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A B S T R A C T

Tidal flats (non-vegetated area), along with coastal vegetation area, constitute the coastal wetlands (intertidal
zone) between high and low water lines, and play an important role in wildlife, biodiversity and biogeochemical
cycles. However, accurate annual maps of coastal tidal flats over the last few decades are unavailable and their
spatio-temporal changes in China are unknown. In this study, we analyzed all the available Landsat TM/ETM
+/OLI imagery (~44,528 images) using the Google Earth Engine (GEE) cloud computing platform and a robust
decision tree algorithm to generate annual frequency maps of open surface water body and vegetation to pro-
duce annual maps of coastal tidal flats in eastern China from 1986 to 2016 at 30-m spatial resolution. The
resulting map of coastal tidal flats in 2016 was evaluated using very high-resolution images available in Google
Earth. The total area of coastal tidal flats in China in 2016 was about 731,170 ha, mostly distributed in the
provinces around Yellow River Delta and Pearl River Delta. The interannual dynamics of coastal tidal flats area
in China over the last three decades can be divided into three periods: a stable period during 1986–1992, an
increasing period during 1993–2001 and a decreasing period during 2002–2016. The resulting annual coastal
tidal flats maps could be used to support sustainable coastal zone management policies that preserve coastal
ecosystem services and biodiversity in China.

1. Introduction

Coastal wetlands are usually composed of coastal vegetation area
and tidal flats (or intertidal flats, often referred as coastal non-vegetated
areas). Coastal tidal flats often include mud flats, sand, and rocky areas
(Fig. 1) (Dyer et al., 2000), and are natural transitions from terrestrial
ecosystems to ocean ecosystems (Kline and Swallow, 1998; Oost et al.,
2012; Wei et al., 2015; Yao, 2013). They also serve as critical wildlife
habitat for large populations of waterfowl and migratory birds (e.g.,
Great Knot), crabs, mollusks, and fish (Barbier et al., 2008; Ghosh et al.,
2016; Koch et al., 2009; Ma and Li, 2015). Furthermore, tidal flats
prevent coastal erosion and serve as buffer zones that help protect in-
land communities from storms and other natural hazards (Jin et al.,
2017; Murray et al., 2014).

However, tidal flats are one of the most vulnerable areas on Earth

due to anthropogenic activities and natural disturbances, such as global
warming induced sea-level rise (Blum and Roberts, 2009; Kolker et al.,
2011; Morris et al., 2002; Rodriguez et al., 2017), coastal erosion, land
reclamation (Feng et al., 2012; Wei et al., 2015), aquaculture, salterns,
impoundments, and diversions (Ma et al., 2014; Syvitski et al., 2005).
For example, approximately 16 km2 of coastal tidal flats were destroyed
in the Ariake Bay in the early 1990s in Japan (Hodoki and Murakami,
2006). The preservation of tidal flats depends on our ability to accu-
rately monitor their spatial distribution and temporal variations
(Zahran et al., 2006).

Many global land cover data products have a wetland layer, such as
the 1-km International Geosphere-Biosphere Programme Data and
Information System Cover (IGBP-DISCover) map (Loveland et al.,
2000), the 1-km University of Maryland (UMD) land-cover map
(Hansen et al., 2000), the 1-km Global Land Cover 2000 (GLC2000)
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map (Bartholome and Belward, 2005), the 500-m Moderate Resolution
Imaging Spectrometer (MODIS) land-cover maps (Friedl et al., 2010;
Friedl et al., 2002), the 300-m GlobCover land-cover maps (Arino et al.,
2008), and the 30-m global land cover map generated using Landsat TM
and ETM+ data under the Fine Resolution Observation and Monitoring
of Global Land Cover (FROM-GLC) project (Gong et al., 2013). How-
ever, these land cover data products have different classification sys-
tems, and do not include a layer for coastal tidal flats and information
on the annual spatial distribution of tidal flats in China. In addition, a
number of research projects have focused on wetland classification
(Chen et al., 2016; Gong et al., 2010; Niu et al., 2009, 2012), including
tidal flats monitoring at regional (Dyer et al., 2000; Gade et al., 2008;
Ghosh et al., 2016; Liu et al., 2013; Mason et al., 2010; Murray et al.,
2014; Ryu et al., 2002; Wang and Niu, 2017; Wei et al., 2015; White
and Madsen, 2016; Zhao et al., 2008) and national scales (Dhanjal-
Adams et al., 2016; Murray et al., 2012; Sagar et al., 2017; Tseng et al.,
2017). However, most of those studies did not explicitly differentiate
coastal vegetation area and coastal tidal flats (Liu et al., 2013; Murray
et al., 2014; Sagar et al., 2017; Wang and Niu, 2017). A recent study
mapped coastal tidal flats in the Yangstze Estuary using all Landsat
images within 5 years windows through visual interpretation method
(Chen et al., 2016). Therefore, there are no annual maps of coastal tidal
flats in China since mid-1980s at a relative high spatial resolution,
which could be used to illustrate the annual dynamics of tidal flat areas
and assess the impacts of socio-economic developments since 1980s on
the coastal zones in China. It's imperative for us to develop annual maps
of coastal tidal flats in China at high spatial resolution.

Supervised and unsupervised classification methods (e.g., support
vector machine (SVM) classifier) (Arino et al., 2008; Friedl et al., 2010;
Friedl et al., 2002; Gong et al., 2013; Hansen et al., 2000; Loveland
et al., 2000), and object-based classification (Dronova et al., 2015) have
been widely used to produce most of the land cover products. These
methods usually produced accurate land cover maps for small regions at
a specific time, but were often costly, time consuming, difficult to scale-
up to larger areas, and couldn't be used to analyze broader spatio-
temporal variability and trends (Chen et al., 2017; Ghosh et al., 2016).
Moreover, most of these studies used imagery from a single date or
multiple dates to produce wetland maps. Due to the periodicity of tides,
phenology of coastal vegetation, and bad-quality observations, the
classification of wetlands by using specific imagery or one composite
image often have large spatio-temporal uncertainties (Chen et al.,
2017). Murray et al. (2014, 2012) used regional tidal models and se-
lected Landsat images (close to high and low tides) to map coastal

wetlands. This method assumed that coastal wetlands changes in the
intertidal zones are small over the time period taken to acquire satellite
images (Mason et al., 2010). However, areas of wetlands in China have
changed a lot because of increased economic development (Niu et al.,
2012). Chen et al. (2016) visually interpreted high tidal coastline lo-
cations and tidal flats in Yangtze Estuary, but this method is insufficient
at tracking tidal flats in national scale. Li and Gong (2016) determined
the annually inundated area and coastline dynamics of western Florida
using time series Landsat images, but tidal flats weren't extracted within
the inundated area. Tide-covered lands can be estimated by using tidal
gauge records and Digital Elevation Model (DEM) (Zhao et al., 2008),
however the tidal record may be incomplete and at a coarse temporal
resolution for long temporal ranges (Bell et al., 2016).

Increase in freely available time series remote sensing data has
generated intense interest within the geoscience community to in-
vestigate land cover change history and increased demand for advanced
and efficient hardware and software processing capabilities (Casu et al.,
2017; Chen et al., 2017; Dong et al., 2016). In the last few years, cloud-
based computing capacity has improved greatly and shows great po-
tential for large-scale land cover mapping. For example, Google Earth
Engine (GEE), which consists of a multi-petabyte analysis-ready data
with a high-performance cloud computing platform, has enabled re-
searchers to quickly process millions of images in an intrinsically-par-
allel processing way (Casu et al., 2017; Gorelick et al., 2017). All
images archived in GEE could be used to generate global and national
land cover maps. Several studies have used GEE to analyze time series
spectral data of individual pixels to produce annual maps of paddy rice
(Dong et al., 2016; Dong et al., 2015; Zhang et al., 2015a; Zhang et al.,
2017), algal blooms (Hu et al., 2010; Zhang et al., 2015b), forests (Chen
et al., 2018; Chen et al., 2017), and open surface water bodies (Pekel
et al., 2016; Zou et al., 2018; Zou et al., 2017). A recent study also
analyzed time series Landsat images during 1987–2015 and con-
tinental-scale tidal modelling data, and reported spatial-temporal
changes of coastal wetlands (intertidal zone) in Australia (Sagar et al.,
2017).

In this study, we aim to study spatio-temporal dynamics of the
coastal tidal flats in China from 1986 to 2016 using time series Landsat
TM/ETM+/OLI images and GEE cloud computing platform. The spe-
cific objectives of this study were to: (1) develop a simple and robust
mapping algorithm to generate annual maps of coastal tidal flats, and
analyze the inter-annual variations of tidal flats area in China during
1986–2016; (2) analyze spatio-temporal changes (erosion and expan-
sion) of coastal tidal flats in the Yellow River delta and Yangtze River

Fig. 1. An illustration of inland, wetland distribution (coastal vegetation, tidal flats) and yearlong sea water. Case1: Common classification system for wetlands,
including both coastal vegetation and tidal flats; Case 2: There is no intertidal zone between inland and yearlong seawater; Case 3: There are no barren tidal flats but
only coastal vegetation in the intertidal zone; Case 4: There are no coastal vegetation but only tidal flats in the intertidal zone.
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delta during 1986–2016, and (3) identify the major factors that have
driven the observed changes in coastal tidal flats.

2. Materials and methods

2.1. Study area

China's coastal zone stretches from the mouth of the Yalu River in
the north to the estuary of Beilun River in the south (18.2°N to 40.5°N)
and the coastline covers approximately 18,000 km. It includes Hong
Kong, Macao, Taiwan and the provinces of Liaoning, Tianjin, Hebei,
Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi
Zhuang Autonomous, and Hainan. It covers three climate zones: tro-
pical, sub-tropical, and temperate climate (Liu et al., 2014). Most of the
northern half is low lying, although some of the mountains and hills of
Northeast China and the Shandong Peninsula extend to the coast. The
elevation of the China's coastal zone ranges from sea level to over 3700-
m above sea level (Fig. 2a).

2.2. Landsat data and pre-processing

The study area covers 46 path/row (tiles) of the Landsat Worldwide
Reference System (WRS-2) (Fig. 2a). We used all the available standard
level 1 Terrain-corrected (L1T) orthorectified Landsat images between
January 1, 1986 and December 31, 2016, which have been archived in
the GEE platform as the image collection of United States Geological
Survey (USGS) Landsat 5/7/8 Surface Reflectance (SR). We counted the
number of Landsat images in each path/row (Fig. 2b), total observation
numbers of individual pixels by sensors (Landsat5/7/8) (Fig. 2c), and
the distribution of good-quality observation numbers of all pixels from
1986 to 2016 (Fig. 2d). The frequencies of the first interval (0–2) and
the second interval (2–4) were 4.3% and 1.7%, respectively, and>
94% of the pixels had 4 or more good-quality observations from 1986
to 2016. Bad-quality observations, including clouds, cloud shadows,
cirrus, snow/ice and scan-line corrector (SLC)-off gaps, were identified
using the Fmask band and not included in data analyses (Zhu et al.,
2015; Zhu and Woodcock, 2012). All Landsat image pre-processing
tasks were carried out in the GEE platform.

Three widely used vegetation indices (VIs) and one water-related
spectral index were calculated from the surface reflectance data with

Fig. 2. Location of study area and availability of time series Landsat images from 1986 to 2016. (a) Location of study area and coverage of Landsat Worldwide
Reference System 2 (WRS-2) path/row, (b) the number of all Landsat images in each path/row, (c) total numbers of images by sensors (Landsat 5/7/8), and (d) the
distribution of good-quality observation numbers of all pixels from 1986 to 2016.
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good-quality observations: Nominalized Difference Vegetation Index
(NDVI) (Tucker, 1979), Enhanced Vegetation Index (EVI) (Huete et al.,
2002; Huete et al., 1997), Land Surface Water Index (LSWI) (Gao, 1996;
Xiao, 2004), and modified Normalized Difference Water Index
(mNDWI) (Xu, 2006). NDVI and EVI are related to vegetation green-
ness, LSWI is sensitive to vegetation water content and soil water, and
mNDWI is sensitive to open surface water body. These indices have
been used to identify vegetation (Huete et al., 2002; Xiao et al., 2006)
and open surface water body (Chen et al., 2017; Xu, 2006; Zou et al.,
2018; Zou et al., 2017).
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where ρblue, ρgreen, ρred, ρnir, and ρswir are blue (450–520 nm), green
(520–600 nm), red (630–690 nm), near-infrared (NIR: 760–900 nm),
and shortwave infrared (SWIR: 1550–1750 nm) bands of Landsat TM/
ETM+/OLI imagery, respectively.

2.3. Data on river sediment load, controlled soil and water loss and
afforestation

The long-term river sediment load data in the Yangtze River Delta
were recorded at the Datong Station and were acquired from the
Bulletin of China River Sediment (BCRS) from 1986 to 2011 (available
at: www.cjh.com.cn) (Wei et al., 2015). The sediment load data in the
Yellow River Delta were acquired at the Lijin Station from 1986 to
2014, the last gauging station approximately 100 km upstream from the
river mouth (Pan and Mei, 2017; Wu et al., 2017). Data about con-
trolled soil and water loss area and afforestation areas in each province
in China from 1995 to 2016 were collected from the China Statistical
Yearbook from National Bureau of Statistics of the People's Republic of
China (available at: http://www.stats.gov.cn/tjsj/ndsj). All these data
were used to analyze the main driving factors for spatio-temporal dy-
namics of tidal flats in China's coastal zone.

2.4. Algorithms to identify open surface water body, vegetation and tidal
flats in the coastal zone

Coastal wetlands could be divided into two major parts along a
gradient from inland to sea: coastal vegetation and tidal flats (Fig. 1).
Here we describe our algorithms and workflows to identify and gen-
erate annual maps of coastal tidal flats in China from 1986 to 2016.

2.4.1. Algorithms to identify open surface water body
Although mNDWI was widely used to detect water bodies

(Davranche et al., 2010; Feng et al., 2012; Feyisa et al., 2014; Xu,
2006), it has commission errors in mixed pixels with water body and
other land cover types, especially when the pixel comprises vegetation
and water body (Santoro et al., 2015). To reduce the effects of vege-
tation on identifying water body, we combined the mNDWI and two
greenness-based vegetation indices (EVI and NDVI) to detect open
surface water body. About 2541 points (pixels), of which 1268 were
water and 1273 were non-water during coastal zone of China were
selected using visual interpretation and delineation of very high-re-
solution images (Fig. S1). 99.10% of the water points have
mNDWI > EVI while 97.13% of the non-water pixels show
mNDWI < EVI (Fig. S2a). Thus, mNDWI > EVI is a good criterion to

detect water. Also, 98.99% of the water pixels have mNDWI > NDVI
while 97.46% of the non-water pixels show mNDWI < NDVI (Fig.
S2b). Therefore, mNDWI > NDVI can be used as a supplementary
criterion to separate water from non-water pixels. Furthermore, 99.76%
of the water pixels show EVI < 0.1 (Fig. S2c). Thus, EVI < 0.1 can be
used to exclude mixed pixels of water and vegetation. The final water
detection formula is ((mNDWI > EVI or mNDWI > NDVI) and
EVI < 0.1). This mNDWI plus VI algorithm was first implemented in
Oklahoma (Zou et al., 2017), then used again using ~12,000 randomly
sampled Landsat pixels across the contiguous United States, and
showed an overall accuracy of 96.91% with a kappa coefficient of 0.94
(Zou et al., 2018). Furthermore, this algorithm had been compared with
other water detection algorithms, including TCW, AWEI, and mNDWI
(Zhou et al., 2017). Results showed that this mNDWI plus VI algorithm
had high average producer's accuracy (98.1%) and user's accuracy
(91.0%) between Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI.

2.4.2. Algorithms to identify green vegetation
NDVI is strongly linked to the leaf area index (LAI). However, it

could result in saturation where the vegetation canopy is closed and is
sensitive to atmospheric conditions and soil background (Huete et al.,
2002; Xiao et al., 2003). EVI adjusts the reflectance in the red band as a
function of the reflectance in the blue band, and it accounts for residual
atmospheric contamination (e.g., aerosols), variable soil conditions,
and canopy background reflectance (Huete et al., 2002; Huete et al.,
1997). In addition to NDVI and EVI, LSWI has also been used to identify
vegetation and exclude water bodies. Therefore, we use (EVI≥ 0.1,
NDVI≥ 0.2 and LSWI > 0) to identify green vegetation (Xiao et al.,
2009).

2.4.3. Annual frequency maps of open surface water body and green
vegetation

Due to the periodicity of tidal dynamics, phenology of coastal ve-
getation, and bad-quality observations, wetland classification results
derived from one image or one composite image do not capture such
dynamics. To reduce the effects of tidal dynamics and phenology on
coastal wetlands mapping, a frequency-based approach from time series
Landsat images was used to identify coastal vegetation area and tidal
flats (non-vegetated areas) in the intertidal zone, between inland and
year-long sea water. Open surface water body is first determined for
one observation using Eq. (5), and then, water body frequency in a year
is calculated using Eq. (6).

= ⎧
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< > >Water 1 EVI 0.1 and (mNDWI EVI or mNDWI NDVI)
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where FWater is the frequency of open surface water body scaled to 0 and
1 among all the good-quality observations, ∑NWater is the number of
open surface water bodies calculated using Eq. (5), ∑NTotal is the total
number of observations in a year, ∑NBad is the number of bad-quality
observations in a year, and ∑NTotal−∑NBad is the number of good-
quality observations. Fmask values represent for different image
quality, such as 0 for clear land pixel, 1 for clear water pixel, 2 for cloud
shadow, 3 for snow, and 4 for cloud (Zhu et al., 2015; Zhu and
Woodcock, 2012). Thus, we identified those pixels with Fmask va-
lues > 1 as bad-quality observations and then masked out or excluded
them from the study.

Similarly, we used the Eq. (7) and Eq. (8) to calculate the vegetation
frequency map.

= ≥ ≥ >{Vegetation 1 EVI 0.1 and NDVI 0.2 and LSWI 0
0 Other values (7)
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2.4.4. Annual maps of coastal tidal flats
In previous studies of inland freshwater bodies, year-long water was

identified using 0.75 as the threshold of open surface water body fre-
quency in the open surface water body mapping in Oklahoma (Zou
et al., 2017) and the contiguous US (Zou et al., 2018). Note that sea
water is less frequently impacted by precipitation, snowmelt and other
factors. The frequency maps of open surface water body in re-
presentative region in East China Sea in 2016 (Fig. 4a and c) and 31-
year frequency map over 1986–2016 (Fig. 3b and d) had similar spatial
patters so that we could identify annual year-long seawater and inter-
tidal zone using water frequency map in each year. We generated and
calculated annual water body frequency maps and total surface water
body areas by different frequency thresholds for individual years
(Fig. 3e). The number of pixels (total area) with water body fre-
quency > 0.95 for individual years have small interannual variation
during 1986–2016. We also evaluated the spatial distribution of dif-
ferent frequency thresholds (Fig. S3). When threshold values of 0.75,
0.80, 0.85, 0.90, and 0.95 were selected, the seawater extended to the

ocean constantly. When the threshold is 0.96, the seawater remained
unchanged. Thus, we used 0.95 to define year-long sea water, as well as
low water line. We also used 0.05 of water body frequency to identify
the highest tidal line because we assumed a potential error range (5%)
resulted from the algorithms and image data quality which may be
omitted by the Fmask cloud-screening algorithm (Zhu et al., 2015; Zhu
and Woodcock, 2012). Therefore, those pixels with a water body fre-
quency spanning from 0.05 to 0.95 were classified as intertidal zone.

We selected six large coastal vegetation areas of interest (AOIs) to
study their distributions of vegetation and water frequency (Fig. 4a-f).
According to the distribution of vegetation frequency of AOIs (Fig. 4g
and h), the threshold value of 0.05 was used as the threshold to classify
coastal vegetation area (vegetation frequency≥ 0.05) and non-vege-
tated tidal flats (vegetation frequency < 0.05).

Several land cover types, such as ponds, salt pans, and wharfs may
affect the accuracy of tidal flat maps as they have similar character-
istics: low vegetation frequency and temporary inundation.
Fortunately, those features which affected the accuracy of the maps
account for a small percentage of all tidal flats so that visual inter-
pretation was used to identify and remove ponds, salt pans, and wharfs
to improve map accuracy.

Fig. 3. Frequency maps of surface water body and water body areas using different frequency thresholds: (a) water body frequency map in 2016, (b) 31-year average
frequency map of surface water body over 1986–2016, (c) zoom-in show the local details of frequency map in 2016, (d) zoom-in show the local details of average
frequency map over 1986–2016, (e) surface water body areas using different frequency thresholds.
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2.5. Accuracy assessment of annual map of tidal flats in 2016 from Landsat
images

The annual maps of tidal flats in China were generated using above-
mentioned Landsat images, algorithms and GEE platform. We used the
stratified random sampling approach and very high resolution (VHR)
images from Google Earth to assess the accuracy of tidal flats map in
2016. First, the study area was partitioned into two classes (tidal flats
and non-tidal flats which include green vegetation, open surface water
body). Second, random points were generated in each stratum using
ArcGIS, and then we delineated the AOIs as circle buffers of the points
(30-m) (Chen et al., 2017). Third, the AOIs were converted to Keyhole
Markup Language (KML) format in ArcGIS and loaded into Google
Earth. Each AOI was checked using the VHR images and labeled the
pure land cover AOIs. The AOIs without clear land cover information
were excluded. Finally, a total of 11,683 AOIs were generated for the

validation of two map layers: tidal flats (2162 AOIs) and non–tidal flats
(9521 AOIs) (Fig. S4). Then a confusion matrix was calculated to
evaluate the accuracy of the results.

2.6. Inter-comparison and spatio-temporal analyses of annual maps of tidal
flats

As most existing land cover maps do not delineate coastal tidal flats,
and existing researches have classified wetlands only in small regions of
China (Chen et al., 2016; Chu et al., 2006; Murray et al., 2014; Yao,
2013), we compared our tidal flat maps with those publications that
include tidal flat layer.

To analyze the spatio-temporal variations of tidal flats in China, first
we analyzed the distribution of tidal flats in different coastal provinces
in 2016. Then, we calculated the total areas of tidal flats in China and
different provinces over the past 31 years (1986–2016) using the

Fig. 4. Location of selected coastal vegetation areas of interest (AOIs) and their pixel distribution of vegetation and water frequency. (a-f) the location of coastal
vegetation AOIs, (g) vegetation frequency distribution, (h) water body frequency distribution.
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coordinate of Projected Coordinate System of Krasovsky_1940_Albers
and analyzed their inter-annual variations using simple linear regres-
sion analysis. Detailed spatio-temporal changes, as well as erosion and
expansion trends of tidal flats, were also analyzed in two representative
regions: Chongming Island in Yangtze River Delta and Yellow River
Delta. Chongming Island is regarded as the largest alluvial island in the
estuary of a river and the largest sand island in the world. Yellow River
is regarded as the second largest river in the world in terms of sediment
discharge (Bi et al., 2014). The workflow for mapping tidal flats
(1986–2016) was showed in Fig. 5.

3. Results

3.1. Tidal flats map in 2016 across the coastal zone of China

Fig. 6. shows the spatial distribution of tidal flats along the coastal
zone of China in 2016, which is organized into four main parts for easy
visualization: Bohai Sea, Yellow Sea, East China Sea, and South China
Sea. Three figures that show the local details of tidal flats in selected
regions and the administrative region map in 1980s in China were also
shown in Fig. 6. The confusion matrix of land cover validation was
calculated and the result shows that the tidal flats map in 2016 had high
user's accuracy (96.3%), producer's accuracy (91.0%), and overall ac-
curacy (97.6%) with a kappa coefficient of 0.92 (Table 1).

The total area of tidal flats in China in 2016 was about 731,170 ha.
The tidal flats in the provinces around Yellow River Delta (Hebei,
Tianjin, Shandong) and Pearl River Delta (Fujian, Guangdong, Hong
Kong, Macao, and Guangxi provinces) accounted for about 72% of total
tidal flats in China in 2016. Shandong had the largest tidal flat area
(224,940 ha). Jiangsu and Zhejiang around Yangtze River Delta had
relatively larger areas of tidal flats, covering about 46,774 ha and
64,105 ha, respectively. Shanghai had the least tidal flats area as it is
the smallest province in China coastal zone. About 20,676 ha and
25,070 ha of tidal flats were found in Liaoning and Taiwan provinces,
respectively. Northern China had a larger area of tidal flats than
southern China, and tidal flats areas decreased significantly from Fujian
to Hainan Province (Table 2).

As the High Water Line (HWL) has been widely used to define the
coastline (Ford, 2013; Ghosh et al., 2015; Pardo-Pascual et al., 2012),
we digitized the HWL (water frequency=0.05), calculated the length

of coastline and mean tidal flats width using coastline length and tidal
flats area within each province in 2016 (Table 2). The total length of
China coastline is about 24,609 km. Guangdong (including Hong Kong
and Macao) and Liaoning Provinces had smaller mean tidal flats width
than other provinces due to their long coastlines. Tianjin Province had
largest mean tidal flats width due to its short coastline and high sedi-
ment.

3.2. Annual dynamics of tidal flats areas during 1986–2016 at national
and provincial scales

The total tidal flats area in China had large interannual variation
from 1986 through 2016 (Fig. 7). The annual tidal flats area varied
from 8.54×105 ha in 1986, 1.20×106 ha in 2001 to 7.31×105 ha in
2016, with an average area of 9.47×105 ha. It clearly has (1) a stable
period (1986–1992, R2=0.02), (2) an increasing period (1993–2001,
R2=0.89, p < 0.01), and (3) a decreasing period (2002–2016,
R2=0.96, p < 0.01) in the last 31 years.

Different provinces showed different trends over the three decades.
Coastal tidal flats areas in Hebei, Tianjin, Shandong, Jiangsu, and
Shanghai showed similar trend with the total tidal flats area in China
during 1986 and 2016. However, significant decreasing trends were
founded in the provinces of Liaoning (R2= 0.95, p < 0.01) and
Guangdong (including Hong Kong and Macao) (R2=0.82, p < 0.01).
Zhejiang, Fujian, and Hainan showed slight decreasing trend. Guangxi
and Taiwan had little variation during 1986 and 2016.

3.3. Erosion and expansion of coastal tidal flats in Yellow River and
Yangtze River Deltas

Coastal tidal flats of China are too long from north to south to be
showed in a full map, and tidal flats in various places showed different
erosion and expansion patterns and dynamics. To identify the erosion
and expansion trend of tidal flats, we selected two case-study regions:
(1) Chongming in Yangtze River Delta and (2) Yellow River Delta
(Fig. 8a and d). Tidal flats maps in 1986, 1991, 1996, 2001, 2006,
2011, and 2016 (Fig. 8b and e), as well as the annual area trend during
1986–2016 (Fig. 8c and f), were shown in Fig. 8.

Tidal flats areas in Chongming showed a statistically significant
decreasing trend (1986–1991, R2=0.94, p < 0.01) and increasing

Fig. 5. Workflow of tidal flats mapping using Landsat time-series images from 1986 to 2016.
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trend (1992–2016, R2=0.32, p < 0.01) over the last 31 years. The
area decreased from 8581 ha in 1986 to 3589 ha in 1991, then in-
creased significantly to 10,995 ha in 2016 (Fig. 8c). The tidal flats in
Chongming had clearly expanded into the ocean over the past 31 years
(Fig. 8b).

As for the Yellow River Delta (YRD), engineers blocked the main
channel and forced the river to veer northeast in 1996, which caused
sediment to be deposited in a new location. The spatial distribution of
tidal flats on our maps reflected the outcomes of this project clearly
(Fig. 8e). The annual tidal flats area was highly variable from 1986 to
2016 and increased from 50,497 ha in 1986 to 81,301 ha in 1998, and

then decreased to 48,254 ha in 2016.
To identify the speed of erosion and expansion in these two deltas,

we randomly selected a base-point and two representative reference
lines: L-east which across the mouth of the rivers and L-north which was
perpendicular to L-east (Fig. 9a and c). The trends of erosion and ex-
pansion were calculated using the distance from the outside edge of
tidal flats to the base-point in different years. Tidal flats in Chongming
showed expansion with different rates in different orientations. The
expansion rate of L-east decreased from 1.7 km/5 years during
1986–1991 to 0.6 km/5 years during 2011–2016. However, the ex-
pansion rate of L-north was relatively stable with an average rate of

Fig. 6. The administrative region map in 1980s and four parts of the resulting tidal flats map in China in 2016: (a) Bohai Sea, (b) Yellow Sea, (c) East China Sea, and
(d) South China Sea, and (e, f, g) are three zoom-in views for the case regions labeled as 1,2,3, respectively.

Table 1
Confusion matrix of tidal flats validation based on the areas of interest (AOIs) from very high-resolution images of Google Earth.

Ground reference pixels Total map pixels User's accuracy

Class Tidal flats Non-tidal flats

Map pixel Tidal flats 2082 80 2162 96.3%
Non-tidal flats 205 9316 9521 97.9%

Total ground truth pixels 2287 9396 11,683 OA=97.6%
Producer's accuracy 91.0% 99.2% Kappa=0.92
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0.53 km/5 years (Fig. 9b).
Tidal flats in Yellow River Delta had different dynamics. The posi-

tive and negative values illustrate the expansion and erosion of tidal
flats in Fig. 9d, respectively. Tidal flats in L-north showed tidal flats
erosion from 1986 to 2016 at a relatively stable rate of 0.58 km/5 years.
However, tidal flats in L-east, across the mouth of YRD, expanded at a
rate of 7.8 km/5 years from 1986 to 1996. Afterward, the mouth of YRD
eroded inland and the erosion rate decreased over years, approximately
4.53 (1996–2001), 2.23 (2001–2006), 1.81 (2006–2011), 1.40
(2011–2016) km/5 years.

4. Discussion

4.1. Reliability and uncertainty of tidal flats mapping using Landsat data
and GEE

In this study we demonstrated the feasibility and reliability of de-
veloping annual maps of tidal flats at 30-m spatial resolution in China's
coastal zone using the Landsat TM/ETM+/OLI images and the GEE
cloud computing platform. Thanks to the open access Landsat data, GEE
cloud computing platform, simple and robust algorithms, we conducted
this study successfully with high classification accuracy (UA/PA/
OA > 90%).

Other researchers had completed the wetland classification of the
Yellow River Delta using the visual interpretation method and Landsat
imageries in 1986, 1991, 1996, 2001, 2006, 2011, and 2016 (Pan and
Mei, 2017). The comparison of total tidal flats areas between this study

and Pan's publication in the same study region showed that both data
products were consistent in 1986, 1991, 1996, and 2011, but the areas
in this study were substantially larger than Pan's results in 2001, 2006,
and 2016 (Table 3). One of the reasons for the difference is that they
selected Landsat images in the above-mentioned years randomly, which
could not avoid the effects caused by the periodicity of tidal dynamics,
phenology of coastal vegetation and bad-quality observations. We used
all the available images within the study period so that more tidal flats
could be identified, and the effects of tidal dynamics were reduced in
this study. These two tidal flats products also showed good spatial
consistency of tidal flats dynamics in the Yellow River Delta, char-
acterized by erosion in the north and expansion in the mouth of the
river. Chen et al. (2016) completed wetland classification using water
frequency maps and visual interpretation in the Yangtze Estuary. We
compared the area of tidal flats in 1990, 1995, 2000, 2005, 2010, and
2014 in Shanghai (Fig. 10a) and Jiangsu (Fig. 10b). The comparison
showed similar trends in the two regions and differences of tidal flats
areas in Shanghai was larger than in Jiangsu. The differences are
mainly because of the detection of high tide coastline location, which
was visually interpreted from single cloud free images for each period
to produce tidal flats region.

Image data and algorithms are two of the several factors that could
affect the accuracy of tidal flats mapping. The quality and the incon-
sistent availability of input images at temporal and spatial scales has
posed significant challenges to land cover mapping (Gong et al., 2013;
Hansen et al., 2000). In this study, Landsat data analysis at the pixel
level showed that the annual good-quality observations of pixels had

Table 2
Distribution of tidal flats in different provinces in China in 2016.

Province Tidal flats area (ha) Percentage (%) Coastline length (103 m) Mean tidal flats width (m) (Tidal flats area/coastline length)

Liaoning 20,676 2.8 2494 82.9
Hebei 72,787 10.0 501 1452.8
Tianjin 62,708 8.6 116 5405.9
Shandong 224,940 30.8 896.2 858
Jiangsu 46,774 6.4 704 664.4
Shanghai 10,995 1.5 615 178.8
Zhejiang 64,105 8.7 3427 187.1
Fujian 91,200 12.5 4185 217.9
Taiwan 25,070 3.4 1516 165.4
Guangdong(including Hong Kong and Macao) 55,492 7.6 6034 92.0
Guangxi 22,265 3.0 1038 214.5
Hainan 34,150 4.7 1439 237.3
Total 731,170 100 24,609 297.1

Fig. 7. Inter-annual variations of tidal flats area in different coastal provinces in China from 1986 to 2016.
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notable spatial and inter-annual variations and about 50% of the pixels
had less than 15 good-quality observations in a year (Fig. 2). The in-
consistent availability of Landsat images could cause some un-
certainties in the annual tidal flats maps. Accuracy assessments of an-
nual tidal flat maps had some uncertainties resulting from the limited
ground reference data, difficulties in field survey and the limited
availability of VHR images over time in Google Earth. To reduce such
uncertainties, we produced as many random points as possible to assess
the tidal flats map in 2016.

Utilizing a sun-synchronous satellite such as Landsat, it is inevitable
that the sensor will only observe a portion of the full tidal range at any
location, with less frequent observations at the extremely low and high
tides (Dhanjal-Adams et al., 2016; Sagar et al., 2017). Considering the
tidal stage changes quickly every month and the number of good-
quality observations per year may be limited, year-to-year comparison

may not be that accurate, but it is still useful to track the interannual
change of tidal flats. There are also significant tidal variations within
scene which may affect the tidal flats mapping. In addition, mNDWI
plus VI and frequency method were used to detect pure water and pure
vegetation in this study so that mixed pixels, such as remnant tidal flats
water, couldn't be detected.

4.2. Driving factors for spatio-temporal dynamics of tidal flats in the coastal
zone

Several natural and anthropogenic factors have had large influences
on tidal flats distribution and dynamics in the coastal zone (Blum and
Roberts, 2009; Ma et al., 2014; Morris et al., 2002; Rodriguez et al.,
2017). Sediment loads were identified as the major driving factors that
influence tidal flats in China (Bi et al., 2014; Chen et al., 2016). Here we

Fig. 8. Location, distribution, and area changes of tidal flats in Chongming in Yangtze River Delta and Yellow River Delta (YRD) during 1986–2016. (a) Location of
Chongming, (b) distribution of tidal flats in Chongming, (c) area changes of tidal flats in Chongming, (d) location of YRD, (e) distribution of tidal flats in YRD and (f)
area changes of tidal flats in YRD.
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Fig. 9. Measurement of tidal flats erosion and expansion in Chongming in Yangtze River Delta and Yellow River Delta, (a) distribution of tidal flats and reference
lines in Chongming, (b) tidal flats changes in Chongming, (c) distribution of tidal flats and reference lines in Yellow River Delta, and (d) tidal flats changes in Yellow
River Delta.

Table 3
Comparison with Pan's research (Pan and Mei, 2017) in Yellow River Delta.

1986 1991 1996 2001 2006 2011 2016

Tidal flatsPan 58,814.07 63,655.63 74,313.73 31,996.8 52,776.45 44,288.81 28,385.26
Tidal flatsFreq 50,497.19 62,643.94 71,364.14 57,349.65 78,868.62 42,009.45 48,257.19

Tidal flatsPan: Tidal flats area (ha) from Pan's research using visual interpretation method;
Tidal flatsFreq: Tidal flats area (ha) in this study using frequency-based method.
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collected the sediment loads data from the Datong Station (Wei et al.,
2015) in the Yangtze River Delta and the Lijin Station (Pan and Mei,
2017) in the Yellow River Delta to analyze their influences on the area
change of tidal flats in China. At the Datong Station, sediment load was
high with a large interannual variation during 1986–2000 but had
declined linearly since 2001. At the Lijin Station, sediment load was
also high during 1986–2003 but started to decline linearly in 2004
(Fig. 11). Another study showed that the sediment discharge to the sea
in the Yellow River Delta declined sharply from 0.84 Gt/years to 0.4
Gt/years and 0.15 Gt/year during the periods of 1986–1999 and
2000–2005, respectively (Wang et al., 2007). Reduced sediment load in
several stations were also reported in other publications along the
Yellow River (Wang et al., 2016) and Yangtze River (Zhao et al., 2017).
Tidal flats area dynamics in the coastal zone were affected by both
sediment load from rivers (expansion) and erosion to the oceans (loss).
High sediment load before the early 2000s could contribute to expan-
sion or stabilization of tidal flats, while reduced sediment load in the
2000s could result in loss of tidal flats areas in the 2000s (Fig. 7), as no
sufficient sediment load is available to counter against the tidal flats
erosion to the oceans.

Sediment loads are closely associated with the control and con-
servation of water and soil in China (Zhao et al., 2017). Data about
controlled soil and water loss area in China (Fig. S5a) and afforestation
areas in each province from 1995 to 2016 (Fig. S5b) were collected
from the China Statistical Yearbook. Vegetation cover in China has
significantly increased and annual reforestation and afforestation areas
in China had remarkable interannual dynamics (Li et al., 2018; Zhang
et al., 2018), driven by national policies and ecological engineering and

restoration projects. For example, the ‘Grain-for-Green’ program
(GFGP) launched in 1999 resulted in a gradual increase of vegetation
during 1995–2001 (Wang et al., 2016), with a large jump in
2002–2003, followed by a decrease in 2004–2006 (Fig. S5a). The area
of controlled soil and water erosion has risen steadily since 1995. Most
reforestation and afforestation areas were in the two most important
basins: The Yellow River Basin and the Yangtze River Basin. Specifi-
cally, those provinces in the Yellow River basin had larger afforestation
areas than did other regions (Fig. S5b). Accordingly, the changes in
total tidal flats area in China were mainly driven by sediment load in
the main rivers. Improved soil and water conservation, and increased
reforestation and afforestation in China could have contributed to the
reduction of tidal flats areas after 2001.

Human activities also played a significant role in driving the change
in area, erosion, and expansion of tidal flats in China. For Chongming in
the Yangtze River Delta, as an example, anthropogenic land reclama-
tion played a crucial role in the annual area change of tidal flats. Land
reclamation in Chongming started on a small scale during 1986 and
1990 and the area of tidal flats decreased at a small rate. After that,
three land reclamation projects on a larger scale during 1990–1991,
1992–1992, and 1997–1998 were implemented (Gao and Zhao, 2006),
during which tidal flats area declined rapidly. In 2012, the compre-
hensive control project for Spartina alterniflora, which was the major
invasive species, was carried out in Chongming Island. A large area of
Spartina alterniflora was cut, which resulted in bare lands that were
identified as tidal flats, causing the tidal flats area increase sharply
during 2012–2013. Then, reeds were planted on the bare lands after
2013, which reduced the tidal flats area in 2014–2016 (Fig. 9c).

Fig. 10. Area comparison of tidal flats in (a) Shanghai and (b) Jiangsu with Chen's research (Chen et al., 2016).

Fig. 11. Inter-annual variations of the area of Aquatic farm and salt pan area, and accumulated sediment discharge in Yellow River Delta and Yangtze River Delta
from 1986 to 2016.
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Similarly, tidal flats in the Yellow River Delta showed large inter-
annual variations from 1986 through 2016 (Fig. 8f) due to its large area
and human activities. For example, tidal flats were converted into
aquatic farms and salt pans for economic benefits (Fig. 11 and Fig. S6)
(Pan and Mei, 2017). In addition, policies and ecological projects also
affected tidal flats area. An ecological water diversion project for the
Yellow River Delta Nature Reserve was carried out in 2011 and ap-
proximately 3.5× 107m3 water were transferred into the Yellow River
Delta (Zheng et al., 2012). Tidal flats became inundated, which resulted
in a sharp decreasing of tidal flats area during 2011–2012 (Fig. 8f).

4.3. Implications for applications and future development

Tidal flats in the coastal zone could serve as the base for offshore
fisheries and provide habitats for many aquatic and migratory organ-
isms that contribute to the health of marine ecosystems (Ma et al.,
2014). The resulting annual maps of tidal flats in China from 1986 to
2016 at 30-m spatial resolution in this study are useful for better un-
derstanding of the interaction between waterfowl populations and
change of tidal flats area in the East Asian-Australasian flyway
(Rodriguez et al., 2017), which currently is the migratory path for the
highest proportion (19%) of threatened waterbird populations among
the global flyways (Ma et al., 2014; Ma et al., 2013; Wilson et al.,
2011). Also, annual tidal flats maps in this study serve as the dataset for
studying the interaction between the tidal flats and tides, sea level rise,
and ecological engineering projects under the context of climate
change.

The frequency-based land cover mapping algorithms, time series
Landsat images, and GEE cloud computing platform, when used to-
gether, can maximize the use of available imageries and have the po-
tential to be applied widely (1) to map saltmarsh or mangrove using the
annual frequency maps of open surface water body and coastal vege-
tation, and (2) to monitor the change of coastline and wetlands as they
are always affected by the tidal dynamics. Currently, this work was
limited by the quality and quantity of Landsat images. A number of
multi-spectral data with higher spatial and temporal resolutions, such
as Sentinel-2 (Belgiu and Csillik, 2018; Pahlevan et al., 2017; Puliti
et al., 2018; Veloso et al., 2017) and Worldview 3 (Asadzadeh and de
Souza Filho, 2016), are potential data sources for land use and land
cover mapping with higher precision. Radar sensors, such as synthetic
aperture radar (SAR), can be used for an areal surveillance that is in-
dependent of day time and cloud coverage (Gade et al., 2008). Many
studies (reviewed by Lewis (1998)) have successfully used SAR images
to map surface water bodies and wetlands. For example, SAR data ac-
quired from Shuttle Imaging radar (SIR)-B mission were used to
monitor water level (Alsdorf et al., 2000). Bell et al. (2016) used SAR
images which acquired by JERS-1to map the morphology of intertidal
area. In addition, Sentinel-1 carries a C-band synthetic aperture radar
instrument with a 12-day repeat cycle at the equator and 10-m spatial
resolution, and has already been used to monitor open surface water
body (Chen et al., 2017) and vegetation (Reiche et al., 2018; Veloso
et al., 2017). Thus, we could generate annual maps of tidal flats with
higher accuracy in the future by improving the mapping algorithms and
using more image data (e.g. Landsat, Sentinel-1 and 2, Worldview 3).

5. Conclusions

Previous land cover classifications generally treated the coastal
wetland as single land cover type. Our data and knowledge of the
spatio-temporal dynamics of coastal tidal flats at large scales have been
very limited. Open-access time series Landsat data and the GEE cloud
computing platform enable researchers to track the annual changes of
coastal tidal flats in China since the 1980s at 30-m spatial resolution. In
this study, all Landsat 5/7/8 images from 1986 to 2016 and a pixel and
frequency-based approach were used to generate annual 30-m tidal flats
maps in China coastal zone over the last 31 years. The Landsat-based

time series vegetation indices and water-related spectral index captured
the year-long water body, coastal vegetation, and tidal flats with a small
number of training datasets and achieved high accuracy. Our approach
reduced the effects of tidal dynamics which introduced large un-
certainty in previous efforts with a single or composite image. The
quality and the inconsistent availability of Landsat images at temporal
and spatial scales, along with our algorithms, could have introduced
some uncertainty in our tidal flat maps. Other sensors (e.g., Sentinel-1
and 2, Worldview 3) with higher spatial and temporal resolution are
becoming available, which will further help improve coastal wetland
mapping in the future. Our annual maps of tidal flats in China are likely
to provide vital information for geographical, ecological, and public
health applications.
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