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A B S T R A C T   

Lakes and reservoirs provide important ecosystem services that support human welfare and socio-economic 
activities. However, in many world regions, the ecological integrity of lakes and reservoirs is threatened by 
human perturbations and climate change. The Secchi disk depth (SDD) is a widely-used proxy representing the 
trophic status of lakes and reservoirs and can be retrieved from remote sensing data. Despite their potential for 
large-scale (regional, global) and long-term lake and reservoir water clarity assessment, the transferability of 
remote sensing-based models has been a major limitation. In this study, we assembled in situ SDD in lakes and 
reservoirs across North America (NA) from five different sources. We identified a subset of 3235 samples 
collected within ±7 days of a Landsat satellite overpass. Relationships between various spectral index models 
calculated from Landsat top-of-atmosphere reflectance and in situ SDD were analyzed. A model based on Landsat 
blue/green plus blue/red ratios (denoted as RGRB) was selected to retrieve the SDD of all NA lakes and reser
voirs. The RGRB model performed well during calibration (R2 = 0.81) and validation (R2 = 0.78, MAPE = 30.85 
%). This model also exhibited stable and reliable performances regardless of the Landsat sensors (TM, ETM+, and 
OLI), despite spectral configuration differences among these sensors. RGRB was implemented to generate SDD 
maps for all lakes and reservoirs (water surface area ≥1 ha) across NA in 2019. More than 2.9 million lakes and 
reservoirs were mapped with Landsat OLI images, resulting in an average SDD of 3.84 ± 1.77 m. A strong 
positive relationship between average SDD and log-transformed water surface area (R2 = 0.80, p < 0.001) 
indicated that large lakes and reservoirs tend to be more transparent than small ones. Latitudinal variations were 
found in the water clarity gradient, with maximum SDD recorded at the 35◦N–60◦N latitude and lower SDD at 
the 10◦N–30◦N latitude. This model can be implemented using the Google Earth Engine platform to derive SDD 
for NA lakes and reservoirs at annual or even seasonal time steps to assess water eutrophication variation in both 
time and space at the continental scale.   

1. Introduction 

Inland waters support high levels of biodiversity (Balian et al., 2007; 
Grantham et al., 2019) and provide several ecosystem services beneficial 
to human well-being (e.g., drinking water, irrigation, fisheries, and 
creation) (Alcamo et al., 2007; Brauman et al., 2013). However, inland 
waters, particularly relatively static water bodies such as lakes and 
reservoirs, are vulnerable to the synergistic effects of multiple 

environmental pressures, including nutrient enrichment, organic and 
inorganic pollution from anthropogenic activities, and climate change 
(Bergström and Karlsson, 2019; Sterner et al., 2020; Zhang et al., 2020). 
In many regions, the ecosystems of lakes and reservoirs are increasingly 
impacted by ecologically significant events such as harmful algal blooms 
(Mishra et al., 2020). The sensitivity of lakes and reservoirs to climate 
change, land use, and other environmental disturbances has attracted 
growing attention in recent years. Therefore, there is a pressing need to 
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develop tools for monitoring freshwater ecosystems and understanding 
their responses to current and future environmental changes (Shen et al., 
2020). 

Water clarity is an effective proxy for aquatic ecosystem health. It has 
been used to evaluate lake and reservoir trophic status due to its strong 
link with algal abundance (Chl-a), total suspended matter (TSM), total 
nitrogen (TN), and total phosphorus (TP) (Carlson, 1977; Song et al., 
2014). The Secchi disk depth (SDD) is commonly used to express water 
clarity (Tyler, 1968; Lee et al., 2016), and its widespread adoption stems 
from its low cost, simplicity, and ease of operation (Kloiber et al., 2002; 
Song et al., 2020). However, for large regional-scale studies, the con
ventional SDD method is limited in the number of lakes and reservoirs 
that can be investigated and the geographic extent of such studies. This 
consideration is particularly relevant for lakes and reservoirs situated in 
remote areas, where accessibility can be challenging (Olmanson et al., 
2008; Song et al., 2020). Further, measurements frequency, the cost of 
field campaigns, and the number of lakes and reservoirs that can be 
monitored simultaneously are some of the other limitations of conven
tional SDD measurement approaches (Sayers et al., 2015). 

Water clarity has a direct correlation with optically-active constitu
ents (OACs) that can be present in waters, e.g., phytoplankton, non-algal 
particles (NAP), and colored dissolved organic matter (CDOM) in the 
water column (Song et al., 2012; Lee et al., 2016). Thus, optical remote 
sensing has been used to estimate SDD through its strong link with 
OACs, which can affect the water-leaving radiance signal and can be 
detected by optical sensors onboard satellite platforms (Boland, 1976; 
Lillesand et al., 1983; Kloiber et al., 2002; Shen et al., 2020). Over the 
past four decades, optical remote sensing has been demonstrated as an 
effective tool for monitoring water quality characteristics of lakes and 
reservoirs at local, regional, and global scales (Kutser, 2004; Kloiber 
et al., 2002; Duan et al., 2008; Sayers et al., 2015). Furthermore, satellite 
remote sensing reduces the cost of labor-intensive environmental 
monitoring programs by combining limited in situ measurements with 
models that capture the spatial and temporal dimensions of relevant 
environmental processes (Boland, 1976; Lillesand et al., 1983; Olman
son et al., 2008). Among the several satellite systems (e.g., SeaWiFS, 
Terra, Aqua/MODIS, MERIS, IRS-LISS, and Sentinel-2A) used for water 
quality monitoring, the Landsat satellite sensor series has particularly 
been useful for the long-term assessment of biogeochemical character
istics of inland waters (Alföldi and Munday Jr., 1978; Duan et al., 2008; 
Song et al., 2020). Several studies have established reliable empirical 
relationships between Landsat imagery and ground observations of 
water quality parameters, including Chl-a, SDD, and TSM (Zheng et al., 
2015; Watanabe et al., 2015; Liu et al., 2019) at a local or regional scale. 

Since 1972, the Landsat sensors have provided the longest record of 
water resources observation from space (Alföldi and Munday Jr., 1978; 
Lillesand et al., 1983; Loveland and Dwyer, 2012; Page et al., 2019). Its 
medium spatial resolution (30–60 m) makes it suitable for SDD esti
mates in large and small inland water bodies . In most cases, empirical 
models have been developed between Landsat top of atmospheric (TOA) 
surface reflectance and in situ SDD measurements ( Song et al., 2020). 
Several previous studies have described effective methods to evaluate 
the water clarity of lakes and reservoirs using Landsat TM and ETM+

imagery (Kloiber et al., 2002; McCullough et al., 2012; Courville et al., 
2014). However, numerous models are constrained by poor geograph
ical and temporal transferability (Kloiber et al., 2002; Olmanson et al., 
2008). Water clarity models are often limited to regional lake and 
reservoir studies, and in most cases, models need to be tuned with co- 
concurrent in situ SDD and satellite overpasses within a specific time 
window (Kloiber et al., 2002; Olmanson et al., 2008). For some specific 
case studies, robust algorithms have been used with relative success to 
retrieve SDD using Landsat OLI imagery over large inland water bodies 
(e.g., the Three Gorges reservoir and Lake Dongting in China) (Zheng 
et al., 2015; Shen et al., 2020). To improve SDD modeling accuracy, 
McCullough et al. (2012) have combined Landsat spectral variables with 
hydrological features of lakes and reservoirs occurring in a catchment. 

Lee et al. (2016) developed a semi-analytical model to improve both the 
accuracy of water transparency estimates from remote sensing data and 
the temporal transferability of the model. The newly developed semi- 
analytical scheme was applied to Landsat OLI data to obtain a high- 
spatial-resolution map of water clarity (Lee et al., 2016). The method 
has been tested in lakes from other regions with some success (Rodrigues 
et al., 2017). It has also been modified for application to turbid lakes and 
reservoirs in the mid-lower reaches of the Yangtze River Basin (Feng 
et al., 2019). Although researchers have developed different retrieval 
algorithms to estimate SDD, these tend to be lake-specific due to vari
ations in OAC composition. Moreover, the application of semi-analytical 
and analytical models is often limited by the unavailability of proper 
initialization parameters or restricted bio-optical parameters for model 
parameterization (Sayers et al., 2015). Empirical models are often used 
to derive large-scale SDD estimates (Olmanson et al., 2008; Song et al., 
2020). 

Recent progress has been made to utilize moderate and coarse res
olution satellite data (e.g., SeaWiFS, MODIS, MERIS, or OLCI) for 
frequent and large-scale monitoring of lacustrine SDD (Binding et al., 
2015; Liu et al., 2019; Shen et al., 2020). Most past studies have focused 
on lakes and reservoirs with surface areas in the 10–100 km2 range (Liu 
et al., 2019), and relatively few efforts have been devoted to the appli
cation of remotely-sensed imagery data to monitor water clarity of small 
lakes at regional and continental scales (Bonansea et al., 2015; Song et 
al., 2022b). A notable example of such applications is the work of 
Olmanson et al. (2008), involving long-term (~20 years) monitoring of 
SDD and trends in water clarity in thousands of Minnesota lakes using 
Landsat data. However, their modeling approach requires concurrent in 
situ measurements of SDD for model tuning and parameterization, 
which may limit its potential use for estimating SDD in lake and reser
voir regions where extensive in situ measurements are not available. 
Thus, there is a need for a stable and less data-intensive model for SDD 
that can extend the application of Landsat data to study water quality 
variations in both time and space (Olmanson et al., 2008; Bonansea 
et al., 2015; Ren et al., 2018; Song et al., 2022b). Studies indicated that 
the Landsat TOA reflectances provided by the Google Earth Engine 
(GEE) have great potential for regional and national scale assessment of 
lake and reservoir water quality (Wang and Gordon, 2018; Vanhelle
mont and Ruddick, 2018; Song et al., 2020); however, continental and 
global scale analyses of water quality trends using these tools have not 
been explored yet. Although a few studies have examined SDD varia
tions at continental and global scales, these assessments were limited to 
large surface area lakes and reservoirs (Wang and Gordon, 2018; Liu 
et al., 2019). Thus, the primary purpose of this study is to establish a 
robust model for large-scale mapping of SDD in small lakes and reser
voirs using Landsat TOA reflectance on the GEE. The specific objectives 
are to (1) collect and assemble in situ SDD data for lakes and reservoirs 
across North America (NA) and match the measured data with spectral 
information acquired from Landsat series sensors to derive an SDD 
model; (2) evaluate various models and select the model with the best 
performance to estimate SDD in lakes and reservoirs with surface area ≥
1 ha across NA, and (3) examine the spatial variation of SDD in lakes and 
reservoirs across NA. 

2. Materials and methods 

2.1. Study area 

Lakes and reservoirs cover only 3–4 % of the global non-glaciated 
terrestrial surface (Verpoorter et al., 2014). Lakes and reservoirs are 
unevenly distributed, and about 43.5 % of the permanent lakes and 
reservoirs occur in NA (Pekel et al., 2016). Although the total area of 
permanent inland waters in the United States has increased by 0.5 % 
since 1984, drought and increased water demand have reduced their 
areal extent by 33 % (or ~6000 km2) in six western states (Pekel et al., 
2016). In Mexico, the reduction in water availability as a consequence of 
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climate change not only compromises water reliability for industries and 
agriculture but also challenges the provision of drinking water, a most 
basic human need (Gradilla-Hernández et al., 2019). Canada is endowed 

Fig. 1. Distribution of SDD-measuring stations across North America. Red points denote EPA dataset, blue points denote EDI dataset, white points denote WQP, 
orange points denote MPCA dataset, and purple points denote data retrieved from the literature. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 
Comparative performance of some published models for retrieving SDD based on Landsat imagery data. All these models were calibrated using the calibration dataset 
(Model expressions) and validated using the calibration dataset.  

Author Model expressions Sensor Equations R2 N RMSE MAPE 

Richard (1986) Ln (SDD) = − 2.10*In(G)-0.18 TM y = 0.62x + 1.99  0.50 1668  1.26  55.10 
Allee (1999) Ln (SDD) = − 2.10*ln(G) − 0.003*ln(R) + 0.0001*ln(SWIR) − 0.185 TM y = 0.61x + 0.90  0.56 1653  1.08  36.06 

Ln (SDD) = − 80.67 *R + 484.09*(R)2 –237.92 *(R)3 + 8.06 TM y = − 0.26x + 7.62  0.34 1668  6.53  600.63 
Kloiber (2002) Ln (SDD) = − 5.87*(B/R) + 1.08*B + 8.08 TM y = 0.75x + 1.38  0.75 1668  0.94  31.43 
Stacy (2002) Ln (SDD) = − 5.86*(B/R) + 1.083 ETM+ y = 0.69x + 1.67  0.69 371  1.69  36.14 
Hellweger (2004) Ln (SDD) = 0.74*R + 1.37 TM y = 0.62x + 2.07  0.62 1668  1.10  40.61 
Guan (2011) Ln (SDD)) = − 6.31*(B/R) + 3.83*R + 8.225 TM y = 0.75x + 1.38  0.75 1668  0.94  31.38 
Fuller (2011) Ln (SDD) = 41.22*B − 28.40 *G − 35.33*R + 5.11 TM y = 0.74x + 1.43  0.74 1668  0.97  31.28 
Page (2018) Ln (SDD) = − 4.29 *(B/R) + -9.29*(G) + 7.74 OLI y = 0.75x + 1.37  0.75 276  0.66  35.02 
Song (2022) Ln (SDD) = − 5.30*(R/B) + -4.29*(B/G) + 8.21 TM y = 0.86x + 0.37  0.82 1668  0.62  30.45  

Table 2 
Calibration and evaluation of performance (using RMSE, MAPE, and Bias) of 
SDD models established using various modeling approaches. Abbreviations: R 
represents red band, B represents blue band, and G represents the green band in 
different Landsat sensors.  

Sensor Equation R2 RMSE MAPE Bias 

Landsat OLI LN(SDD) = − 29.7*R + 6.10  0.39  0.65  39.87  0.45 
LN(SDD) = − 5.24*R/B + 7.48  0.70  0.51  38.22  0.34 
LN(SDD) = 5.688*B/G − 2.50  0.81  0.41  16.85  0.22 
LN(SDD) = − 0.76*R/B +
5.11*B/G − 1.37  

0.82  0.40  16.15  0.23       

Landsat 
ETM+

LN(SDD) = − 31.45*R + 6.71  0.61  1.17  37.65  0.76 
LN(SDD) = − 5.84*R/B + 8.01  0.67  1.03  44.36  0.70 
LN(SDD) = 5.05*B/G − 1.55  0.66  1.29  31.84  0.70 
LN(SDD) = − 2.36*R/B +
3.65*B/G + 1.48  

0.81  0.96  26.11  0.54       

Landsat TM LN(SDD) = − 31.28*R + 6.88  0.55  1.10  40.25  0.83 
LN(SDD) = − 5.58*R/B + 8.07  0.66  1.03  33.15  0.76 
LN(SDD) = 4.25*B/G − 0.45  0.67  1.08  29.13  0.71 
LN(SDD) = − 2.81*R/B +
2.73*B/G + 2.96  

0.82  0.75  21.63  0.52  

Fig. 2. Pearson correlation coefficients of the relationships between SDD versus 
spectral bands and band ratios of Landsat sensors. Blue, Green, Red, and NIR for 
OLI bands 2, 3, 4, and 5; Blue, Green, Red, and NIR for Landsat TM/ETM+

bands 1, 2, 3, and 4. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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with the most freshwater per capita in the world, much of it located in 
northern lakes and rivers draining north. However, over 90 % of the 
Canadian population lives in a narrow band along the southern border, 
where water is relatively less abundant. Despite Canada’s low popula
tion density and large land mass, significant water pollution problems 
have been identified in some areas (Binding et al., 2015). There are more 
than 2.9 million lakes and reservoirs with an area ≥ 1 ha in NA; 

however, only a very small proportion of these (about 1227 lakes and 
reservoirs) are regularly and consistently monitored (Olmanson et al., 
2008; Brezonik et al., 2015; Binding et al., 2015). 

2.2. In situ SDD datasets 

To establish robust models for lake and reservoir clarity mapping in 
NA (surface area ≥ 1 ha), in situ SDD datasets were assembled from lakes 
and reservoirs located in different geographic regions, morphology, 
hydrographic and hydrochemical conditions (including OACs) (Brezo
nik et al., 2015; Song et al., 2020). SDD data were collected from various 
sources. The first SDD dataset was collected from the US Environmental 
Protection Agency (US-EPA) (downloaded from the EPA’s STORET 
water quality data repository; https://www.epa.gov/storet/). As part of 
routine aquatic environmental monitoring work, in situ SDD from water 
bodies across the conterminous US were collected by the US-EPA in 
2007 and 2009. The second major SDD dataset was from the Environ
mental Data Initiative (EDI, https://portal.edirepository.org/nis/home. 
jsp). This National ScienceFoundation-funded project actively promotes 

Fig. 3. Scatter plots of in situ SDD (ln-transformed) and estimated SDD (ln-transformed) using different modeling approaches and spectral data acquired with 
different Landsat sensors. (a) Landsat red model, (b) Landsat red/blue band ratio model, (c) Landsat blue/green band ratio model, and (d) Landsat red/blue and blue/ 
green band ratios using a multi-step model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
Model calibration with different modeling approaches and evaluation of model 
performance (using RMSE, MAPE, and Bias) with pooled dataset acquired with 
different Landsat sensors.  

Band Equation R2 RMSE MAPE Bias 

R LN(SDD) = − 34.56*R + 6.96  0.57  1.10  40.82  0.82 
R/B LN(SDD) = − 5.90*R/B + 8.17  0.68  1.02  34.94  0.74 
B/G LN(SDD) = 4.57*B/G − 0.92  0.73  1.10  29.54  0.70 
R/B + B/ 

G 
LN(SDD) = − 2.74*R/B + 3.01*B/ 
G + 2.51  

0.81  0.76  21.77  0.51  
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and enables the curation and re-use of environmental data. Measured 
SDD data from publicly-funded research is available through this web
site (https://environmentaldatainitiative.org/). The third SDD dataset 
was from the surface water monitoring stations of the Minnesota 
Pollution Control Agency (MPCA, https://webapp.pca.state.mn.us/w 
qd/surface-water). The MPCA monitors environmental quality, offers 
technical and financial assistance, and enforces environmental 
regulations. 

The last SDD dataset was from a meta-analysis of relevant published 
literature, which was mainly used to validate model performance. We 
downloaded all the literature published in the past three decades 
(1990–2019) using ISI Web of Science with lake, reservoir, water 
quality, clarity, transparency, and SDD as keywords. Altogether, 420 
relevant articles were identified, and the SDD record was retrieved along 
with ancillary information presented in each article. For some articles, 
the information provided was inadequate; therefore, we only retained 
SDD records that also included collection date and geo-location (Lat- 
longitude). When in situ SDDs were reported for multiple locations 
within a lake and reservoir for a known time frame, the average SDD was 

taken to represent the water clarity status of the whole lake and reser
voir. In this case, the average Landsat TOA reflectance value was also 
used. 

Altogether, we obtained 109,741 SDD measurements from EDI, 
WQP, EPA, and MPCA for lakes and reservoirs across NA. The SDD ob
servations spanned from 1984 to 2019. For most of the monitoring 
stations, SDD observations were from the ice-free season (June- 
October). Eventually, 3235 SDD samples were matched up with Landsat 
imagery acquired within ±7 days of the measurement and collected by 
different Landsat sensors (TM, ETM+, and OLI) (see Fig. 1). 

2.3. Landsat images matchups with in situ SDD 

GEE stores a petabyte archive of Earth Observations data that pro
vides and relates data using an efficient processing software coded in 
Python and describes these data in API format (Gorelick et al., 2017). 
Landsat imagery data acquired by different sensors (e.g., TM, ETM+, 
and OLI) were available and processed with the GEE platform. Landsat 
calibrated TOA Tier 1 collections for Landsat TM, ETM+ and OLI were 

Fig. 4. Scatter plots for comparing validation data with SDD estimates are obtained with the different modeling approaches listed in Fig. 3. Results are presented for 
different Landsat sensors and models: (a) Landsat red model, (b) Landsat red/blue band ratio model, (c) Landsat blue/green band ratio model, (d) Landsat red/blue 
and blue/green band ratios using a multi-step regression model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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used for this study (Chander et al., 2009). A customized JavaScript cloud 
masking and compositing script algorithm were implemented in GEE to 
suppress different types of clouds and noises and to generate a multi
spectral composite cloud-free image for visual inspection of imagery 
quality for further implementation of SDD estimate. 

Matching up Landsat overpasses with in situ SDD is a key step in the 
modeling effort. The time window for matching Landsat TOA and in situ 
observations was set to ±7 days to ensure sufficient matchups (Olman
son et al., 2008; Song et al., 2020). The other criterion that needs to be 
considered is cloud contamination, which affects the images being 
selected for SDD mapping (Chander et al., 2009). Here, we set the 
threshold for images with cloud coverage <10 % of the lake and reser
voir water surface area. When this threshold was established, the pixels 
affected by clouds or haze were manually masked and removed. Landsat 
images were selected to match up with in situ SDD according to these 
two criteria noted above (Onderka and Pekárová, 2008). These selected 
Landsat TOA meeting these criteria were downloaded from the GEE 
platform. The ArcGIS software package was used to extract the Landsat 
TOA reflectance at the latitude and longitude of the sampling points. The 
mean value of a 3 × 3 pixels box centered at an in situ measurement site 
was used as the final Landsat reflectance value, which was eventually 
used for model calibration and validation. Altogether, 3235 sampling 
points were matched in NA, including 290 sampling points from Landsat 
OLI images, 690 sampling points from Landsat ETM+ images, and 2255 
sampling points from Landsat TM images. The number of data for the 

three sensors (TM, ETM+, and OLI) in the validation dataset is 834, 280, 
and 111, respectively. The number of data for the three sensors (TM, 
ETM+, and OLI) in the calibration dataset is 1421, 410, and 179, 
respectively. A total of 574 matchups were produced using the Landsat 7 
ETM+ SLC-off data (the Landsat 7 ETM+ images that had gaps collected 
after May 31, 2003). The gaps region were eliminated in producing 
matchups and mapping remote sensing SDD products of North America. 

2.4. The simulated dataset 

2.4.1. Data simulation description 
The simulated dataset CoastColour Round Robin datasets (CCRR) 

was employed in this study. The CCRR was simulated using HydroLight 
version 5.0 by inputting the variable parameters as shown in Nechad 
et al. (2015), which included the specific absorption coefficient of 
phytoplankton (a*

ph), the specific coefficient of detritus (a*
d), the spectral 

slope of a*
d (Sd), the spectral slope of CDOM (denoted as Sg), the specific 

scattering coefficient of detritus (b*
d), the spectral variation of the beam 

attenuation coefficient for phytoplankton (γChl), the spectral variation of 
the beam attenuation coefficient for detritus (γd), the atmospheric, air- 
sea interface, and sun and viewing angle parameters. A total of 5000 
triplets of Chla (range: 0.02–214.41 mg m− 3), detritus concentrations 
(range: 0.002–492.78 mg L− 1) and CDOM absorption at 443 nm 
(ag(443)) (range: 0.002–14.84 m− 1) were generated in the CCRR data
set. The wide range of Chla and detritus concentrations and ag(443)
implied that this simulated dataset could represent most types of inland 
waters. The simulated parameters of CCRR include total absorption (a), 
total backscattering coefficient (bb(λ)), phytoplankton absorption coef
ficient (aph(λ)), water-leaving reflectance (Rw(λ)), diffuse downwelling 
irradiance attenuation spectra (kd(λ)), and photosynthetically available 
radiation (PAR). 

2.4.2. Calculation of simulated ρTOA(λ) and SDD 
First, the simulated remote sensing reflectance (Rrs(λ)) was obtained 

using Rw(λ) in the CCRR (the sun and viewing zenith angle were both 0◦, 
the sun and viewing zenith angle were 0◦ and 90◦, respectively) divided 
by π. Second, the simulated Landsat OLI remote sensing reflectances 
(Rrs(λ)) in the ultra-blue, blue, green, and red bands derived by applying 
each Landsat OLI’s spectral response function (SRF) were downloaded 
from the website of the United States Geological Survey (USGS) (htt 
ps://landsat.usgs.gov/instructions.php). Third, the simulated Rayleigh 
and aerosol parameters, including the Rayleigh reflectance (ρr), the 
aerosol reflectance (ρa), the total upward diffuse atmospheric trans
mission (tu(λ)) and the total downward diffuse atmospheric transmission 
(td(λ)) were obtained using the Second Simulation of the Satellite Signal 
in the Solar Spectrum (6SV) and its python interface (Py6S) with the 
same sun and viewing angles described above for different values of 
aerosol optical thickness loadings (τa(λ)) (indexed by τa(λ) at 550 nm 
(τa(550)), τa(550)=0.0–0.5, increments of 0.01) (Kotchenova et al., 
2006; Kotchenova and Vermote, 2007). The aerosol type was fixed as the 
commonly used “Continental” models in the atmospheric correction of 
inland waters. Then, TOA reflectance (ρTOA(λ)) can be calculated using 
the simulated Landsat OLI Rrs(λ) and simulated Rayleigh and aerosol 
parameters according to Eq. (1). 

ρTOA(λ) = ρa(λ)+ ρr(λ)+ tu(λ)td(λ)*π*Rrs(λ (1) 

CCRR did not provide the SDD data. The semi-analytical inversion 
model proposed by Lee et al. (2016) was used to simulate SDD. Feng 
et al. (2019) demonstrated that this model performs well in retrieving 
SDD in lakes and reservoirs with various optical properties on a large 
regional scale. In this study, we used this model to simulate the SDD data 
described in Eq. (2). 

SDD =
1

2.5min(kd(Blue), kd(Green), kd(Red))
*In(

⃒
⃒0.14 − Rpc

rs

⃒
⃒

Cr
t

) (2) 

Table 4 
Model validation of the algorithms listed in Table 2 and evaluation (using RMSE, 
MAPE, and Bias) of the relationships between in situ and Landsat predicted SDD.  

Sensor In situ vs 
Landsat Pred. 

R2 N RMSE MAPE Bias 

Landsat 
OLI 

R y = 0.39x +
2.67  

0.43 180  1.82  54.03  1.34 

R/B y = 0.58x +
1.88  

0.58 180  1.62  46.29  1.14 

B/G y = 1.01x +
0.11  

0.51 180  2.12  44.18  1.34 

R/B 
+ B/ 
G 

y = 0.99x +
0.16  

0.54 180  1.47  42.42  1.06 

Landsat 
ETM+

R y = 0.40x +
3.27  

0.51 411  1.83  38.76  0.97 

R/B y = 0.61x +
2.03  

0.68 411  1.35  32.53  0.97 

B/G y = 1.02x +
0.10  

0.60 411  1.21  41.05  1.24 

R/B 
+ B/ 
G 

y = 0.98x +
0.26  

0.68 411  1.05  30.18  0.89 

Landsat 
TM 

R y = 0.66x +
2.06  

0.65 637  0.92  84.37  0.77 

R/B y = 0.78x +
1.25  

0.78 637  0.62  44.53  0.47 

B/G y = 0.72x +
1.47  

0.79 637  0.48  37.91  0.36 

R/B 
+ B/ 
G 

y = 0.86x +
0.76  

0.86 637  0.31  25.39  0.24  

Table 5 
Model validation of the algorithms listed in Table 3 and evaluation (using RMSE, 
MAPE, and Bias) of the relationships between in situ and Landsat-predicted SDD 
with pooled validation dataset acquired with different Landsat sensors.  

Models In situ vs Landsat pred. R2 RMSE MAPE Bias 

R y = 0.50x + 2.71  0.43  1.37  63.21  0.92 
R/B y = 0.68x + 1.69  0.58  1.06  38.23  0.69 
B/G y = 0.87x + 0.81  0.69  1.14  41.34  0.80 
R/B + B/G y = 0.94x + 0.42  0.78  0.96  30.85  0.61  
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where Cr
t (equals to 0.013 sr− 1) is the detection threshold of the human 

eye in air, kd(blue), kd(green), and kd(red) are the Landsat OLI kd(λ) at 
blue, green, and red bands calculated by the simulated kd(λ) in CCRR 
and applying each Landsat OLI’s spectral response function (SRF), Rpc

rs is 
taken as the Rrs(λ) value corresponding to the wavelength with the 
minimum kd(λ) at blue, green, and red bands. The simulated SDD values 
ranged from 0.08 to 36.05 m, with an average of 5.49 m. 

2.5. Algorithm development 

Model development is the key step in successfully using satellite data 
for large-scale mapping of inland waters SDD. First, we conducted a 
correlation analysis between in situ SDD and corresponding Landsat 
TOA reflectance. All possible band ratio combinations and original 
spectral band reflectance were tested (Kloiber et al., 2002). The spectral 
bands and band ratios that yielded higher correlation coefficients were 
used as candidate variables for SDD modeling. Further, these models 

with good performance proposed by previous case studies were also 
examined to test their effectiveness in our datasets (Lathrop and Lille
sand, 1986; Allee and Johnson, 1999; Kloiber et al., 2002; Nelson et al., 
2002; Hellweger et al., 2004; Guan et al., 2011; Page et al., 2019). These 
models included linear, cubic equation, and log transformations; their 
modeling parameters and model performance are presented in Table 1. 

We divided the in situ SDD into two groups to calibrate and validate 
the models. The calibration dataset included 2010 samples, and the 
validation dataset included 1225 samples. To determine which spectral 
band or band ratio was the best predictor of SDD, Pearson correlation 
and backward multiple regression analysis were carried out between 
log-transformed in situ SDD and TOA reflectance of TM, ETM+ and OLI 
bands of the calibration group (also see Table 2). We used root mean 
square error (RMSE), mean absolute percentage error (MAPE), and Bias 
to assess model accuracy. The formula for RMSE and MAPE are: 

Fig. 5. Mean distribution of SDD (a) and standard deviation of SDD (b) in lakes and reservoirs (water surface area ≥ 0.01 km2) across North America derived from 
OLI images acquired in 2019. For a given lake and reservoir, mean SDD was computed based on all the pixels within the lake and reservoir boundary as delimited by 
the lake and reservoir’s mask shape file. 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(y′

i − yi)
2

N

√
√
√
√
√

(3)  

MAPE =
100%

N
∑N

i=1

⃒
⃒
⃒
⃒
y,

i − yi

y

⃒
⃒
⃒
⃒ (4)  

where N is the total number of samples, where yi and yi
′ are the in situ 

SDD, and model predicted SDD values. 

2.6. Lake and reservoir mask generation for NA 

In this study, continental lake and reservoir surface area boundaries 
from NA were delineated by using Landsat OLI imagery data mainly 
acquired in 2019. The cloudless Landsat TOA image of each path and 
row close to 2019 was downloaded and processed to calculate the 
Modified Normalized Difference Water Index (MNDWI), calculated as 
follows: 

MNDWI = (Rgreen − Rswir)/(Rgreen − Rswir) (5)  

where Rgreen, Rswir are the TOA reflectance in the green band and the 
short-wave infrared (SWIR) bands, respectively. Firstly, we used 
MNDWI, Tasseled Cap Transformation (TC), and a density slicing with a 
multi-threshold approach to building a decision tree for retrieving water 
body boundaries using the Environment for Visualizing Images (ENVI) 
software package (Feyisa et al., 2014; Song et al., 2020). The MNDWI 
was firstly used to preliminary divide the pixels into two classes, non- 

water, and water, with a certain MNDWI value between 0.03 and 0.20 
determined by visual interpretation. Ludwig et al. (2019) illustrate that 
MNDWI may be difficult to distinguish the wetlands and waters for some 
humid climatic regions, e.g., Mississippi Delta. For this situation, the 
density slicing results of the wetness band of the tasseled cap trans
formation were also used to eliminate the wetlands misclassified as 
water pixels visual interpretation. The extracted water bodies were then 
converted into polygons with contiguous pixels and stored in shape files 
using ArcGIS 10.4 (ESRI Inc. Redlands, CA, USA). The water pixels of 
lakes nearby offshore, which the substrates may influence, were masked 
using the method described in our previous work (Tao et al. 2022). In 
order to avoid the influence of adjacent land on water bodies, a 2-pixel 
buffer inward of water boundary was removed for lakes with an area ≤1 
km2 and 5-pixel for lakes with an area >1 km2. We divided water bodies 
into lakes, reservoirs, and rivers according to their shoreline features 
and also based on the Global Reservoirs and Dams database (Lehner 
et al., 2011) and high-resolution images from Google Earth (Song et al., 
2020). Secondly, we exported the continental lakes and reservoirs into 
shapefiles. Finally, all lakes and reservoirs with an area ≥ 1 ha were 
determined as the initial study area (Fig. S1) and used to mask water 
clarity map results. 

2.7. Continental SDD mapping and statistical analysis 

For the Landsat standard swath (scene), 2335 paths/rows are needed 
to cover the lakes and reservoirs all over the NA continent. The 2019 
Landsat OLI image was filtered such that only images with <10 % cloud 
covers were used to derive the SDD spatial distribution in NA. Then, 

Fig. 6. Distribution of SDD in relation to lake and reservoir areas in different countries or regions in North America. The cumulative area of lakes and reservoirs is 
also displayed. Descriptive statistics were computed using pixel values for all lakes and reservoirs in a given country or region. 
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water bodies with an area ≥ 1 ha were selected, and the SDD value was 
masked out for further analysis and mapping. Besides, the mean SDD 
maps using TM (in 2001) and ETM + (in 2012) alone were also pro
duced, as shown in Fig. S5 and Fig. S6 in the Support Materials Section. 

After generating the SDD map for inland waters, we conducted sta
tistical analyses of SDD in different countries and geographic zones to 
explore the spatial pattern for water clarity. We calculated the averaged 
SDD for each lake and reservoir by using all qualified images during the 
ice-free period in 2019 and then merged the annual mean SDD of each 
lake and reservoir. We also compared the spatial variation of SDD in 
different countries and the longitudinal and latitudinal variations of 
SDD. Further, we also conducted statistical analysis between Landsat 
predicted and in situ SDD in some specific lakes and reservoirs, where 
long-term SDD records are available, aiming to test the continental 
model performance for tracking temporal SDD variations. 

3. Results 

3.1. Models linking SDD and Landsat observations 

A strong relationship was found between in situ SDD and Landsat 

data in the red band and the blue-to-green and blue-to-red band ratios 
(Table 2 and Fig. 2). The strength of the relationships, as expressed by 
high Pearson correlation coefficients, suggested that these variables can 
be used to construct suitable models for SDD monitoring. We developed 
empirical models based on these spectral bands (red band and the band 
ratios of blue-green and blue-red) and band combinations using simple 
regression or multi-step regression analysis to retrieve SDD from Landsat 
data for lakes and reservoirs across the whole NA continent. Results 
showed that regression models based on only the red band TOA reflec
tance had lower accuracy (Fig. 3a) and generally led to the underesti
mation of SDD (slope between 0.35 and 0.40 with the ln-transformed 
SDD data) for imagery acquired with Landsat sensors (TM, ETM+, and 
OLI). Further, the intercept values (range: 2.62–3.61 m) also suggested 
marked variation among images acquired by different Landsat sensors. 
The band ratio model based on the red-blue spectral ratio has been 
widely applied for SDD estimation in lakes and reservoirs from different 
regions. The scatterplot between in situ measured and Landsat predicted 
SDD indicated that the red-blue band ratio model significantly improved 
in comparison to the red band model (Fig. 3b). 

Further performance improvement was obtained with the blue-green 
ratio model (Fig. 3c), as indicated by slopes closer to unity (range: 

Fig. 7. Histogram of the distribution of mean SDD for lakes and reservoirs in different parts of North America, (a) Canada Lake Region, (b) United States Lake Region, 
(c) Central America, and (d) Greenland. Descriptive statistics were computed without consideration of lake and reservoir size. 
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0.78–0.91 m with different Landsat sensors) and lower intercepts (0.40 
to 1.24 m). Among the four regression models, the RGRB model based on 
the red-blue plus the blue-green band ratios (as described in Song et al., 
2022) emerged as the best-performing model (Fig. 3d). Good evidence 
was found of a significant association between in situ, and Landsat 
predicted SDD, irrespective of the Landsat sensor (OLI: R2 = 0.82; 
ETM+: R2 = 0.81; TM: R2 = 0.82, Fig. 3d). In light of this better per
formance, the following models were proposed for the continental-scale 

derivation of SDD. As shown in Eqs. (6)–(8) below, the models included 
a combination of red-blue and blue-green band ratios from different 
Landsat sensors: 

LN(SDD)OLI = − 0.76*R/B+ 5.11*B/G − 1.37 (R2 = 0.82; p < 0.001)
(6)  

Fig. 8. Histogram of distribution of SDD (Secchi disk depth) for lakes and reservoirs of different sizes across North America. Data are presented by water surface area: 
(a) <0.1 km2, (b) between 0.1 and 1 km2, (c) between 1 and 2 km2, (d) between 2 and 5 km2, (e) between 5 and 10 km2, and (f) >10 km2. 

Fig. 9. Latitudinal variation of (a) mean SDD and (b) total lake water surface area across Central America and North America.  
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Fig. 10. Correlations between simulated SDD and Landsat OLI indices calculated from simulated Rrs(λ) (left column) and simulated TOA reflectance (right column), 
where the ×, a, b, and c represent Landsat OLI red band, the red-green band ratio, the red-blue band ratio, and the green–blue band ratio, respectively, for the 
simulated CCRR dataset. The red dashed lines represent the regression lines. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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LN(SDD)ETM+ = − 2.36R/B+ 3.65B/G+ 1.48 (R2 = 0.78; p < 0.001)
(7)  

LN(SDD)TM = − 2.81*R/B+ 2.73*B/G+ 2.96 (R2 = 0.82; p < 0.001)
(8)  

where B, G, and R are the TOA reflectance for Landsat OLI bands 2, 3, 
and 4, respectively, and corresponding bands 1, 2, and 3 for Landsat 
ETM+ and TM, respectively. As shown in Fig. 3d, for all three Landsat 
sensors, slopes were close to unity (range: 0.86–0.91 m), and values of 
the intercepts were low (range: 0.38–0.78 m). A transformation of SDD 
data (LN(SDD) was adopted to improve goodness-of-fit. The model was 
selected based on maximum R2 and minimum values for RMSE, MAPE, 
and Bias. 

There are only a few matchups for Landsat 8 (179 samples in the 
calibration dataset and 111 in the validation dataset). The SDD range of 
the Landsat OLI calibration dataset was only from 0.1 to 4.5 m. For 
empirical models, a wide SDD range of the calibration dataset will 

ensure the models are more robust in retrieving SDD on a continental 
scale. Thus, the performance of a unified expression of different models 
across different Landsat sensors was evaluated using the pooled dataset 
(Table 3). Using the pooled dataset, the red band model exhibited a low 
performance (R2 = 0.62; Fig. S2). However, with the pooled data, 
improved model performance with both the red-blue band ratio (R2 =

0.67) and the blue-green band ratio models (R2 = 0.76). With the pooled 
data, the best-performing model developed with the Landsat sensor 
included a combination of the red-blue and blue-green band ratios (R2 =

0.81, p < 0.001; Table 3): 

LN(SDD) = − 2.74 × R/B+ 3.01 × B/G+ 2.51 (9)  

where R, G, and B are TOA reflectance values for red, green, and blue 
bands of the Landsat OLI/ETM+/TM, respectively. That model (com
binations of blue-green and red-blue band ratios) was used as a universal 
model (Eq. (9)) tuned with the pooled dataset to map SDD for all lakes 
and reservoirs with surface area ≥ 1 ha across NA. 

Fig. 11. The frequency distribution of in situ SDD matched up with different Landsat sensors: (a) Landsat OLI, (b) Landsat ETM+, (c) Landsat TM, and (d) the pooled 
dataset with all Landsat sensors. 
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3.2. Model validation 

Without adjusting the spectral band ratios and model parameters, the 
proposed RGRB model generally performed well in generating SDD es
timates (Fig. 4d, Table 4). As expected, the red band model exhibited 
larger RMSE, MAPE, and Bias and revealed a major departure of the 
regression slopes from unity and variations in the slopes and intercepts 
of the regression lines among the different Landsat sensors (Fig. 4a, 
Table 4). Likewise, the red-blue band ratio model also exhibited rela
tively large RMSE, MAPE, and Bias (Fig. 4b, Table 4). The blue-green 
band ratio model exhibited better performance in terms of lower 
RMSE and MAPE. These observations were further supported by the 
slopes between in situ SDD and Landsat predicted values approaching 
unity (Fig. 4c, Table 4). In terms of the RGRB model, the RMSEs of the 
models established with Landsat OLI, Landsat ETM+, and Landsat TM of 
the validation dataset were 1.47 m, 1.05 m, and 0.31 m, respectively; 
while the MAPEs were 42.4 %, 30.2 % and 25.4 % with the corre
spondingly Landsat sensor, respectively (Fig. 4d, Table 4). The in situ 
SDD measurements and the SDD values estimated using the proposed 

model showed very good agreement (R2 = 0.78), with a slope close to 
unity and small intercept values with pooled validation dataset 
(Table 5). The comparison of four regression models showed good model 
performance when applied to the pooled dataset (Fig. S3). Further, it can 
be seen that the RGRB model outperformed all the other three modeling 
approaches, as indicated by lower RMSE, MAPE, and Bias (Table 5). The 
red-blue model (Fig. S3b) and blue-green model (Fig. S3c) also exhibited 
stable and acceptable performances. 

3.3. Spatial variation of SDD in 2019 

In addition to the spatial distribution of lakes and reservoirs 
throughout NA, large variations in SDD were also observed across the 
continent (Fig. S4). To graphically display variations in water clarity at 
the continental scale, we calculated the average SDD for each lake and 
reservoir. We presented each lake and reservoir as a dot on a map 
(Fig. 5). The mean SDD of lakes and reservoirs across the continent was 
3.84 ± 1.77 m, with large regional variations. In general, lakes and 
reservoirs with higher SDD generally exhibit larger internal variability 

Fig. 12. The calibration and validation of the RGRB model using TOA and SR products, respectively.  
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in SDD (Fig. 5b) and vice versa (Fig. 5a, 5b). For example, for lakes and 
reservoirs such as Great Salt Lake, Great Slave Lake, Lago de Chapala, 
and Lake Winnipeg, relatively high SDD was found in the central portion 
of the lakes and reservoirs, while the shoreline regions exhibited low 
water clarity (Fig. S7). In contrast, for lakes and reservoirs such as Great 
Bear Lake, Lake Athabasca, and Salton Lake, only small areas along the 
shorelines had low water clarity (Fig. S5). 

Concerning the areal average of SDD, lake and reservoir water clarity 
tended to be higher in the United States (5.24 ± 1.44 m) and Canada 
(3.52 ± 1.80 m) and lower in Greenland (1.98 ± 1.11 m) and Central 
America (0.84 ± 0.57 m) (Fig. 6). Water clarity was generally higher in 
high latitude regions where large lakes and reservoirs tend to dominate 
(see Fig. S7 for the Great Laurentian Lakes and Great Bear Lake). 

Significant differences were found in different countries average lake 
and reservoir clarity and density (Fig. 7). Mean lake and reservoir SDD 
in Canada was 2.21 ± 1.80 m (N = 2,359,741), which was significantly 
higher than that in the United States, with an average of 1.05 ± 1.11 m 
(N = 365,813). Central America SDD was only 0.39 ± 0.57 m (N =

22176). On the contrary, lakes and reservoirs in Greenland showed 
relatively higher SDD (1.76 ± 1.11 m). 

To further examine variations in SDD, we conducted a stratified 
statistical analysis based on water size. A significant difference in SDD 
was found among groups of lakes and reservoirs of various sizes. For 
lakes and reservoirs with areas < 0.5 km2, 0.5–1 km2, 1–10 km2, 10–50 
km2 and >50 km2, mean SDD were 2.07 ± 1.73 m (N = 2,228,672), 2.70 
± 1.95 m (N = 552,264), 2.12 ± 1.48 m (N = 92,169), 2.87 ± 1.77 m (N 
= 8,024) and 4.93 ± 1.86 m (N = 1,413), respectively (Fig. 8). Thus, 
lakes and reservoirs with large water surface areas tend to display higher 
water clarity, while the smaller lakes and reservoirs tend to be more 
turbid (Fig. S8). Consequently, a close association was found between 
log-transformed SDD and water surface area (Fig. S9). 

The latitudinal variation of SDD in NA was also examined (Fig. 9). In 
general, lake and reservoir surface area and water clarity were highest 
between 35◦ N and 60◦ N latitude. In contrast to the high latitude areas 
where transparent lakes and reservoirs predominate, relatively high 
turbidity lakes and reservoirs are abundant in the lower latitude regions 

Fig. 13. Relationships between Landsat TM blue (a), green (b), red (c), and NIR (d) bands versus the corresponding spectral bands from Landsat ETM +. The Landsat 
TM and ETM+ images were acquired on August 1, 2017. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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where flat landscapes and intensive agriculture occur (Fig. 9). 

4. Discussion 

4.1. Performances of different spectral indices 

As shown by the validation dataset, the RGRB model exhibited 
reasonable accurate SDD predictions with Landsat imagery data ac
quired by different sensors. The reason why the blue-green band ratio 
explained a high percentage of variance in SDD was further explored. 
We used the simulated dataset (5000 samples) to evaluate the un
certainties in SDD estimate by different spectral indices (e.g., red band, 
red-green ratio, red-blue ratio, and blue-green ratio). The correlation 
between the spectral indices calculated from simulated Rrs(λ) and 
simulated SDD was first validated. As shown in Fig. 10, the red-green 
ratio obtained the highest coefficient of determination (R2 = 0.94), 
followed closely by the red-blue ratio (R2 = 0.93) and single red band 
(R2 = 0.88). The blue-green ratio showed relatively low performance 

with R2 = 0.80. Then the simulated ρa(λ), ρr(λ), tu(λ), and td(λ) with 
specific τa(λ) loadings were randomly added to the simulated Rrs(λ) to 
obtain the simulated ρTOA(λ). Compared with using the simulated Rrs(λ), 
the correlation of each index calculated from simulated ρTOA(λ) and the 
simulated SDD all decreased markedly, especially for the red-green ratio 
(R2 = 0.22) and single red band (R2 = 0.55). The two spectral indices 
used in our model with higher R2 (red-green ratio: 0.69 and blue-green 
ratio: 0.78) implied that our algorithm might be more robust for the 
continental or even global inland water SDD mapping when using 
Landsat ρTOA(λ) reflectance compared with commonly used single red or 
blue-green ratio algorithms. 

4.2. Model performance evaluations 

Our assessment of the performances of the RGRB model has shown 
that OLI, ETM+ and TM imagery data can be used to monitor SDD 
variations in lakes and reservoirs, as evidenced by the strength of the 
relationship between Landsat spectral variables and in situ SDD 

Fig. 14. Relationships between Landsat OLI blue (a), green (b), red (c), and NIR (d) bands versus the corresponding spectral bands from Landsat ETM +. The Landsat 
TM and ETM+ images were acquired on August 13, 2017. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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(correlation coefficient: r = 0.91, 0.88 and 0.86, respectively). Landsat 
OLI had 290 matching sampling points, while Landsat ETM+ and TM 
had 690 and 2255 points, respectively (Fig. 11). The ranges of the 
matched SDD values are also significantly different among different 
groups, with OLI 0.20–6.70 m, ETM+ 0.12–1.188 m, and TM 0.16–1.10 
m. As shown in Fig. 11a, the SDD value range matching up with OLI was 
relatively small, with a low mean (Mean ± SD: 2.09 ± 1.45 m), while 
ETM+ (Fig. 11b) and TM (Fig. 11c) modeling samples are comparable. 
The different SDD ranges matching up with images acquired by different 
Landsat sensors may explain why the coefficients of the regression 
models varied significantly with red band, red-blue, and red-green 
models (Fig. 3). 

The SDD retrieval model established with OLI and ETM+ data is 
likely applicable to inland water bodies throughout NA. Different 
Landsat sensors have been operating during specific periods; the Landsat 
ETM+ scan line corrector (SLC) has malfunctioned since May 31, 2003, 
and Landsat TM has stopped collecting data since November 18, 2011, 

leaving Landsat OLI and Landsat 9 the only Landsat sensors currently 
operational. Therefore, relationships between sensors need to be 
established and evaluated in long-term studies using data from all three 
sensors (Landsat OLI, ETM+ and TM) to assess trends in continental/ 
regional water clarity. Landsat OLI and ETM+ have similar wavelength 
ranges in the blue, green, red, and NIR bands, and Landsat TM and 
ETM+ have the same wavelength ranges in the blue, green, red, and NIR 
bands (Table 2). Because of these spectral overlaps, we tested the con
sistency of Landsat OLI and ETM+ imagery data collected on the same 
date and over the same region as Landsat TM and ETM+ images, 
respectively (Table S1). Results showed high consistency for each 
Landsat OLI, ETM+, and TM band. Excellent agreement was found be
tween Landsat TM and ETM+ in the blue (R2 = 0.91), green (R2 = 0.99), 
red (R2 = 0.95), and NIR bands (R2 = 0.93) (Fig. 13). The slopes of the 
relationships were all >0.92, further indicating the spectral band con
sistency between TM and ETM+ imagery. Agreement between the OLI 
and ETM+ sensors was also very good in the green (R2 = 0.95) and NIR 

Fig. 15. Relationships between the blue-green band ratios obtained from different sensors: (a) OLI versus ETM+, (b) ETM+ versus TM. Relationships between the 
red-blue band ratios with different sensors: (c) OLI versus ETM+, (d) ETM+ versus TM. Landsat ETM+ ETM+ and Landsat OLI spectral data reported in panels (a) 
and (b) were acquired on August 13, 2017. Landsat ETM+ and Landsat OLI spectral data reported in panels (c) and (d) were obtained on August 1, 2017. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(R2 = 0.95) bands, but the consistency was less than ideal in the blue (R2 

= 0.86) and NIR band (R2 = 0.86) (Fig. 14). In this instance, the slopes of 
the relationships varied between 0.85 and 0.94, indicating spectral 
configuration difference between OLI and ETM+, particularly for the 
blue and NIR spectral bands (Fig. 14d). Fig. 15(a) and 15(c) were scatter 
plots of Landsat OLI and Landsat ETM+ TOA reflectance in Blue/Green 
and Red/Blue band ratios. The comparison results show that the Blue/ 
Green band ratio has a higher R2 = 0.98 while the Red/Blue band ratio 
has a lower R2 = 0.97. Fig. 15(b) and 15(d) were scatter plots of Landsat 
ETM+ and Landsat TM TOA reflectance in Blue/Green and Red/Blue 
band ratios. The linear regression parameters have the higher R2 = 0.91 
in Red/Blue band ratios and the lower R2 = 0.85 in Blue/Green band 
ratios. And the red/blue band ratios are more consistent than the blue/ 
green band ratios. Despite these spectral configuration differences, the 
proposed RGRB model exhibited stable performance with both calibra
tion and validation datasets (Figs. 3 and 4). Nevertheless, these differ
ences should be considered and proper adjustments made when 
constructing models that use data collected with multiple Landsat 

sensors (Fig. 15). Because of the short running time, it is hard to obtain 
enough matchups to construct SDD models for Landsat 9. The reliable 
performance of RGRB across different Landsat sensors implied that it 
could be applied to this sensor to map water clarity in North American 
lakes and reservoirs with the Landsat OLI data together. 

The uncertainties of different time windows set to the RGRB model 
were also analyzed. When the time window between in situ samplings 
and satellite overpass was ±3 days, there were 351 matchups (Fig. S10). 
The RGRB had higher R2 and lower RMSD and MAPE for the shorter time 
window. All the evaluation indexes showed a slight improvement 
compared with the matchups obtained with ±7 days’ time window. 

GEE has two Landsat reflectance products (TOA and SR products). 
For all the 3235 samples, we selected 1637 samples to compare the 
different performances of RGRB when using TOA and SR reflectance 
products, respectively. Among these 1637 samples, 1092 were used as a 
calibrated dataset to re-parametrize the RGRB model, as shown in 
Fig. 12 a.b and Eqs. (10)–(11). The reset 545 samples were used to 
validate. Compared with the SR product (Fig. 12 c.d), the R2 increased 

Fig. 16. Relationships between: (a) SDD and TSM, (b) SDD and Chl-a, (c) SDD and TP, and (d) SDD versus TN in the datasets used. Relationships are shown for log- 
transformed data. 
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from 0.45 to 0.80, the MAPD decreased from 69.02 % to 37.34 %, and 
the RMSE decreased from 1.23 m to 0.76 m. The SR product seems better 
than the TOA because it is entirely atmospheric corrected. The opposite 
result implied that the SR products by the land target atmospheric 
correction methods might not be suitable for the water quality retrieving 
in North America. Without considering the effect of relative humidity on 
aerosols, the failure of the ground spectral assumption, or the spatial 
differences in aerosols of land target atmospheric correction methods 
when applied to the lakes and reservoirs, these may be the reasons (Liu 
et al., 2015, Song et al., 2020). 

TOA : LN(SDD) = 1.068*B/G − 4.253*R/B+ 5.521 (10)  

SR : LN(SDD) = − 0.417*B/G − 1.526*R/B+ 6.16 (11)  

4.3. Model implications 

This study is perhaps the first attempt to establish a universal model 
for mapping SDD of lakes and reservoirs across the NA continent using 
Landsat imagery. It is a worthwhile effort considering that nearly 43.5 % 
of the global lakes and reservoirs are in NA (Pekel et al., 2016). The 
RGRB model using both blue-green and red-blue band ratios showed 
superior performance compared to most of the previous modeling ap
proaches reported in the literature (Kloiber et al., 2002; McCullough 
et al., 2012; Song et al., 2020, and Table 1). First, the model exhibited 
very stable performance with both model calibration and model vali
dation datasets (Fig. 10). Second, this modeling approach can accom
modate differences in spectral configuration among the Landsat sensors 
(TM, ETM+, and OLI). Thus, it has the potential to map water clarity 
dynamics using archived imagery acquired by Landsat series sensors, 
which span nearly-four decades (1984–2021). Third, in situ SDDs were 
collected from lakes and reservoirs encompassing a wide range of optical 
properties and trophic status (from oligotrophic to hypereutrophic) 
(Olmanson et al., 2008; Brezonik et al., 2015). Thus, because of the 
approach adopted for its construction and parameterization, the model 
should be robust enough and transferable to lakes and reservoirs span
ning various optical properties worldwide. 

Lake and reservoir water clarity is strongly linked with Chl-a, TSM, 
TN, and TP (Carlson, 1977; Song et al., 2012, 2014). According to pre
vious studies, water clarity has been used as an effective proxy for 
evaluating water trophic status (Olmanson et al., 2008; Song et al., 
2012, 2014). We collected TSM, Chl-a, TP, and TN. Close relationships 
between SDD and these four water quality parameters were confirmed 
(Fig. 16). Therefore, we could use the Landsat-derived SDD through the 
universal model to generate a trophic state index and evaluate lake and 
reservoir trophic state for the whole continent of NA through the strong 
linkage between SDD and these crucial water quality parameters 
(Fig. 16). According to UN SDGs 2030′s ambient water quality, only 36 
% of the world’s countries can provide the necessary measured water 
quality parameters, e.g., Chl-a, Dissolved Oxygen, pH, EC, TN (SDG 
6.3.2, 2018). Water clarity is related to these five parameters. Thus, we 
could use Landsat-derived SDD to meet SDG 6.3.2 by monitoring water 
quality at large scales, particularly in countries without established 
water quality monitoring networks, resources, and abilities. Recently, 
Shen et al. (2020) have developed a framework to link water clarity to 
SDG 6.3.2 for evaluating water quality using remotely sensed SDD for 
lakes in east China. A modification of the framework can be used to 
assess ambient water quality on a national, continental, or even global 
scale. This approach could be particularly useful for developing coun
tries where research facilities or well-trained technicians are rare. Thus, 
it could greatly facilitate water quality evaluation and meet the SDG 
6.3.2 evaluation requirement (SDG, 2018). 

5. Conclusions 

We demonstrated that Landsat TOA reflectance data provided by 

GEE could be used to generate reasonably robust estimates of SDD 
variation for a large portion of the lakes and reservoirs (≥1 ha in the 
area; 43 % of all global lakes and reservoirs) in North America. More 
than 3200 SDD measurements were matched with Landsat spectral data 
collected within ±7 days of field measurements. The results indicate 
that the RGRB model based on the blue-green ratio plus the red-blue 
ratio from Landsat images performed better than other empirical 
models based on single bands or single band ratios. Using the RGRB 
model, more than 2.9 million lakes and reservoirs (with surface area ≥ 1 
ha) were mapped across NA. A continental-scale assessment of SDD was 
carried out using this model and Landsat imagery collected during the 
ice-free season in 2019. Results showed an average SDD of 3.84 ± 1.77 
m and some intriguing spatial variations and patterns. Lake and reser
voir water clarity in NA decreased from high to low latitude regions. 
Additionally, the RGRB model exhibited very stable performance and 
has great potential for application in future investigations of spatial 
variations and trends in global inland water clarity. 
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Rodrigues, T., Alcântara, E., Watanabe, F., Imai, N., 2017. Retrieval of Secchi disk depth 
from a reservoir using a semi-analytical scheme. Remote Sens. Environ. 198, 
213–228. 

Sayers, M.J., Grimm, A.G., Shuchman, R.A., Deines, A.M., Mychek-Londer, J., 2015. 
International journal of remote sensing a new method to generate a high-resolution 
global distribution map of lake chlorophyll. Int. J. Remote Sens. 36 (7), 1942–1964. 

Shen, M., Duan, H.T., Cao, Z.G., Xue, K., Song, X., 2020. Sentinel-3 OLCI observations of 
water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation. 
Remote Sens. Environ. 247, 111950. 

Song, K.S., Li, L., Li, S., Tedesco, L., Hall, B., Li, L.H., 2012. Hyperspectral Remote 
Sensing of Total Phosphorus (TP) in Three Central Indiana Water Supply Reservoirs. 
Water Air Soil Pollut. 223 (4), 1481–1502. 

Song, K.S., Li, L., Tedesco, L.P., Li, S., Hall, B.E., Du, J., 2014. Remote quantification of 
phycocyanin in potable water sources through an adaptive model. ISPRS J. 
Photogramm. Remote Sens. 95, 68–80. 

Song, K.S., Liu, G., Wang, Q., Wen, Z.D., Lyu, L.L., Du, Y.X., Sha, L.W., Fang, C., 2020. 
Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sens. 
Environ. 243, 111800. 

Song, K.S., Wang, Q., Liu, G., Jacinthe, P.A., Li, S.J., Tao, H., Du, Y.X., Wen, Z.D., 
Wang, X., Guo, W.W., Wang, Z.M., Shi, K., Du, J., Shang, Y.X., Lyu, L.L., Hou, J.B., 
Zhang, B.H., Cheng, S., Lyu, Y.F., Fei, L., 2022. A unified model for high resolution 
mapping of global lake (>1 ha) clarity using Landsat imagery data. Sci. Total 
Environ. 810, 151188. 

Sterner, R.W., Keeler, B., Polasky, S., Poudel, R., Rhude, K., Rogers, M., 2020. Ecosystem 
services of Earth’s largest freshwater lakes. Ecosyst. Serv. 41, 101046. 

Tao, H., Song, K.S., Liu, G., Wang, Q., Wen, Z.D., Jacinthe, P.A., Xu, X.F., Du, J., 
Shang, Y.X., Li, S.J., Wang, Z.M., Lyu, L.L., Hou, J.B., Wang, X., Liu, D., Shi, K., 
Zhang, B.H., Duan, H.T., 2022. A Landsat-derived annual inland water clarity dataset 
of China between 1984 and 2018. Earth Syst. Sci. Data 14, 79–94. 

Tyler, J.E., 1968. The Secchi Disc. Limnol. Oceanogr. 13 (1), 1–6. 
Vanhellemont, Q., Ruddick, K., 2018. Atmospheric correction of metre-scale optical 

satellite data for inland and coastal water applications. Remote Sens. Environ. 216, 
586–597. 

Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J., 2014. A Global Inventory of Lakes 
Based on High-Resolution Satellite Imagery. Geophys. Res. Lett. 41 (18), 6396–6402. 

Wang, M., Gordon, H.R., 2018. Sensor performance requirements for atmospheric 
correction of satellite ocean color remote sensing. Opt. Express. 
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