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A B S T R A C T

Coastal wetlands, composed of coastal vegetation and non-vegetated tidal flats, play critical roles in biodiversity
conservation, food production, and the global economy. Coastal wetlands in China are changing quickly due to
land reclamation, aquaculture, industrialization, and urbanization. However, accurate and updated maps of
coastal wetlands (including vegetation and tidal flats) in China are unavailable, and the detailed spatial dis-
tribution of coastal wetlands is unknown. Here, we developed a new pixel- and phenology-based algorithm to
identify and map coastal wetlands in China for 2018 using time series Landsat imagery (2798 ETM+/OLI
images) and the Google Earth Engine (GEE). The resultant map had a very high overall accuracy (98%). There
were 7474.6 km2 of coastal wetlands in China in 2018, which included 5379.8 km2 of tidal flats, 1856.4 km2 of
deciduous wetlands, and 238.3 km2 of evergreen wetlands. Jiangsu Province had the largest area of coastal
wetlands in China, followed by Shandong, Fujian, and Zhejiang Provinces. Our study demonstrates the high
potential of time series Landsat images, pixel- and phenology-based algorithm, and GEE for mapping coastal
wetlands at large scales. The resultant coastal wetland maps at 30-m spatial resolution serve as the most current
dataset for sustainable management, ecological assessments, and conservation of coastal wetlands in China.

1. Introduction

Coastal wetlands, composed of coastal vegetation and non-vege-
tated tidal flats, are natural transitions between ocean and terrestrial
ecosystems (Kou et al., 2018; Oost et al., 2012) and provide favorable
habitats for a wide variety of coastal plants and animals, such as
mangroves, crabs, fish, and migratory birds (Aiello-Lammens et al.,
2011; Ma et al., 2014, 2013; Murray et al., 2019, 2014, 2012). In ad-
dition, they play vital roles in shoreline protection by buffering against
coastal erosion and storm surges (Murray et al., 2019, 2014; Wang
et al., 2018; Wu et al., 2017), and are an important part of food pro-
duction and the global economy (Murray et al., 2014). Furthermore,
coastal wetlands are one of the most dynamic and productive ecosys-
tems on Earth because of their interaction with both ocean and inland

systems (Ericson et al., 2006). However, coastal wetlands have been
degraded and some have disappeared due to natural and anthropogenic
activities, such as global sea level rise (Morris et al., 2002; Nicholls and
Cazenave, 2010), land reclamation (Hodoki and Murakami, 2006;
Murray et al., 2014), coastal erosion and development (Murray et al.,
2019; Wang et al., 2018), and the rapid expansion of coastal aqua-
culture ponds (Ren et al., 2019). Therefore, accurate annual maps of
coastal wetlands are essential and necessary for sustainable manage-
ment and conservation of coastal zone (Ghosh et al., 2016).

Traditional methods of coastal wetlands for monitoring and map-
ping, such as field sampling and survey, are usually time consuming,
labor intensive, and expensive; and they often fail to detect changes
over large regions of the coastal zones (Ghosh et al., 2016). Satellite-
based remote sensing provides images to monitor land use and land
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cover changes in near real-time at different spatial scales and resolu-
tions (Darby and Turner, 2008; Wang et al., 2018). Several global-scale
land cover maps were produced after 2000 using remote sensing da-
tasets (Bartholome and Belward, 2005; Friedl et al., 2010, 2002; Gong
et al., 2013; Hansen et al., 2000; Loveland et al., 2000), and these maps
have greatly contributed to land use and land cover monitoring around
the world. However, these global maps are outdated and do not reflect
the latest spatial distribution of coastal wetlands (including coastal
vegetation and non-vegetated tidal flats) in China (Wang et al., 2018)
(Table 1). Recently, Gong et al. (2019) released a global 10-m land
cover map for 2017 using Sentinel-2 images and random forest method,
but it only included a wetland layer and did not differentiate coastal
vegetation from tidal flats. Murray et al. (2019) mapped the global tidal
flats during 1984–2016 using Landsat images and random forest algo-
rithm within 3 years windows, but the maps did not include a coastal
vegetation layer. In addition to those global maps, many studies have
reported the dynamics of the coastal wetlands at national and regional
scales, such as coastal wetlands (Chen et al., 2019, 2016), saltmarshes
(Liu et al., 2018), mangroves (Chen et al., 2017; Jia et al., 2018), and
tidal flats (Wang et al., 2018; Zhang et al., 2019) in China or parts of
China (Table 1). However, these maps are either at regional scale or
partial in their spatial coverage and could not be used to monitor the
updated information of coastal wetlands in China. Recently, Han et al.
(2019) quantified the dynamics of intertidal zone in China in 1995 and
2015 using tidal correction and visual interpretation methods, but the
information about tidal flats and coastal vegetation was not included in
the study. Therefore, exiting coastal wetland maps at different scales
could not provide the detailed and updated information about coastal
wetlands in China. Moreover, most of these studies used only one
imagery from a single date or mosaicked image from multiple dates,
which might cause large spatial and temporal uncertainties because
coastal regions are often affected by poor-quality observations induced
by clouds or cloud shadows, the periodical tides, and the phenology of
coastal vegetation (Chen et al., 2017; Wang et al., 2018). Thus, detailed
and updated spatial information on coastal wetlands in China, which
include both coastal vegetation and non-vegetated tidal flats, have not
yet been fully investigated.

Table 2 summarizes the algorithms and satellite resources for
coastal wetland maps from previous publications. Optical images have
been widely used in most of these studies due to their easy accessibility,
different spatiotemporal scales, and long time series data (Ghosh et al.,
2016; Wang et al., 2018). Synthetic aperture radar (SAR) images can

supply high-precision hydrological information and reduce the errors
induced by bad-quality observations in optical images, but they are too
costly for monitoring coastal wetlands dynamics at large spatial scales
and for the long-term trends (Xie et al., 2015; Yan et al., 2017). In
addition, Sentinel-1 SAR data from 2014 became freely available,
which offers an opportunity to integrate both optical and Sentinel-1
data in future studies. Our study focused on the potential of time series
optical images. Recently, Unmanned Aerial Systems (UAS) and UAS-
based imagery were used to map wetlands (Liu and Abd-Elrahman,
2018; X. Zhu et al., 2019) as they are small, fast, and easily deployable
land imaging systems (Colomina and Molina, 2014), but they usually
cover small- to medium-size areas and are difficult to be extended to
large regions (Colomina and Molina, 2014). Visual interpretation, su-
pervised, and unsupervised classification algorithms are most com-
monly used in coastal wetlands monitoring with multi-source data and
usually have high accuracy in specific regions and at acquisition time.
However, they are often labor-intensive, time consuming, and difficult
to be extended to large regions at non-acquisition times (Chen et al.,
2017; Davranche et al., 2010).

Time series Landsat image analyses have increased substantially
since 2008 (Zhu et al., 2019b). Researchers can use all available
Landsat images to increase numbers of good-quality observations (not
affected by clouds, cloud shadows, and terrain shadows) in a year,
which would reduce the effects of poor-quality observations and peri-
odical tidal and better capture phenological information of coastal ve-
getation in the coastal zones (Chen et al., 2017; Wang et al., 2018).
Open access, freely available satellite images (e.g., Landsat), and cloud
computation platforms, such as the Google Earth Engine (GEE), have
greatly benefited the geoscience community by providing researchers
with the capacity to monitor land cover changes using multi-petabyte
images and investigate historical land cover change (Gorelick et al.,
2017; Zhu et al., 2019a). Several studies have analyzed time series
Landsat data to generate annual maps of mangroves (Chen et al., 2017),
tidal flats (Murray et al., 2019; Wang et al., 2018), and coastal wetlands
at different scales (Chen et al., 2019; Li and Gong, 2016). Likewise, time
series Landsat images and GEE platform have great potential to map the
detailed spatial information of coastal wetlands in China.

In this study, we integrated all the available time-series Landsat
images (ETM+/OLI) of China for 2015 and 2018 in GEE to: (1) develop
a simple but robust method to map coastal wetlands; (2) apply this
method to generate maps of coastal wetlands in China for 2015 and
2018; (3) evaluate the resultant maps for 2018 with ground reference

Table 1
Summary of studies and maps about coastal wetlands in China in different years and at different scales.

Year Region/local China Global

1992–1993 Hansen et al. (2000) (AVHRR);
Loveland et al. (2000) (AVHRR)

1976–2000 Chu et al. (2006)*
1950s, 1980s, 2000s Murray et al. (2014)*
1990, 2000 Gong et al. (2010)*
2000 Bartholome and Belward (2005) (SPOT 4)
1999–2002 Niu et al. (2009)*
2005, 2006 Davranche et al. (2010)*
1978, 1990, 2000, 2008 Niu et al. (2012)*
2010 Gong et al. (2013)*
1985, 1990, 1995, 2000, 2005, 2010, 2014 Chen et al. (2016)*
1995, 2000, 2005, 2010, 2015 Wang and Niu (2017)*
1995, 2015 Han et al. (2019)*
1984–2015 Chen et al. (2019)* Murray et al. (2019)*#
2015 Zhang et al. (2019)* Chen et al. (2017)*#;

Liu et al. (2018)*#
2016 Yim et al. (2018)*
1986–2016 Wang et al. (2018)*#
2017 Gong et al. (2019)+ (Sentinel 2)
1984–2018 This study*

*Landsat data were used; # only part of coastal wetlands, such as tidal flats or Spartina, were included; + only a wetland layer was included.
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data from field surveys and very-high spatial resolution images in
Google Earth; (4) compare the resultant maps for 2015 with other
available products and previous studies in the same year; and (5)
analyze the spatial distribution of different coastal land cover types
(coastal vegetation and tidal flats) in China for 2018.

2. Materials and methods

2.1. Study area

China’s coastline spans two municipalities (Shanghai and Tianjin),
two special administrative regions (Macao and Hong Kong), and eleven
provinces (Shandong, Liaoning, Hebei, Jiangsu, Fujian, Zhejiang,
Guangxi Zhuang Autonomous Region, Hainan, Guangdong, and
Taiwan) (Fig. 1a). Macao and Hong Kong have relatively small areas
and are close to Guangdong Province, so we combined them as one
region when we calculated coastal wetland areas. We also did not in-
clude those islands in South China Sea in this study.

Coastal wetlands, also defined as intertidal flat ecosystems, include
non-vegetated tidal flats (unconsolidated fine-grain sediments, un-
consolidated coarse-grain sediments, consolidated sediments, organic
materials or rocks) and vegetation-dominated intertidal ecosystems
(e.g., mangroves and saltmarshes) (Murray et al., 2019). Furthermore,
coastal vegetation types are usually composed of evergreen coastal
vegetation (e.g., closed-canopy mangroves) and deciduous coastal ve-
getation (e.g., open-canopy saltmarshes). Therefore, we roughly di-
vided the coastal wetlands into three types in this study: evergreen
wetlands, deciduous wetlands, and non-vegetated tidal flats (Fig. 2).
Paddy rice fields were excluded in this study.

2.2. Data

2.2.1. Landsat data
China’s coastal zone covers 57 tiles (path/rows) of the Landsat

Worldwide Reference System (WRS-2) (Fig. 1a). We processed all the
available 2444 Landsat surface reflectance images (1046 Landsat 7
Surface Reflectance Tier 1, 1398 Landsat 8 Surface Reflectance Tier 1)
from January 1, 2015 to December 31, 2015 in GEE to generate the
coastal wetland maps for 2015 for inter-comparison, and used 2798
Landsat images (1197 Landsat 7, 1601 Landsat 8) from January 1, 2018
to December 31, 2018 to generate the coastal wetland maps for 2018
(Fig. 1b, Table S1). The Quality Assessment (QA) band flags bad-quality
observations of each image (e.g. clouds and cloud shadows), and we
used the QA band to remove bad-quality observations. In addition, we
identified and removed terrain shadows using the Shuttle Radar To-
pography Mission (SRTM) digital elevation model (DEM) (Farr et al.,
2007), the solar azimuth and zenith angles of each image, and the
ee.Terrain.hillShadow algorithm in GEE (Zou et al., 2018). In China’s
coastal zone, more than 87% (1908 million) of the total pixels (2207
million) had more than 10 good-quality observations in 2018, and most
of North China had more than 50 good-quality observations due to the
overlapping of Landsat images at the high latitudes and less cloud cover
(Dong et al., 2016) (Fig. 1b).

In our study, we used four widely used spectral indices to identify
surface water bodies and green vegetation: the Normalized Difference
Vegetation Index (NDVI) (Tucker, 1979), Enhanced Vegetation Index
(EVI) (Huete et al., 2002, 1997), Land Surface Water Index (LSWI)
(Gao, 1996; Xiao, 2004), and the modified Normalized Difference
Water Index (mNDWI) (Xu, 2006). NDVI and EVI are closely related to
green vegetation (Wang et al., 2018), LSWI is a good indicator of ve-
getation and soil water (Xiao, 2004), and mNDWI is one of the most
popular indices for mapping open surface water bodies. These indices
are defined as Eqs. (1), (2), (3) and (4):
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Fig. 1. The spatial distribution of the coastal zone and Landsat WRS-2 path/rows in China (a) and the spatial distribution of the number of good-quality observations
within individual pixels of Landsat 7/8 images in 2018 (b).

Fig. 2. An illustration of wetland types on the coastal zones in China. (a) Year-long sea water; (b) Non-vegetated tidal flats; (c) Open-canopy vegetation; (d) Closed-
canopy vegetation; and (g) Inland. Coastal wetlands include tidal flats and coastal vegetation which comprise open and closed canopy wetlands. Case (1–3) show
three types of coast zones in China. Case1: Common mud-deposited coastal wetlands; Case 2: Rocky coast without coastal wetlands; Case 3: Sandy coast without
coastal vegetation. Subfigures (1–6) show the corresponding land cover photos of (a-f).
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mNDWI green swir

green swir (4)

where blue, green, red, nir , and swir are blue, green, red, near-infrared,
and shortwave infrared bands of Landsat images.

2.2.2. Training datasets
Compared to non-vegetated tidal flats, coastal vegetation often is

relatively easy to visually interpret, so we selected 14 deciduous wet-
lands areas of interest (AOIs) (e.g. saltmarsh) and 8 evergreen wetlands
AOIs (e.g. mangrove in South China) (Fig. 3) as training data and stu-
died their distributions of water and vegetation signatures (see Fig. 6
for more details). All the training datasets were obtained from very high
spatial resolution images available in Google Earth for algorithm de-
velopment. When we drew these AOIs, small areas were delineated to
reduce the inclusion of mixed pixels at the edge of the AOIs.

2.3. Coastal wetland mapping algorithms

We developed a pixel- and phenology-based mapping algorithm for
annual coastal wetland maps (Fig. 4). The algorithm was divided into
three parts for each pixel: (1) identification of surface water body and
green vegetation, (2) frequency estimates of surface water body and
green vegetation, and (3) classification of coastal wetlands (including
tidal flats and coastal vegetation). We implemented the algorithm for
all good-quality observations to produce annual coastal wetland maps
of China for 2015 and 2018 (see Section 2.4).

2.3.1. Algorithm to identify surface water body and green vegetation per
pixel

The mNDWI index has been widely used to identify open surface
water bodies across different satellite sensors, including MODIS (Feng
et al., 2012), Landsat (Pekel et al., 2016, 2014), and Sentinel-2 (Du
et al., 2016). However, maps can have commission errors if pixels are

mixed with vegetation (Santoro et al., 2015). For our study, we used a
water detection algorithm (mNDWI/VIs), which combined mNDWI,
NDVI, and EVI, to reduce the errors induced by vegetation when surface
water bodies were identified (Wang et al., 2019; Zhou et al., 2019; Zou
et al., 2018, 2017). For spectral signature analysis of land cover types,
30 water points and 25 non-water points were selected visually within
each path/row tile based on the very high spatial resolution images of
2018 in the Google Earth. Altogether, a total of 1710 water pixels and
1425 non-water pixels were selected (Fig. 5a), and the distributions of
the spectral indices were shown in Fig. 5b. We found that almost all the
water pixels had mNDWI > EVI (99.10%) and mNDWI > NDVI
(98.99%), and almost all the non-water pixels had mNDWI < EVI
(97.13%) and mNDWI < NDVI (97.46%). Thus, we determined that
mNDWI > EVI and mNDWI > NDVI were very good criteria to dis-
tinguish water from non-water points. In addition, almost all the water
pixels had EVI < 0.1 (99.76%), thus EVI < 0.1 can be used to select
the pure water pixels. The final water detection algorithm was
((mNDWI > EVI or mNDWI > NDVI) and EVI < 0.1). This mNDWI/
VIs algorithm has been used to mapping surface water body at different
scales with high accuracy (Wang et al., 2018; Zhou et al., 2019; Zou
et al., 2018, 2017). In particular, a review paper described the differ-
ences of popular surface water detection algorithms (Zhou et al., 2017),
and it found that the mNDWI/VIs algorithm can identify open surface
water bodies in Landsat image with high accuracy (producer’s accuracy
(98.1%) and user’s accuracy (91.0%)). Therefore, the mNDWI/VIs al-
gorithm was used to identify open surface water bodies in this study.

NDVI and EVI are the most common indices used to detect vegeta-
tion and track their changes (Huete et al., 2002, 1997). However, water
and soil can affect these vegetation indices and make vegetation iden-
tification difficult (Zou et al., 2018). LSWI is a good indicator to capture
the signal of vegetation and soil water, so it can be used to identify dry
(senescent) vegetation and soils that have a small amount of water
(Xiao, 2004). Similarly, we randomly selected 1425 points of vegetation
in the coastal zone to study their distribution of different indices (NDVI,
EVI, and LSWI) (Fig. 5c). We found that 96.82% of the vegetation pixels
had NDVI values of ≥0.2, and 99.6% of the vegetation pixels had EVI
values of ≥0.1. In addition, the LSWI values of all the vegetation pixels
were greater than 0 (Fig. 5c). Therefore, we used (EVI ≥ 0.1,
NDVI ≥ 0.2 and LSWI > 0) to map green vegetation in this study.

Fig. 3. Location of areas of interest (AOIs) of coastal vegetation and the corresponding field photos. (a–c) AOIs of deciduous coastal wetlands; (d–f) AOIs of evergreen
wetlands.
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2.3.2. Frequency estimates of surface water body and green vegetation per
pixel in a year

We determined the frequency of inundation to maximize the benefit
of time series Landsat images and reduce the errors induced by bad-
quality observations, periodical tidal, and in-completed phenological
information of coastal vegetation. The water frequency (WF) of a pixel
in a year was calculated as Eq. (5):

=WF N
N

Water

Good (5)

where WF is the water frequency ranged from 0 to 1, NWater is the
number of water observations in a year, and NGood is the number of valid
observations in a year. Similarly, we calculated the vegetation fre-
quency (VF) as the ratio between the number of green vegetation ob-
servations (NVegetation) over the number of good-quality observations
(NGood) using Eq. (6):

Fig. 4. Workflow for mapping China’s coastal wetlands.

Fig. 5. Spectral characteristics of water, non-water, and vegetation sampling points. (a) Spatial distribution of vegetation and water sampling points; (b) mNDWI-EVI,
mNDWI-NDVI, and EVI distributions of water and non-water points; (c) NDVI, EVI, and LSWI distributions of vegetation points.
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=VF
N

N
Vegetation

Good (6)

2.3.3. Algorithms to classify coastal wetlands per pixel
We used a simple land cover classification scheme with different WF

and VF values: year-long seawater, tidal flats, and coastal vegetation
(Fig. 2). Year-long seawater had a very steady state with a very high WF
because it is less frequently affected by other factors (Wang et al., 2018;
Zou et al., 2018), thus in our study 0.95 of WF was used as threshold to
define the year-long seawater (WF ≥ 0.95) (Wang et al., 2018). From
the histogram figure of VF and WF of coastal vegetation training AOIs
(Fig. 6a), we found that almost all the evergreen vegetation had very
high vegetation frequency (VF ≥ 0.90), so 0.90 of VF value can be used
to identify evergreen and deciduous wetlands. We used a VF of 0.15 to
differentiate tidal flats from deciduous wetlands, as Fig. 6b shows the
sensitivity of tidal flats areas using different VF values, and the tidal

flats area trend remained stable after VF increased from 0.05 to 0.15. In
addition, we found that almost all the coastal vegetation pixels had −5
m < DEM < 5 m, and a slope < 5° (Fig. 6c), thus we used the rules
DEM < 5 m and slope < 5° as a supplementary criterion to limit the
boundary of coastal wetlands. In summary, the final mapping algo-
rithms of tidal flats, deciduous wetlands, and evergreen wetlands were
described using the following criteria (Eqs. (7)–(9)):

= < < <Tidal flats VF and WF and DEM and Slope( 0.15 0.05 0.95 5 5)

(7)

= <Deciduous VF and WF and DEM and Slope(0.15 0.9 0.2 5 5)

(8)

=Evergreen VF and WF and DEM and Slope( 0.9 0.2 5 5)
(9)

2.4. Generation of coastal wetlands maps of China for 2015 and 2018

2.4.1. Potential region of coastal wetlands
The natural coast of China could be divided into three types: rock,

sand, and mud-deposition (Hou et al., 2016). It is easy to identify the
rock coasts as they have a clear boundary between land and seawater
(Fig. 2e), but it is difficult to detect the distinct boundaries between
sand or mud coasts and the mainland because the optical images cannot
detect the high tidal waterline under dense vegetation (Chen et al.,
2019). Fortunately, artificial shorelines, which are formed by artificial
buildings (e.g. aquaculture ponds, artificial engineering, artificial levee
for reclamation and roads) and natural cliffs, can be used to separate
the natural coastal wetlands from inland land cover types (Chen et al.,
2019). As the artificial shorelines and natural cliffs can be easily re-
cognized, we used simple visual interpretation method to delineate
them in 2015 and 2018 at the scale of 1: 24,000 using Google Earth
(Fig. 7). Based on the artificial shorelines, we also created a 50-km
buffer in marine environments as the potential natural coastal zone
(Murray et al., 2019).

2.4.2. Generating coastal wetland maps of China for 2015 and 2018
After defining the potential coastal wetland zone as described in

Section 2.4.1, we identified the classification type for each pixel ac-
cording to the aforementioned algorithms (Eqs. (7)–(9)). Then all the
pixels with good-quality observations within potential coastal wetland
zone were processed using the same algorithms. Finally, we generated
the coastal wetland maps of China for 2015 and 2018 in GEE.

2.5. Validation of the China’s coastal wetland map for 2018

We used the stratified random sampling approach, which has been
widely used in land cover validation (Chen et al., 2017; Murray et al.,
2019; Pekel et al., 2016; Zou et al., 2018), to assess the accuracy of our
coastal wetland map of China for 2018. First, coastal wetlands were
partitioned into three classes (evergreen wetlands, deciduous wetlands,
and tidal flats). Second, a total of 2105 random sampling points (92
evergreen wetlands, 282 deciduous wetlands, and 1723 tidal flats
points (Fig. 8)) were generated using GEE’s random points function in
each stratum within our resultant maps for 2018. Then, each of tidal
flats (evergreen and deciduous) points was visually checked and in-
terpreted in Google Earth. Its class was set as tidal flats or non-tidal flats
land cover types (evergreen or non-evergreen, and deciduous or non-
deciduous). Finally, we calculated the user’s accuracy, producer’s ac-
curacy, overall accuracy, and Kappa coefficient (Table 3) after cross-
checking between the random sampling points and very high spatial
resolution images.

2.6. Comparison to other geospatial datasets of coastal wetlands in China

The 1-km land use and land cover (LULC) map of China for 2015

Fig. 6. Index distribution of coastal vegetation training area of interest (AOIs).
(a) Distribution of vegetation frequency (VF) and water frequency (WF) of
deciduous (DeciVF, DeciWF), evergreen wetlands (EverVF, EverWF), and their
cumulative percentages; (b) Areas of tidal flats using different vegetation fre-
quency thresholds; (c) Distribution of slope and elevation based on coastal
vegetation training AOIs.
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(LULC2015) was acquired from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (http://www.
resdc.cn/data.aspx?DATAID=184). LULC2015 was generated using the
visual interpretation of Landsat 8 images from 2015 and the 2010 LULC
map. In the LULC2015 map, tidal flats were included in the water
bodies class (Zhang et al., 2014). However, the classification system of
the map did not include the coastal vegetation layer. Therefore, we
compared the tidal flat areas from LULC2015 with the tidal flat areas
that we identified in our coastal wetland maps in the same year (2015)
which we have termed FUDAN/OU dataset.

Murray et al. (2019) at the University of Queensland (UQD) pro-
duced a global intertidal flat dataset (UQD dataset) by analyzing
available Landsat satellite images in GEE platform during 1984–2016
and using the random forest algorithm for three-year time periods. For
example, they generated one map named “2014–2016” using the
Landsat dataset during 2014–2016. The definition of intertidal flats in
UQD dataset was the same with the definition in our study, so we
compared our tidal flat map for 2015 to the UQD 2014–2016 map
(available at https://www.intertidal.app/download).

In addition to the large-scale wetland datasets, some studies in
China focused on coastal wetland monitoring at regional scale. For
example, Chen et al. (2019) completed the coastal wetland maps (FAFU
dataset) bordering China’s Yellow Sea during 1986–2015. Zhang et al.
(2019) mapped coastal wetlands in the northern coastal zone of China
for 2015 (SZU dataset) using the random forest algorithm. Thus, we
compared our maps for 2015 to those acquired wetland maps in the
same year.

3. Results

3.1. Accurate assessment of the annual map of coastal wetlands of China in
2018

The confusion matrix of the wetland map validation showed that
our map of China for 2018 had high accuracy (Table 3). The overall
accuracy of the resultant map was high (98.0%), and all accuracies
including both producer’s accuracy (PA) and user’s accuracy (UA) were
greater than 90.0%. The PA and UA of tidal flats were 98.7% and
99.1%, respectively, and they were higher than those of coastal vege-
tation. Deciduous wetlands had slightly lower accuracy among the
three land cover types (UA 94.3% and PA 91.7%) because some de-
ciduous points with very low vegetation frequency were regarded as
tidal flats (see Section 4.2 for more detail). The kappa coefficient of the
validation was 0.93, indicating that this study had a good agreement
between mapped pixels and ground-referenced pixels.

3.2. Spatial distribution and areas of coastal wetlands of China in 2018

Fig. 9 shows the regional wetland details in six typical bays and
estuaries, and Table 4 shows the coastal wetland areas in each province
of China in 2018. Total 7474.6 km2 of coastal wetlands were found in
China in 2018, which included 5379.8 km2 of tidal flats, 1856.4 km2 of
deciduous wetlands, and 238.3 km2 of evergreen wetlands. Jiangsu
Province had the largest wetland area in China, followed by Shandong,

Fig. 7. Main types of coastal shorelines. (a) Aquaculture ponds (32°14′35″ N, 121°28′02″ E); (b) Artificial engineering (36°03′21″ N, 120° 13′35″ E); (c) Artificial
levee for reclamation and roads (31°29′29″ N, 121° 57′56″ E); (d) Rocky coast (18°22′41″ N, 110o00′05″ E).
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Fujian, and Zhejiang Provinces. Tidal flats in China were mostly dis-
tributed along the coastlines of Jiangsu, Shandong, and Zhejiang Pro-
vinces. Jiangsu had the largest coastal vegetation area, followed by
Shanghai, Zhejiang, and Shandong Provinces. Evergreen wetlands were
mainly distributed in Guangdong and Guangxi Provinces, and decid-
uous wetlands were distributed in Jiangsu and Shanghai Provinces.
Tianjin Province had the smallest wetland area in China, as well as the
smallest areas of tidal flats and coastal vegetation (Table 4). In addition,
coastal wetlands in China are mainly distributed in estuaries and bays,
as well as Jiangsu Province (Fig. 9).

3.3. Inter-comparison with other coastal wetland maps or datasets

Recently, Chen et al. (2019) completed coastal wetland maps in the
China’s Yellow Sea (CYS) for 2015 using time series Landsat images. In
addition, they also reported the changes in coastal wetlands in
Shanghai for 2015 (Chen et al., 2016). Thus, we got the coastal vege-
tation and tidal flat areas in Shanghai and CYS for 2015 from Chen’s
studies (FAFU dataset) and compared them to our FUDAN/OU dataset

for 2015 at the regional scale (Fig. 10a). The tidal flats in Shanghai
were highly consistent between the two datasets, as FAFU reported the
area to be 190 km2, and we determined the area to be 182 km2.
However, we detected more coastal vegetation area in our dataset
(327 km2) than the FAFU dataset (227 km2). In CYS, our FUDAN/OU
dataset had 303 km2 more tidal flats and 480 km2 more coastal vege-
tation than the FAFU dataset. Different numbers of Landsat images in
2015, and different methods of detecting tidal flats and vegetation,
contributed the larger areas of coastal wetlands in our study (see Dis-
cussion section for more detail).

Zhang et al. (2019) mapped coastal wetlands in the northern coastal
zone of China in 2015 (SZU dataset) using the random forest algorithm.
The total areas of coastal wetlands from the SZU dataset and our study
matched very well, with 4629.7 km2 and 4704.8 km2, respectively.
However, the SZU dataset detected much less vegetation (376.2 km2)
than our study (1235.9 km2). At the provincial scale, we also detected
more coastal wetlands and coastal vegetation than the SZU dataset
(Fig. 10b). Different methods and different definitions of coastal zones
were the main factors that caused the differences between the two
studies (see Discussion section).

At the provincial scale, the tidal flat areas in our FUDAN/OU dataset
matched well with the area of the LULC2015 and SZU datasets (Fig. 11).
There were 5836 km2 tidal flats of China in LULC2015, which was very
close to the area from our dataset (5342 km2). The tidal flat area in
northern China in the SZU dataset was 3959.9 km2, and in our dataset it
was 3468.9 km2. There were large differences in tidal flat areas be-
tween UQD and other datasets. The tidal flat area in the UQD dataset
was 11529 km2 but was 5343 km2 in our study. Only Fujian Province
had less tidal flat area in the UQD dataset than our FUDAN/OU dataset
(Table 5).

4. Discussion

4.1. Annual maps of coastal wetlands of China at high spatial resolution

In this study we developed a pixel- and phenology-based algorithm
for mapping coastal wetlands at 30-m spatial resolution in China's
coastal zone through analyses of time series Landsat images with
Google Earth Engine platform, and the successful implementation of
this study was attributed to the open access satellite data, simple but
robust algorithm, and the powerful and user-friendly GEE platform.
First, the open-access and free-availability of Landsat images have
provided high temporal frequency of good-quality observations and can
acquire the information on coastal wetlands effectively. Second, the
pixel- and phenology-based algorithm maximized the Landsat images
and could reduce the uncertainties induced by the bad-quality ob-
servations, periodical tide, and phenological information on coastal
vegetation in the coastal zone. Third, GEE enables us to quickly acquire
millions of Landsat images and process them in a paralleled way (Casu
et al., 2017; Gorelick et al., 2017). Finally, we used the very-high
spatial resolution images in Google Earth to interpret the artificial
shorelines in China’s coastal zone and generated a 50-km buffer in the
marine environment to define the potential regions of study area. This

Fig. 8. The distribution of random points for validation.

Table 3
Confusion matrix of coastal wetlands validation for 2018.

Ground reference pixels Total UA

Class Evergreen Deciduous Tidal flats

Map pixels Evergreen 88 1 3 92 95.7%
Deciduous 4 266 12 282 94.3%
Tidal flats 0 23 1708 1731 98.7%

Total 92 290 1723 2105 OA = 98.0%
PA 95.7% 91.7% 99.1% K = 0.93

PA: Producer’s accuracy; UA: User’s accuracy; OA: Overall accuracy; K: Kappa coefficient.
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region could separate coastal wetlands from inland ones, remove the
aquaculture ponds from coastal zone, and detect the outer boundary of
tidal flats in the ocean clearly.

The comparison between our coastal wetland maps and other da-
tasets and maps showed that there are some differences among these
datasets (Figs. 10 and 11). Our dataset had 303 km2 more tidal flats
area and 480 km2 more coastal vegetation area than the FAFU dataset
in CYS (Chen et al., 2019), which can be mostly attributed to the dif-
ferent numbers of Landsat images and different detecting methods used
to derive these two datasets. The Landsat Archive is gathering images
from local stations around the world (https://landsat.usgs.gov/usgs-
landsat-global-archive), and millions of images were added to Landsat

Archive in GEE since the publication of the FAFU dataset in 2015
(Wulder et al., 2019, 2016). Thus, the increase in the number of Landsat
images greatly increased the number of good-quality observations in
China’s coastal zone and resulted in greater coastal wetland area being
detected in our study than the FAFU dataset. In addition, we used a
pixel- and phenology-based method to map coastal wetlands and
combined NDVI, EVI, and LSWI to detect coastal vegetation (EVI ≥ 0.1,
NDVI ≥ 0.2 and LSWI > 0), whereas the FAFU dataset used
NDVI ≥ 0.1 to identify vegetation. These differences contributed the
difference in the results reported by our study and the FAFU dataset.
The different methods and different definitions of coastal zones used in
our dataset and the SZU dataset resulted in the differences in coastal
vegetation and tidal flat areas. The SZU dataset used the random forest
algorithm, and our study used a pixel- and phenology-based algorithm.
In addition, SZU used a 10 km landward buffer and a 40 km seaward
buffer along the coastline as its study region, but we used a 50 km
buffer from the artificial shoreline as our study region, which resulted
in large difference in coastal vegetation area. The tidal flats area was
highly consistent between our dataset and LULC2015 (Fig. 11). How-
ever, there are still some differences due to different methods used in
these two datasets. In addition, the different spatial resolutions between
our dataset (30 m) and the LULC2015 dataset (1 km) (http://www.
resdc.cn/data.aspx?DATAID=184), also contributed to the differences
in area derived by these two datasets (Fig. 12).

Several reasons may explain the inconsistency between the UQD
dataset and our FUDAN/OU dataset (Fig. 11). First, in terms of input
image data, the UQD dataset used Landsat images during 2014–2016,
and our FUDAN/OU dataset used images from 2015, thus the UQD
dataset used much more Landsat data than our dataset. Second, in
terms of the mapping algorithm, the UQD dataset used the random
forest method, and we used a pixel- and phenology-based algorithm.
Third, in terms of land cover classification scheme and definition, the

Fig. 9. Regional subsets of coastal wetlands, showing the different distribution patterns of tidal flats, deciduous, evergreen wetlands, and Landsat RGB imagery. (a)
Liao River Estuary; (b) Yellow River Estuary; (c) Yangtze River Estuary; (d) Hangzhou Bay; (e) Minjiang River Estuary; (f) Nanliu River Estuary. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Coastal wetlands areas (km2) in each province of China in 2018 as derived by
our study.

Province Tidal flats Deciduous Evergreen Coastal
Vegetation
(deciduous
+ evergreen)

Coastal
wetlands
(tidal flats +
deciduous +
evergreen)

Liaoning 622.4 69.0 0.0 69.0 691.4
Tianjin 37.1 3.0 0.0 3.0 40.1
Hebei 144.2 10.1 0.0 10.1 154.3
Shandong 823.2 228.3 1.2 229.5 1052.7
Jiangsu 1177.8 381.0 11.9 392.9 1570.7
Shanghai 186.3 360.7 25.5 386.2 572.5
Zhejiang 601.7 270.1 11.9 282.0 883.7
Fujian 860.3 165.1 13.9 179.0 1039.3
Taiwan 184.7 73.4 12.3 85.7 270.4
Guangdong 329.8 113.2 70.1 183.3 513.1
Guangxi 300.1 133.9 51.7 185.6 485.7
Hainan 112.2 48.6 39.7 88.3 200.5
Total 5379.8 1856.4 238.3 2094.6 7474.4
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UQD dataset detected nearly all the aquaculture ponds in the coastal
zones as tidal flats (Fig. 12). As the aquaculture ponds in China’s coastal
zone have expanded rapidly over the past three decades (Ren et al.,
2019), the misclassification between aquaculture ponds and tidal flats

caused an overestimation in the UQD dataset. In addition, the regions
where the near-infrared band mimicked the near-infrared band from
tidal flats were identified as tidal flats in the UQD dataset (Fig. 13).
However, the water frequency in these regions equaled one (Fig. 13c),
and they were regarded as year-long seawater in our dataset. Thus, the
misclassification between year-long seawater and tidal flats also con-
tributed to the overestimation of tidal flat areas in UQD dataset. The
inter-comparison between these datasets clearly suggests that there is a
need to develop common validation dataset for the community, so that
we can better characterize the effects of land cover classification
scheme or definition, input datasets, and mapping algorithms on the
accuracy and uncertainty of coastal wetland maps.

4.2. Potential sources of errors in the annual coastal wetland maps of China

The accuracy and uncertainty of resultant coastal wetland maps of
China are affected by several factors, including input image data, in-situ
training data, mapping algorithms, and land cover classification
schemes or definitions. In this study, more than 87% of the pixels in
2018 had more than 10 good-quality observations (Fig. 1b), and the
good-quality number of each pixel was enough to process the fre-
quency-based algorithm to monitor the coastal wetlands. Nevertheless,
the spatial inconsistency of the good-quality observations might still
cause some uncertainties in the resultant coastal wetland maps (Wang
et al., 2018). In addition, although most of bad-quality observations
were removed by using the QA band (Zhu et al., 2015; Zhu and
Woodcock, 2012), it is impossible to remove all the bad-quality ob-
servations because of the limited quality of the QA band (Zou et al.,
2018). Therefore, the bad-quality observations also could result in some
inevitable uncertainties in the resultant maps.

Accurate location of shoreline is a factor that affects area summary
report. As Landsat is sun-synchronous satellite and it has a 16-day re-
peat cycle, it is inevitable for us to only capture part of the full tidal
range at a specific location (Dhanjal-Adams et al., 2016; Sagar et al.,
2017). In addition, tidal variations within scenes also could bring some
uncertainties to the coastal wetlands mapping (Wang et al., 2018).
However, our pixel- and phenology-based method made use of all
available Landsat images in GEE to reduce those impacts. A previous
study reported that Landsat images cannot detect the high tidal line
under the closed-canopy vegetation (Chen et al., 2019), and here we
used visual interpretation to delineate the artificial shorelines and de-
fine the scope of coastal wetlands. But because of the limitation of vi-
sual interpretation, some isolated coastal vegetation, which has narrow
connections to seawater, was neglected, such as some mangrove forests

Fig. 10. Comparison of coastal wetland areas from our dataset (FUDAN/OU dataset) and other datasets in 2015. (a) Comparison between our study and the FAFU
dataset (Chen et al., 2019, 2016); (b) Comparison between our study and the SZU dataset (Zhang et al., 2019).

Fig. 11. Comparison of tidal flats areas in China between our dataset (FUDAN/
OU) in 2015 and the UQD during 2014–2016 (Murray et al., 2019), the SZU in
2015 (Zhang et al., 2019), and the LULC2015 datasets.

Table 5
Areas (km2) of tidal flats in China from our FUDAN/OU dataset in 2015 and the
UQD during 2014–2016 (Murray et al., 2019), the SZU dataset in 2015 (Zhang
et al., 2019), and the LULC2015 dataset.

Province UQD SZU LULC2015 FUDAN/OU

Liaoning 1388.2 624.4 293.0 584.5
Tianjin 182.0 44.9 131.0 32.4
Hebei 570.9 162.0 220.0 148.3
Shandong 1512.7 879.1 1020.0 887.5
Jiangsu 3024.3 1774.1 1122.0 1016.2
Shanghai 375.0 351.0 166.0 181.8
Zhejiang 1375.3 418.1 459.0 618.2
Fujian 819.4 882.0 829.7
Taiwan 360.4 461.0 232.3
Guangdong 1208.4 532.0 443.9
Guangxi 519.5 363.0 254.5
Hainan 193.1 187.0 113.3
Total 11529.2 4253.4 5836.0 5342.7
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Fig. 12. Three zoom-in views of tidal flats from our FUDAN/OU dataset in 2015, the UQD dataset during 2014–2016 (Murray et al., 2019), and the LULC2015 map in
Shandong and Jiangsu Provinces of China.

Fig. 13. Spatial distribution of tidal flats and water frequency in the Yellow River Delta in 2015. (a) Spatial distribution of tidal flats from our FUDAN/OU dataset and
the UQD dataset (Murray et al., 2019); (b) Spatial distribution of tidal flats from FUDAN/OU dataset and the location of area of interest (AOI); (c) Tidal flats in
FUDAN/OU dataset, location of AOI, and the regions of water frequency was equal to 1. The background information on (a) and (b) is the band 5 (near-infrared band)
of Landsat 8. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Illustration of typical uncertainties in our algorithm. (a) Isolated mangrove forests (21.679592° N, 108.859794° E); (b) Ephemeral vegetation which was
regarded as tidal flats in 2018 (31.464716° N, 121.956125° E); (c) Field photo of ephemeral vegetation in 2018.
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in the southern China (Fig. 14a). Artificial shorelines also might in-
crease the areas of coastal vegetation because some inland vegetation
located between artificial shoreline and seawater was misidentified as
coastal vegetation in this study. In addition, selecting training data
based on visual interpretation also might bring few inevitable un-
certainties to the resultant maps.

Mixed pixels of tidal flat and vegetation also affect the annual maps
of coastal wetlands. The threshold of VF = 0.15 was used to detect the
deciduous wetlands and tidal flats, so this threshold can cause mixture
of tidal flats and deciduous wetlands when some coastal vegetations
had very low VF in a specific year (0 < VF < 0.15). In fact, the sparse
vegetation with low frequency consisted of ephemeral plants and was
regarded as tidal flats in this study referring to the detection methods
(Section 2.3, Eq. (7)) (Fig. 14b and c). Fortunately, these ephemeral
plants have very short lives and cover only a very small percentage of
the total coastal wetlands in China.

4.3. Implications and future development of coastal wetland mapping

The resultant coastal wetland maps of China for 2018 at 30-m
spatial resolution are critical for better understanding of the detailed
spatial information on coastal wetlands, as well as coastal vegetation
and tidal flats in China, and can provide invaluable information for
coastal sustainable management. The pixel- and phenology-based al-
gorithm, time series Landsat images, and Google Earth Engine are
useful in mapping annual coastal wetlands in China and can readily be
applied to other regions in the world. This mapping strategy could be
used to (1) track the dynamics of coastal wetlands in China over the
past 3 decades (back to 1980s); and (2) monitor the global distribution
and trajectory of coastal wetlands and serve as a more accurate coastal
wetlands dataset than the previous global tidal flats dataset. However,
this method may have significant errors when it is used in the tropical
regions because of more frequent cloud cover (Dong et al., 2016). There
are three strategies to reduce the errors in those regions with too many
bad-quality observations. First, we can generate a coastal wetland map
within each three-year time-period (such as, 2014–2016) through in-
tegrating all the available Landsat images during the period in GEE,
which would greatly increase the number of good-quality observations.
Second, we can integrate more optical satellite data at similar spatial
resolutions with Landsat data, such as Sentinel-2 and Worldview 3,
which have showed their potential for LULC mapping (Asadzadeh and
de Souza Filho, 2016; Pahlevan et al., 2017; Puliti et al., 2018). Third,
we can combine optical and microwave images to overcome the diffi-
culties imposed by cloud cover and improve the accuracy of the re-
sultant wetland maps. Microwave images from synthetic aperture radar
(SAR), such as ALOS/ALOS-2 (Chen et al., 2018), ERS (Van Der Wal
et al., 2005) and Sentinel-1 (Chen et al., 2017; Veloso et al., 2017), have
become open access.

5. Conclusion

Previous efforts to map coastal wetlands have generally used visual
interpretation, supervised, and unsupervised methods, and single-date
or multi-date image mosaics (Tables 1 and 2). However, the bad-quality
observations, periodical tides, and in-completed phenological in-
formation on coastal vegetation in coastal zones make such classifica-
tions difficult and inaccurate. Accurate annual coastal wetland maps at
large scales, which include tidal flats and coastal vegetation, have been
very limited in China. We generated an unprecedented 30-m coastal
wetland map of China for 2018 using a pixel- and phenology-based
algorithm, the Landsat ETM+/OLI images in a single year, and the GEE
platform. Our methods resulted in high producer’s and user’s ac-
curacies, and the resultant maps have higher accuracies than the global
tidal flats dataset. Therefore, the wetland maps in this study could serve
as the newest dataset to support management and conservation of
coastal wetlands in China with high accuracy.
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