainties in this study were expressed as the 95% confidence interval. All
the statistical analyses were carried out using R package.

SWA ¼ aX1þ bX2þ cX3þ dX4; ð6Þ
where SWA is the year-long surface water body area (103 km2); X1 is the average
precipitation (mm); X2 is the average temperature (°C); X3 is the areas of reservoirs
(km2); and X4 is the year-long SWA of the previous year (103 km2).

Data availability
All data sets used in this study are available upon request and come from either several
public data sources or as provided by original data producers (authors).

Code availability
Code used in calculations of surface water bodies is available upon request.
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