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A B S T R A C T

Sugarcane is a major crop for sugar and ethanol production and its area has increased substantially in tropical
and subtropical regions in recent decades. Updated and accurate sugarcane maps are critical for monitoring
sugarcane area and production and assessing its impacts on the society, economy and the environment. To date,
no sugarcane mapping tools are available to generate annual maps of sugarcane at the field scale over large
regions. In this study, we developed a pixel- and phenology-based mapping tool to produce an annual map of
sugarcane at 10-m spatial resolution by analyzing time-series Landsat-7/8, Sentinel-2 and Sentinel-1 images (LC/
S2/S1) during August 31, 2017 - July 1, 2019 in Guangxi province, China, which accounts for 65% of sugarcane
production of China. First, we generated annual maps of croplands and other land cover types in 2018. Second,
we delineated the cropping intensity (single, double and triple cropping in a year) for all cropland pixels in 2018.
Third, we identified sugarcane fields in 2018 based on its phenological characteristics. The resultant 2018 su-
garcane map has producer, user and overall accuracies of 88%, 96% and 96%, respectively. According to the
annual sugarcane map in 2018, there was a total of 8940 km2 sugarcane in Guangxi, which was ~1% higher than
the estimate from the Guangxi Agricultural Statistics Report. Finally, we identified green-up dates of those
sugarcane fields in 2019, which could be used to support the sugarcane planting and management activities. Our
study demonstrates the potential of the pixel- and phenology-based sugarcane mapping tool (both the algorithms
and the LC/S2/S1 time series images) in identifying croplands, cropping intensity and sugarcane fields in the
complex landscapes with diverse crop types, fragmented crop fields and frequent cloudy weather. The resultant
annual maps from this study could be used to assist farms and sugarcane mills for sustainable sugarcane pro-
duction and environment.

1. Introduction

Sugarcane (Saccharum spp.) is a perennial crop in the grass family
grown in tropical and subtropical areas (Hu et al., 2019; Sindhu et al.,
2016). It accounts for about 70% of the global sugar production (Shield,
2016) and is also used as a bioenergy feedstock for ethanol production
(Cardona et al., 2010; Sindhu et al., 2016). Sugarcane has been culti-
vated across the tropical and subtropical areas in the world (Defante
et al., 2018; Sindhu et al., 2016), as it requires ample sunlight, high
temperatures, and a large amount of water (Moore and Botha, 2013).
The expansion of sugarcane areas in the past decades increased the
demand for land, freshwater and energy resources, which raised con-
cerns on water scarcity and environmental changes (Silalertruksa and

Gheewala, 2018). Timely and accurate information of sugarcane
planting area, harvested area, green-up date and harvest date is im-
portant for planning and management of the sugarcane industry, which
is critical for sustainable sugarcane production, rural society, economy
and environment (Mulianga et al., 2015).

To date, worldwide agricultural statistics data on sugarcane areas
come from the field surveys, producer reports, questionnaires and in-
terviews. The ground-based approach is time-consuming and labor-in-
tensive and cannot provide timely information for all the sugarcane
fields as it is based on sampling methods (Massey et al., 2017; Verma
et al., 2017). Satellite remote sensing approach is a viable means for
mapping crop types across local, regional and global scales and com-
plements the ground-based statistic data (Begue et al., 2018; Sidike
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et al., 2019). In the last ten years, several studies have been used sa-
tellite observations to map the sugarcane fields in the world (Table 1),
for example, Brazil (Aguiar et al., 2011; Luciano et al., 2019; Luciano
et al., 2018; Rudorff et al., 2010; Vieira et al., 2012), China (Jiang et al.,
2019a; Lin et al., 2009; Zhou et al., 2015), and India (Verma et al.,
2017). These studies used optical and synthetic aperture radars (SAR)
data at moderate spatial resolution (hundreds of meter), high spatial
resolution (tens of meter) and very high spatial resolution (less than ten
meters) (Table 1). Optical images used in those studies include the
Landsat (30-m) satellite (Aguiar et al., 2011; Henry et al., 2017; Hurni
et al., 2017; Johnson et al., 2014; Luciano et al., 2019; Luciano et al.,
2018; Mulianga et al., 2015; Rudorff et al., 2010; Vieira et al., 2012),
the Indian Remote Sensing Satellite (IRS–P6, 5.8-m) (Verma et al.,
2017), the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) data (15-m) (Vinod and Kamal, 2010), the Sa-
tellite Pour I'Observation de la Terre (SPOT, 10-m) (El Hajj et al., 2009)
and the Moderate Resolution Imaging Spectroradiometer (MODIS, 250-
m) (Rudorff et al., 2006). The SAR images used in those studies include
TerraSAR-X (1-m) (Baghdadi et al., 2011), Sentinel-1 (10-m) (Jiang
et al., 2019a), and ENVISAT ASAR (25-m) (Lin et al., 2009). These
studies also differed from each other in terms of classification methods
(Table 1), which can be grouped into three approaches: (1) visual in-
terpretation and digitization of images, (2) spatial statistics of in-
dividual images and (3) temporal statistics of individual pixels. Most of
the studies listed in Table 1 were based on the spatial statistics ap-
proach and used single- or multi-date images and calculated spatial
statistics of spectral bands, vegetation indices and texture in these
images, and applied unsupervised and/or supervised classification al-
gorithms to generate sugarcane maps. As these classification methods
depend on extensive training data collection, none of these studies re-
ported annual sugarcane maps at the state and country scales. The third
approach is to use time series data of individual pixels; calculate the
temporal statistics of spectral bands and vegetation indices of optical
data, and backscatter coefficients of SAR data in the pixels; and apply
decision trees and rule-based algorithms to generate annual maps of
croplands. This approach is based on the phenological characteristics of
specific vegetation or crop, which are recorded in the time series image
data and can be identified and used for classification of individual
pixels.

A number of studies have demonstrated the potential of the phe-
nology-based algorithms for crop mapping over multiple years across
large spatial domain (Massey et al., 2017; Zhong et al., 2011; Zhong
et al., 2014). This is because the phenology-based classification algo-
rithms were developed by analyzing the crop life cycle to obtain tem-
poral metrics of crops and generate classification rules (Bargiel, 2017;
Pena-Barragan et al., 2011). The foundation of the classification rules
can be from crop calendars and crop growth knowledge which are
roughly consistent over years (Massey et al., 2017). These phenology-
based algorithms have been successfully applied for mapping the
dominant crop types, for example, paddy rice (Oryza sativa), soybean
(Glycine max), maize (Zea mays) and winter wheat (Triticum aestivum)
fields (Dong et al., 2015; Qiu et al., 2017; Song and Wang, 2019; Zhong
et al., 2016b). As a perennial crop, sugarcane has a longer life cycle
compared to the other main crops (e.g. rice, maize, soybean, and winter
wheat) (Jiang et al., 2019a). There is a need to develop a new phe-
nology-based algorithm to identify and map sugarcane fields from di-
verse crop types across local, state and country scales.

China is the third-largest sugarcane producer country, after Brazil
and India, as reported by the United Nations Food and Agriculture
Organization (FAO, http://www.fao.org/faostat). In China, 65% of
sugarcane production occurs in Guangxi province in Southern China
(Tan et al., 2007). At present, several investments from government and
private companies have been made in Guangxi with an aim to increase
sugarcane planting area and stalk yield. However, frequent cloud cover,
multiple crop types, and small, fragmented fields in Guangxi pose
challenges for remote sensing applications in this region (Chen et al.,Ta
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2011; Li et al., 2014). Considering the potential limitations of remote
sensing in sugarcane crop mapping and the actual demands of farmers,
sugar mills and local government for timely and accurate information
on sugarcane plantations, we proposed three objectives in this study:
(1) to develop a pixel- and phenology-based algorithm to extract crop
phenology metrics for sugarcane field mapping at 10-m resolution using
Landsat-7/8, Sentinel-2, and Sentinel-1 time-series images; (2) to ex-
amine the critical phenology metrics of sugarcane, such as green-up
dates (or start of the season, SOS) and senescent dates (or end of the
season, EOS), to produce an annual map of sugarcane fields in Guangxi
province in 2018; and (3) to monitor the green-up dates of the su-
garcane fields in 2019 to quantify how many sugarcane fields in 2018
continued to be cultivated as sugarcane in 2019, which is important for
the planting management of sugarcane crops. We proposed to combine
time series Landsat (30-m, 16-day revisit cycle), Sentinel-2A/B (10-m,
5-day revisit cycle), and Sentinel-1A/B, 10-m, 6-day revisit cycle). The
sugarcane mapping platform and resultant data products can be used by
different stakeholders, including local government agencies, farmers,
sugar mills, and insurance companies, for management and monitoring
of sugarcane plantations and sugar production.

2. Materials and methods

2.1. Study area

Guangxi Autonomous Region in Southern China consists of 14
prefecture and cities with a total land area of ~236,700 km2 (Fig. 1). It
has the subtropical to tropical climate. The mean annual air tempera-
ture was 20 °C and mean annual precipitation was 1800 mm during
2000–2019 for the entire Guangxi (Fig. S1). The topography is complex,
including mountains, hills and plains, and elevation ranges from 0 to
2800-m above sea level (Fig. 1b). The central and southern parts are
mostly flat plains but surrounded by mountains and hills. Diverse crops
are cultivated in the low hills and plains regions. According to the
Guangxi Statistical Yearbook in 2018, rice, sugarcane and maize are the
dominate crop types, which accounts for about 32%, 15% and 10% of
the total crop planted area, respectively (Fig. S2).

Sugarcane is the largest cash crop in Guangxi and its area was
~10,000 km2 in recent years (Zhang et al., 2015; Tan et al., 2007). Its
growing period in Guangxi ranges from 8 months to more than one year
(Wang et al., 2014; Tan et al., 2007). The life cycle of sugarcane differs

from annual crops such as rice and maize (Tan et al., 2007). Sugarcane
has four major growing stages (Fig. 2): (1) ratoon germination or
planting, (2) tillering, (3) rapid growth, (4) maturity and harvest
(Fig. 2) (Lin et al., 2009). The ratoon germination of sugarcane occurs
between late January and late March. New sugarcane planting period
usually occurs between late March and early May. The tillering period
starts usually in May and lasts about one-month. Sugarcane starts to
elongate the stem and grow rapidly between June and October. In
November, sugarcane crops are mature and ready to be harvested.
Sugarcane harvest started in November and continued into April of next
year, which ensures the continuous supply of fresh sugarcane stalks for
cane sugar production at the sugar mills over time.

Rice and maize are the other two dominant crop types in Guangxi
(Fig. S2). There are single and double rice cropping systems (Fig. 2)
(Jiang et al., 2019b). Single rice is usually planted in late May and
harvested in early October. Double rice consists of early and late rice.
Early rice is usually grown from late March to late July. Late rice is
planted in the same field as early rice and grows from late July to late
October. Between the early and late rice cycles, there is a short time
window in middle and late July for rush-harvesting of early rice and
rush-transplanting of late rice, namely, “Shuangqiang” (Fig. 2). Maize is
a dryland crop and the cultivation practices are diverse in Guangxi.
Spring maize is cultivated from middle February to late June, and
summer maize is cultivated from early July to the late November
(Fig. 2) (Meng, 2006). The different cropping cycles among these major
crops provide the foundation for developing the phenology-based al-
gorithms to identify and map the sugarcane fields in this study (see
more detail in Section 2.3).

2.2. Datasets

2.2.1. Landsat and Sentinel-2 data
In this study, we collected the top of atmosphere (TOA) reflectance

data of Landsat-7/8 and Sentinel-2 (LC/S2) from August 31, 2017 to
July 1, 2019, as Sentinel-2 surface reflectance (SR) data (Level-2A) for
the study area over the entire study period were not available at the
Google Earth Engine (GEE) platform when we first carried out this
study in 2019. While the TOA data have significant limitations given
their sensitivity to changes in the composition of the atmosphere
through time, they are still useful for exploiting the spectral differences
among crops within each specific data, which are essential for cropland

Fig. 1. (a) Location and (b) topography of Guangxi province, China. It is the largest sugarcane production base of China which is selected as the study area.
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classification (Jin et al., 2019). Landsat data included all available
standard Level-1 Landsat-7 Enhanced Thematic Mapper (ETM+) and
Landsat-8 Operational Land Imager (OLI) from the United States Geo-
logical Survey (USGS). Landsat-7/8 have 30-m spatial resolution and
16-day temporal resolution. Sentinel-2 Multi Spectral Instrument (MSI)
data included all available Level-1C Sentinel-2A and Sentinel-2B images
from the European Space Agency (ESA). Sentinel-2A/B data together
have 10-m spatial resolution and 5-day temporal resolution. The pre-
processing of LC/S2 data cube includes four main steps: identifying
bad-quality observations, combining Landsat-7/8 and Sentinel-2 TOA
data, calculating vegetation indices (VIs), and constructing LC/S2 VIs
time series.

The quality of Landsat TOA data was identified by the CFmask
which is included in the corresponding Landsat surface reflectance data
(Zhu and Woodcock, 2012). Observations without clouds, cloud sha-
dows, snow/ice and scan-line corrector (SLC)-off gaps were used as
good-quality observations. The quality of Sentinel-2 data was assessed
based on the quality band in the metadata, which identifies those ob-
servations having cirrus and opaque clouds as bad-quality observations
and stored as NODATA in the image files. Fig. S3 shows the spatial
distributions of number of observations and number of good-quality
observations (GOBs) in a pixel in Guangxi from the combined LC/S2
TOA datasets.

There are some differences in band wavelengths and spectral re-
flectance among ETM+, OLI and MSI sensors (Roy et al., 2016; Zhang
et al., 2018). Therefore, it was necessary to harmonize the band re-
flectance values from different sensors in order to use these data to-
gether and construct a comparable time series (Roy et al., 2016; Zhang
et al., 2018). There are a number of ways to do it (Griffiths et al., 2019;
Shao et al., 2019), and we used the approach of ordinary least squares
(OLS) regression, proposed by Roy et al. (2016) and Zhang et al. (2018).
We transferred the spectral bands of Landsat-7 ETM+ and Sentinel-2
MSI to match the observations of Landsat-8 OLI, which was used as a
reference.

Spectral indices that are sensitive to vegetation greenness and water
status can be used to capture the physical differences of land cover
types (Di Vittorio and Georgakakos, 2018) and characterize the growth
curves of individual crop types (Jackson et al., 2004; Wardlow et al.,
2007). Normalized Difference Vegetation Index (NDVI, Eq.1) (Tucker,
1979) and Enhanced Vegetation Index (EVI, Eq. 2) (Huete et al., 2002)
are highly related to leaf area index and chlorophyll in the canopy and
widely used to indicate the vegetation greenness. Land Surface Water
Index (LSWI, Eq. 3) (Xiao et al., 2005) is sensitive to the land surface
moisture from both vegetation and soils. Modified Normalized

Difference Water Index (mNDWI, Eq. 4) was developed to delineate
open surface water body by suppressing background information from
vegetation and soils (Xu, 2006). The four spectral indices were calcu-
lated from the blue, green, red, near infrared (NIR) and shortwave in-
frared (SWIR) spectral bands based on the time series TOA data from
Lansat-7/8 and Sentinel-2 (Eq. 1–4).

=
−
+

NDVI
ρ ρ
ρ ρ

NIR Red

NIR Red (1)

= ×
−

+ × − × +
EVI

ρ ρ
ρ ρ ρ

2.5
6 7.5 1

NIR Red

NIR Red Blue (2)

=
−
+

LSWI
ρ ρ
ρ ρ

NIR SWIR

NIR SWIR (3)

=
−
+

ρ ρ
ρ ρ

mNDWI Green SWIR

Green SWIR (4)

Image compositing is an approach to construct time series data at a
regular interval, which can reduce the influence of clouds and uneven
observations in time (Griffiths et al., 2019). We composited the spectral
index data from LC/S2 to construct the time series VIs data at a 10-day
interval, using the same approach as a recent study (Liu et al., 2020).
When there were multiple good-quality observations within a 10-day
period, we calculated the mean value of all the observations and used it
to represent the observation value of the 10-day period. When there
was no good-quality observation in a 10-day period, we filled the data
gap by the linear interpolation method, which used the adjacent good-
quality observations in the time series (Liu et al., 2020). For phenology
analysis, we further smoothed the NDVI times series by the Savitzky-
Golay filter to eliminate small fluctuations using a moving window of
size 9 and a filter order of 2 (Chen et al., 2018b; Fischer et al., 2001). As
LSWI is sensitive to vegetation water and soil moisture that are affected
by rainfall and snow, the LSWI time series data was not smoothed for
phenology analysis.

2.2.2. Sentinel-1 data
The SAR images from the European Space Agency (ESA) Sentinel-1A

and Sentinel-1B were used in this study. We used the GEE platform to
process all 10-m Sentinel-1 data with VH polarization band for the
study area from August 2017 to July 2019. The VH time series data
were built with a 12-day interval using the linear interpolation method
to match the revisit time of Sentinel-1. The noise of the VH time series
was smoothed using a moving average method with a moving window
of size 3.

Fig. 2. Crop calendars for the major crops in Guangxi including sugarcane (SC), rice (RC), and maize (MZ). This figure shows the crop phenology stages which start in
the former November (11) and cross the next entire year and end in the following April (4). In this figure, ‘H' and ‘S' denote harvest and sowing separately. Year i-1,
Year i, and Year i + 1 present three consecutive years.
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2.2.3. Ground reference data
The ground data of individual crop types are critical for developing

the training and validation samples to support image analysis for
mapping crop types. Field work was conducted to collect geo-refer-
enced field photos on different crop types in two test areas in December
2018 (Fig. S4). These field photos include the dominate crop types such
as sugarcane, paddy rice, maize and tubers, which have been released
to the public by the Global Geo-Referenced Field Photo Library at the
University of Oklahoma (OU) (http://www.eomf.ou.edu/photos).
According to these field photos and the very high spatial resolution
images at Google Earth, we collected training samples for sugarcane
(124 polygons) and non-sugarcane crops (129 polygons), respectively
(Fig. S4).

In addition, we collected the sugarcane field size information in two
pilot study regions in 2018 by visual interpretation of the multi-spectral
images acquired by a small unmanned aerial system (sUAS) (Fig. S5). A
total of 2388 sugarcane fields were delineated by local professionals
and digitized as polygons. We inferred the sizes of these polygons as
sugarcane field sizes (Fig. S6). The mean and median values of su-
garcane fields are 2488 m2 and 1299 m2, respectively (Fig. S6). Out of
the 2388 sugarcane fields, approximately 2% are less than 100-m2, 32%
are less than 900-m2, and only 5% are larger than 10,000-m2 (Fig. S6).
These polygons were used to estimate the potential and limit of using
LC/S2 integrated data to identify the sugarcane crop at varying field
sizes.

2.2.4. Sugarcane area data from agricultural statistics reports
Guangxi Bureau of Statistics publishes annual reports on the

planting areas of the main crops in each prefecture and city (http://tjj.
gxzf.gov.cn/tjsj/tjnj/). We acquired the 2019 statistical yearbook that
reports the sugarcane planting area in 2018 at the prefecture and city
level. This dataset was used to compare with the resultant LC/S2-based
sugarcane map at the prefecture and city level.

2.3. Methods

Fig. 3 shows the workflow to produce the annual map of sugarcane
fields in 2018. We first identified the croplands and other land cover
types and then delineated sugarcane fields within the cropland layer
using LC/S2 NDVI and LSWI time-series data (Fig. 3). After these
classification processes, we monitored the seasonal dynamics of su-
garcane fields in the following year and produced a green-up date map
of sugarcane fields in 2019. In the following paragraphs, we described
various steps in the workflow.

2.3.1. Annual maps of croplands and other land cover types in 2018
In this study, we grouped land cover types into four categories:

water-related land cover type, non-vegetated land, evergreen vegeta-
tion, and croplands. Water-related land cover types include open sur-
face water bodies, natural wetlands, paddy rice fields, and flooded
lands. The non-vegetated land are built-up surfaces and barren land. In
previous studies, we developed pixel- and phenology-based algorithms
to map surface water bodies (Zou et al., 2018), paddy rice (Dong et al.,
2015; Zhang et al., 2017), forests (Qin et al., 2017b), built-up and
barren lands (Qin et al., 2017a). Here, we systematically studied the
seasonal dynamics of NDVI and LSWI data from LC/S2, and VH back-
scatter data from Sentinel-1 for the major croplands (sugarcane, paddy
rice, and maize), and other land cover types (forests, built-up and
barren land, and water bodies) in the study area (Fig. 4, Fig. S7). Based
on the signature analysis in this study and some previous work, we
generated annual maps of evergreen vegetation, built-up and barren
land, and water-related land cover types in 2018, which serve as masks.
We assigned the remaining pixels that are not classified as one of the
three masks to be croplands, which are used for further analysis (see
Section 2.3.2). The mapping algorithms were described in the following
paragraphs and summarized in Table 2.

Evergreen vegetation, including forests, tree plantations, orchards
and shrubs, are evergreen plants with high NDVI and LSWI throughout
the year (Fig. 4d, Fig. S7). In our previous studies, we developed a
decision tree classification algorithm that uses LSWI and EVI time series
data to identify evergreen vegetation (more than 90% observations
with LSWI>0 in a year and minimum EVI > 0.2). The algorithm was
applied with MODIS and Landsat data for evergreen vegetation map-
ping in China, USA, and the pan-tropical zones (Dong et al., 2015; Qin
et al., 2019; Wang et al., 2018a; Xiao et al., 2009). In this study, we
used the same algorithm to produce the evergreen vegetation map in
Guangxi.

The built-up surfaces and barren lands usually have higher re-
flectance in SWIR band than in NIR band, which results in a negative
LSWI (LSWI<0), and we developed an algorithm that uses LSWI time
series data to identify built-up and barren lands (more than 90% ob-
servation with LSWI< 0 in a year) (Dong et al., 2015). Spectral data
analysis in this study also show low NDVI and LSWI for built-up and
barren lands (Fig. 4f, Fig. S7). We used the same algorithm to generate
the built-up and barren land mask. Given very complex and fragmented
landscapes in Guangxi, we modified the threshold of LSWI from 0 in
Dong et al. (2015) to 0.2 (LSWI<0.2) to identify those mixed pixels of
built-up/barren land and vegetation (Fig. 4f).

Water-related land cover types are diverse and dynamics. We de-
veloped an algorithm that uses time series spectral indices (NDVI, EVI,
mNDWI) to identify surface water, which is expressed as
(mNDWI>NDVI or mNDWI>EVI) and (NDVI<0.1 or EVI < 0.1)
(Zou et al., 2018). Year-long surface water bodies are those pixels that
have≥ 75% observations identified as surface water in a year. Seasonal
surface water bodies are those pixels that have ≥ 5% observations
identified as surface water in a year. In addition, paddy rice fields have
a seasonal flooding (water) signal, i.e. the mixed feature of water and
plants, during the flooding and transplanting period (Xiao et al., 2006;
Xiao et al., 2005). This unique plant/water feature often lasts several
weeks (about one month). For the double paddy rice fields in the
southern China, this period is about two weeks. A challenge for paddy
rice mapping using optical satellites is to have sufficient number of
good-quality observations to capture this flooding signal during the
short time window (Dong et al., 2015). In this study, we used the
Sentinel-1 VH backscatter data. VH backscatters are very low (VH < -
20) for the water covered pixels (Fig. 4b, e, Fig. S7). Therefore, we
generated another wetland mask to reduce the uncertainty from optical
satellite observations using the algorithm of NDVI> 0.3, LSWI>0 and
VH < -20 during the rush-harvesting and rush-transplanting period.

2.3.2. Annual map of cropping intensity (single-, double- and triple-
cropping croplands) in 2018

For those pixels that are classified as upland croplands (see section
2.3.1), we further identified them as single-, double- or triple-cropping
croplands. The NDVI temporal profile analysis is widely used to identify
the cropping intensity patterns (Chen et al., 2018b; Gao et al., 2017;
Jonsson and Eklundh, 2004). NDVI increases from green-up stage and
reaches the maximum during the peak growing stage. After the crop
matures, NDVI is reduced until the crop is harvested. Meanwhile, bare
soils and crop residuals after crop harvest usually have very low values
of LSWI, which can be employed as the crop harvest signals (Chen et al.,
2018a). Therefore, in this study, we used the NDVI time-series
smoothed by SG filter and the LSWI time-series as inputs to identify the
phenology metrics of start, peak, and end of the crop growth cycles for
individual pixels.

This analysis can be summarized as three steps. First, we used a
peak finding method to flag the potential peaks and troughs along the
NDVI profiles (Li et al., 2014). A peak is defined as the time with NDVI
value higher than the previous and the following values, while a trough
is defined as the opposite case. Croplands generally have high peak
values in NDVI that can exceed 0.5 (Defries and Townshend, 1994;
Galford et al., 2008; Liu et al., 2020). This condition was used to
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exclude the spurious peaks.
Second, we flag the potential troughs between two successive peaks.

If the bare soil signals were detected, these two continuous peaks are
divided into two cropping cycles. Here, bare soils were detected by
using LSWI less than a threshold. Previous studies show that the LSWI
of bare soils vary between 0 and 0.2, depending on the soil moisture
content from the northern to the southern China (Chen et al., 2018a;
Dong et al., 2015). Therefore, we used a dynamic LSWI threshold
(TLSWI) calculated by the eqs. 5 and 6 to separate the cropping intensity
in this study (Liu et al., 2020).

= + − ×T LSWI LSWI LSWI( ) 0.15p min max min (5)
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where Tp is the potential LSWI threshold, and TLSWI is the final LSWI
threshold that is used to identify the bare soil signals. LSWImin and
LSWImax are the minimum and maximum LSWI values during the entire
study period.

Finally, we calculated the peak number in 2018 to generate an
annual map of single- (with one peak), double- (with two peaks), and
triple- (with three peaks) cropping croplands in 2018. This method was
used because the number of peaks in a year is an indicator to classify
the cropping system (Chen et al., 2018b).

2.3.3. Annual map of sugarcane fields in 2018
Sugarcane is one of the upland crops that have single cropping cycle

in a year. The growing season of sugarcane is longer than other major
crops (i.e. paddy rice, maize) in Guangxi (Fig. 2, Fig. 4). Additionally,
sugarcane was planted by cuttings not seeds, which could lead to a

different green-up speed (GUS) from other crops at the beginning of the
growing season. According to these unique characteristics of sugarcane,
we extracted the critical phenology metrics, including the green-up date
(GUD, or start of the season), senescent date (SD, or end of the season),
growing-season length (GSL), start date of peak season (SDPS), and
green-up speed (GUS). These metrics were defined by using the com-
monly used algorithms and NDVI time series (Jonsson and Eklundh,
2004; Wang et al., 2018b). GUD and SDPS are respectively defined as
the times of NDVI reaching 10% and 90% of the NDVI amplitude from
the left minimum. SD is the time of NDVI having 10% amplitude higher
than the right minimum. The GSL represents the days between green-up
date and senescent date. The GUS is defined as the ratio of the NDVI
change over the number of days between GUD and SDPS. Fig. 5a shows
the detailed information of the phenology metrics.

The training samples of sugarcane and other crops were overlaid
with the five phenology metric layers to carry out a signature analysis.
The results showed that the GUD of sugarcane occur mostly in late
January to late April, in other words, day of year (DOY) from 20 to 110
in 2018. SDPS is in early May to middle August (DOY from120 to 230),
and SD starts early November with DOY larger than 310. The GUS
mainly gathers between 0.002 and 0.007. GSL of sugarcane crops are
mostly larger than 240 days.

Based on the results of signature analysis, we developed a decision
classification approach of 20 < GUD<110 & 120 < SDPS<230 &
SD > 310 & 0.002 < GUS<0.007. This approach was implemented
to identify sugarcane fields among the dryland cropland pixels with a
single cropping cycle system, which are the result from the analysis in
Section 2.3.1 and 2.3.2.

Fig. 3. The workflow for identifying and mapping sugarcane fields by time series Landsat and Sentinel-2 data. It includes data preprocessing, cropland mapping,
cropping intensity analysis, sugarcane field map in 2018, green-up date map of sugarcane fields in 2019, and accuracy assessment of sugarcane field map in 2018.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Seasonal dynamics of Landsat/Sentinel-2-based NDVI, LSWI, and Sentinel-1 VH for sugarcane, rice, corn, natural forests, water, and built-up/ barren land. (g,
h, i) shows the field photos for sugarcane, rice, and corn crops taken in December 2018.

Table 2
A summary of the phenology-based algorithms to generate the main non-cropland land cover types in the study area. They were used as the mask layers to produce
the potential cropland distribution in this study.

Land cover types Algorithms References

Evergreen vegetation LSWI> 0 and EVI > 0.2, Freq > 90% Xiao et al., 2009, Dong
et al., 2015

Built-up and barren land LSWI< 0.2, Freq >90% Dong et al., 2015

Water-related land
covers

Permanent water body (mNDWI> NDVI or mNDWI>EVI) and (NDVI< 0.1 or EVI < 0.1), Freq > 75% Zou et al., 2018
Seasonal water body
including
paddy rice fields

(mNDWI> NDVI or mNDWI>EVI) and (NDVI< 0.1 or EVI < 0.1), Freq > 5%; NDVI
> 0.3 and LSWI> 0 and VH < -20 within the flooding and transplanting period
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2.3.4. Accuracy assessment of the resultant annual maps and area
comparison

We collected the ground reference data in 2018 using the stratified
random sampling method for the accuracy assessment based on mul-
tiple information sources (Olofsson et al., 2014). We used the national
land-use land cover map of China in 2015 as a basis to generate four
stratums of croplands, forests, built-up and barren lands, and surface
water body in Guangxi province. Within the cropland layer, we gen-
erated random points and their square buffers at a distance of 30-m.
This 30-m distance is to match the Landsat and Sentinel-2 spatial re-
solutions and crop field size in the study area. Then, we visually se-
lected the sugarcane and non-sugarcane samples by overlaying these
random square buffers with the very high spatial resolution images in
Google Earth and Sentinel-2 images in 2018. Meanwhile, the ground
field photos in the test area were used as an auxiliary reference in the
visual procedure. Finally, total numbers of validation samples we col-
lected are 203 polygons (8033 pixels) for sugarcane fields and 762
polygons (30,175 pixels) for non-sugarcane cropland fields (Fig. S8).
These validation samples were used to assess the accuracy of the su-
garcane map in 2018 by calculating the confusion matrix following the
best practices method (Olofsson et al., 2014).

We also calculated the sugarcane planted areas from the 2018 su-
garcane map for all prefectures and cities in Guangxi. The results were
compared with the statistics data of sugarcane planted area reported by
Guangxi Bureau of Statistics for 2018. This cross-comparison is to
evaluate the agreements between the remote sensing approach and the
agricultural statistics approach at prefecture and city level.

2.3.5. Monitoring green-up dates of sugarcane fields in 2019
After generating the 2018 sugarcane distribution map through the

processes described from Section 2.3.1 to 2.3.3, we continued to
identify and monitor the green-up dates of the sugarcane fields in 2019.
This effort aims to provide near-real-time information for the local
government and stakeholders on the temporal dynamics of sugarcane
fields, which can be used for managing sugarcane planted area. The
green-up dates of sugarcane fields in 2019 was estimated by using the
same approach based on the smoothed NDVI and LSWI time series, as
described in Section 2.3.3.

3. Results

3.1. Annual maps of croplands and other land-cover types in 2018

Fig. 6 shows the high-level land cover types across Guangxi, China,
in 2018 including water-related land covers, built-up and barren lands
(non-vegetated land), evergreen vegetation, and croplands. Evergreen
vegetation is the largest land cover type, which is followed by crop-
lands, built-up and barren lands, and water-related land cover types.
The layers of evergreen vegetation, built-up and barren lands, and
water-related land covers were further applied as masks and the map of
croplands is produced by removing those non-crop pixels. The crop-
lands are distributed unevenly in the region, predominately being lo-
cated in the south. This cropland distribution map has been used as an
input for mapping crop intensity in 2018.

Fig. 5. (a) An NDVI temporal profile for the sugarcane crop is shown from 09/01/2017 to 07/01/2019. Some of phenological parameters are presented based on the
NDVI curve, including green-up date (GUD, left 10% level), start date of peak season (SDPS, left 90% level), senescent date (SD, right 10% level), green-up speed
(GUS, slop from green up to start of peak season), and the growing-season length (GSL). (b-f) signature analysis of sugarcane and non-sugarcane crops at each
phenology parameter layer using the histogram statistics method. The training samples for sugarcane and non-sugarcane crops used in this analysis are shown in Fig.
S4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Annual map of single-, double- and triple-cropping croplands in 2018

As described in Section 2.3.2, we identified the peak numbers in
2018 over the cropland pixels by analyzing the LC/S2 NDVI time series
during September 2017 to July 2019. The annual map of cropping in-
tensity in 2018 was produced (Fig. 7). This map shows the spatial
distribution of single-, double- and triple-cropping croplands in
Guangxi. Single cropland accounts for about 71% of the total cropland
area, followed by double (20%) and triple (2%) croplands. In ~7% of
the potential cropland areas, the algorithm was not able to identify a
cropping cycle, and they are assigned to “No cycle”. Only those crop-
lands with a single cropping cycle is used as input for mapping su-
garcane fields.

3.3. Annual maps of sugarcane fields and associated phenology metrics in
2018

For those pixels identified as single-cropping cropland in 2018, we
identified their phenology variables using the time series analysis ap-
proach (Section 2.3.3) (Fig. 8). Using the four phenology variables
(green-up date, senescent date, start date of peak season, green-up
speed) as inputs, we identified sugarcane fields in 2018 by the decision
classification algorithms proposed in this study. The resultant annual
map of sugarcane fields at 10-m spatial resolution show that sugarcane
fields are concentrated in a few prefecture and cities, e.g., Chongzuo,
Nanning and Laibin (Fig. 8).

We summed the sugarcane areas by prefecture and city from the
sugarcane map in 2018 and compared them with the sugarcane
planting area in 2018 from the 2019 statistical yearbook (Fig. 9a).
There is a significant linear relationship (slope = 0.93, R2 = 0.95,
P < .001) between the sugarcane areas derived from our results and

those from the statistical reports (Fig. 9b). The total area of sugarcane
fields in Guangxi from the 2018 sugarcane map is 8940 km2, which is
only 0.85% higher than the area estimate (8864 km2) from the agri-
cultural statistics report.

3.4. Accuracy assessment for the 2018 sugarcane map

The accuracy of the sugarcane distribution map in 2018 was eval-
uated using the validation samples described in Section 2.3.4 (Fig. S8).
By overlying the validation samples and the resultant map, we calcu-
lated the confusion matrix (Table 3). The overall, user, and producer
accuracies are 0.96 ± 0.002, 0.96 ± 0.005, and 0.88 ± 0.007, re-
spectively.

We used the detailed maps of sugarcane fields (polygons) derived
from sUAS images in two small pilot study regions (Fig. S5, Fig. 10a, d)
to quantitatively evaluate the omission errors of our sugarcane map at
changing sugarcane field sizes (Fig. 10). For each sugarcane polygon,
we separately identified the pixels recognized or not by the resultant
sugarcane map (Fig. 10c, e). The statistical results showed the pro-
portions of unrecognized pixels were usually lower than 20% along
with the changes of sugarcane field sizes (Fig. 10f). In comparison, the
small field parcels less than 400-m2 had a slightly higher proportions of
unrecognized pixels (about 14%) than those fields larger than 400-m2

(about 10%) (Fig. 10f).

3.5. Green-up date map of sugarcane fields in 2019

Local governments and sugar mills pay close attention to the green-
up date of sugarcane fields in spring as it is an indicator for sugarcane
planted area and can be used to assist farmers for their management
activities. We used the sugarcane distribution map in 2018 as the base

Fig. 6. (a) Distribution of water-related land covers, built-up and barren lands, evergreen vegetation, and potential croplands in Guangxi, China. Four regions,
denoted as b, c, d, e in Figure a, were selected randomly. The zoom-in views in Figure a for the four regions are shown in Figure b1, c1, d1, e1 and the very-high-
resolution views from Google Earth are shown in Figures b2, c2, d2 and e2.
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map and identified when these sugarcane fields started to green-up
during 12/2018–6/2019 by analyzing the LC/S2 NDVI and LSWI time
series data in 2018/2019. Fig. 11a shows the spatial distribution of
green-up date (displayed in month) of sugarcane fields in 2019. The
green-up dates (months) range from December 2018 to June 2019.
Approximately 10% of the sugarcane fields started to green up in
February 2019, 62% in March and April, and 11% in May (Fig. 11b). In
about 8% of the sugarcane fields in 2018, the algorithm has not de-
tected the green-up signal in the sugarcane planting period of 2019,
which indicates that these fields may not be cultivated for sugarcane in
2019.

4. Discussion

4.1. Annual sugarcane maps at the field scale over large spatial domains

Cropland field sizes vary a lot across the local, national and global
scales, and in China smallholder farm system is the dominant form with
average cropland field size less than one hectare (10,000 m2) (Samberg
et al., 2016). Landsat images at 30-m spatial resolution have been used
to map cropland distribution at the field scale (Gao et al., 2017) and the
advantage of Landsat images for cropland mapping at the field scale
were well documented (Loveland and Dwyer, 2012; Roy et al., 2014).
As Sentinel-2 data at 10-m and 20-m spatial resolutions became freely

available since 2015, a number of studies have combined both Landsat
and Sentinel-2 images to map croplands at the field scale (Defourny
et al., 2019; Griffiths et al., 2019; Liu et al., 2020). In this study, we
combined Landsat, Sentinel-2, and Sentinel-1 to identify and map
croplands, cropping intensity and sugarcane at 10-m spatial resolution.
In comparison to the studies that used only Landsat or Sentinel-2, the
combined time series image data from LC/S2/S1substantially increased
the number of good-quality observations for field-scale agricultural
applications, which addresses a critical data issue the land cover
mapping community has faced in the past few years (Dong et al., 2015;
Gong et al., 2013; Hansen et al., 2016).

In Guangxi, China, there is a period of rush-harvesting of early rice
and rush-transplanting of late rice for the double paddy rice croplands
(Fig. 4b). During this short period, which often lasts about two weeks,
there is a high probability that because of clouds there is no good
quality optical data to identify the flooding signals of paddy rice fields.
Images acquired by SAR sensors are not affected by clouds and can be
used for mapping surface waters and detecting flooding events in the
cloud days (Bioresita et al., 2018). The Sentinel-1 VH backscatter sig-
nals are low when the land surfaces are covered by water (Fig. 4b, e). In
this study, we used the Sentinel-1 VH data as an additional way to
detect the water-related pixels in a year, which increases the accuracy
of the water-related land cover map.

The phenological characteristics of sugarcane fields were

Fig. 7. Annual map of cropping intensity in Guangxi, China in 2018. (a) Spatial distribution of single, double- and triple- cropping croplands in Guangxi, China. Three
sample areas were selected as SP1, SP2, and SP3 to show the zoom-in views (b, c) in the resultant map, (d, e, f) the landscapes from Google Earth images, and (g) the
temporal profiles of NDVI, LSWI and VH for sing-, double- and triple- cropping croplands, respectively. (h) the proportions of no cropping cycle (0), single- (1),
double- (2) and triple- (3) cropping croplands over the potential croplands in Guangxi, China during 2018.
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recognized and used in previous studies of sugarcane mapping (Aguiar
et al., 2011; Baghdadi et al., 2011; Jiang et al., 2019a; Zhou et al.,
2015). One study used time series Sentinel-1A images from 3/2017 to
2/2018 and the Random Forest algorithm to map sugarcane in

Zhanjiang city, Guangdong Province, China, and the resultant su-
garcane map had an accuracy of 86.3% (Jiang et al., 2019a). Another
study used multi-date Chinese HJ-1 CCD images (visible and near in-
frared bands; 30-m spatial resolution) from 6/2013 to 5/2014 to map

Fig. 8. (a) The sugarcane distribution map in 2018 for Guangxi, China. (b-f) show the distribution maps of phenology parameters of green-up date, start date of peak
season, senescent date, green-up speed, and the length of growing season for the croplands having a single-cropping system. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. A comparison of sugarcane area estimates by prefecture and city between the sugarcane map in 2018 and the agricultural statistical data reported for 2018.
This comparison used the linear regression model of y = a*x.
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sugarcane in Suixi county, Guangdong province, China, and the re-
sultant sugarcane map had an overall accuracy of 93.6% (Zhou et al.,
2015). In this study, we used the pixel- and phenology-based algorithms
and time series LC/S2/S1 data, which substantially increased numbers
of good-quality observations of individual pixels for better capturing
phenological metrics of sugarcane fields. As a result, we generated an

accurate (96% overall accuracy) sugarcane map in 2018 at 10-m spatial
resolution in Guangxi, China, and to our limited knowledge, it is the
first sugarcane map at the field scale over the entire Guangxi province,
which accounts for 65% of total sugarcane production in China (Tan
et al., 2007).

Table 3
Accuracy assessment of sugarcane map in 2018 based on the validation regions of interests (ROIs) from field photos, Google Earth images and Sentinel-2 images for
sugarcane (SC) and other crops (OC). This table shows the User's (UA), Producer's (PA) and Overall (OA) accuracy with a 95% confidence interval. The validation
samples are shown in Fig. S8.

Reference UA PA OA

Sugarcane Other crops Total

Map Sugarcane 0.196 0.004 0.2 0.96 ± 0.005 0.88 ± 0.007 0.96 ± 0.002
Other crops 0.022 0.778 0.8 0.97 ± 0.002 0.99 ± 0.001
Total 0.218 0.782

Fig. 10. (a, d) Spatial distribution of the small unmanned aerial system (sUAS) data at two pilot regions including 2249 and 139 polygons. Their locations in Guangxi,
China are shown in Fig. S5. (b) a zoom-in view of the sUAS polygons in the first pilot region labeled as b in Fig. a. (c, e) the recognized and unrecognized pixels of the
resultant sugarcane map in 2018 within each sUAS polygon for two pilot regions. (f) Proportions of recognized and unrecognized pixels with the changes of sugarcane
field sizes.
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4.2. Sources of errors in annual sugarcane maps at the field scale over large
spatial domains

It has been a challenging task to generate annual maps of croplands
and specific crop types at the field scale over large spatial domains (Jin
et al., 2019; Luciano et al., 2019). Accuracy of annual sugarcane maps
at the field scale is affected by several factors: (1) the definition of
sugarcane fields (newly planted sugarcane field, ratooning sugarcane
field), (2) types and number of satellite images, (3) training and vali-
dation datasets, (4) algorithms, (5) spatial resolution (scale) and spatial
domains and (6) complexity of landscapes.

Topography affects the image data quality from both optical and
microwave sensors, in particular over those areas with complex land-
scapes. Several studies used Landsat images to identify and map su-
garcane fields in Brazil (Aguiar et al., 2011; Luciano et al., 2019;
Luciano et al., 2018), where topography is simple and sugarcane fields
are big, and the resultant sugarcane maps had high accuracy. In com-
parison, our study area (Guangxi province, China) has very complex
and fragmented topography. In addition, most of sugarcane fields in
Guangxi province are small. For Landsat images at 30-m spatial re-
solution, the number of mixed pixels of sugarcane fields and other land
cover types could be large, which is one source of errors in the su-
garcane map in 2018.

Both the top-of-atmosphere (TOA) reflectance and the surface re-
flectance (SR) images have been used for land cover mapping (Griffiths
et al., 2019; Jin et al., 2019; Wang et al., 2019). We started to analyze

Sentinle-2 images in August 2019, at that time SR images from Sentinel-
2 for 8/2017–7/2019 were not available in the Google Earth Engine.
There is always a time lag (delay) between the TOA data and SR data.
As we were trying to do in-season monitoring sugarcane fields, we used
the TOA data from both Landsat and Sentinel-2 in this study, which is a
source of errors in the sugarcane map in 2018. Future work is also
needed to use time series SR images for sugarcane mapping.

Crops are developed in their favorable conditions resulting in di-
verse cropping seasons such as winter or summer cover crops (Torriani
et al., 2007). We used four phenology metrices of GUD, SDPS, SD, and
GUS as parameters to build the decision system for sugarcane crop
mapping. The parameters of GUD and SD presents the start and end of
the sugarcane growing season, which are varied among crops due to
different thermal requirements of crops (Torriani et al., 2007; Zhong
et al., 2011). SDPS indicates the start date of the peak season which
corresponds to the rapid growth of sugarcane after tillering with full-
canopy cover. GUS shows the growing speed in the rapid development
period from the GUD to the SDPS. SDPS and GUS are variables to ex-
tract sugarcane crops using the middle segments of crop phenological
development (Zhong et al., 2016a). To improve the classification ap-
proach for future works, we did a sensitivity analysis to evaluate the
roles of these four parameters in the classification system (Fig. 12). We
compared the changes of producer's (PA), user's (UA) and overall (OA)
accuracies among sugarcane maps produced using four parameters (SC
map) and without using the parameter of GUD (SC_no_GUD), GUS
(SC_no_GUS), SDPS (SC_no_SDPS), and SD (SC_no_SD) (Fig. 12). The

Fig. 11. (a) The green-up map of sugarcane fields in 2019. This is a monitoring work following the mapping of sugarcane fields in 2018 based on the Landsat/
Sentinel-2 time series data. (b) the percentage of sugarcane field green up in each month from December 2018 to June 2019. (c-e) the zoom-in views for three random
regions. Their locations are shown in (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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results demonstrated that these four parameters are all important to
improve the user's accuracy and reduce the commission errors in the
sugarcane mapping. Thus, the estimate qualities of these four para-
meters could be a source of errors in the resultant sugarcane map from
the algorithm perspective.

4.3. Implications and improvements

The pixel- and phenology-based algorithm based on time series LC/
S2/S1 images has the potential to map (1) sugarcane crop in other
years, (2) sugarcane crop in other regions, and (3) other crop types. The
classification rules were developed by selecting the unique phenology
metrics of sugarcane crop. In a given area, the environmental factors,
such as topography, climate, planting and management activities, for
sugarcane cultivation are relatively consistent over normal years.
Meanwhile, sugarcane is a ratoon crop with a long growing season from
8 months to more than one year (Luciano et al., 2018; Molijn et al.,
2018). These features could result in the sugarcane crops planted in a
same field continuously between years. Therefore, it is promising to use
the proposed sugarcane mapping tool to map the sugarcane plantations
in other years. With respect to the sugarcane mapping in other regions,
this mapping tool can be applied by tuning the thresholds of the phe-
nology parameters using the local training samples. It can address the
potential differences in the phenology metrics of sugarcane crops under
different environmental conditions. Furthermore, this sugarcane map-
ping tool could be applied to detect other crop types by revising the
phenology metrics. It is supported by the previous studies on using
phenology-based approaches to map various dominant crop types (e.g.
paddy rice, winter wheat, maize, and soybean) at 30-m or coarser
spatial resolutions (Chen et al., 2018b; Massey et al., 2017; Zhong et al.,
2011). Currently, various machine learning and deep learning models
are explored for crop classification (Jiang et al., 2019a; Luciano et al.,
2019; Wang et al., 2019; Zhong et al., 2019). This sugarcane classifi-
cation framework can be updated by integrating the phenology metrics
and the machine learning models to map crop types in the future works.

In addition, to harmonize the images from different sensors, we
applied the OLS regression coefficients to convert the TOA spectral
reflectance from MSI to OLI. It is a fast and practical approach to
construct consistent LC/S2 TOA time series at the GEE platform (Liu
et al., 2020; Zhang et al., 2018). Recently, some other approaches have
also been proposed to combine both sensors' data such as generating
proxy values (Griffiths et al., 2019) and deep learning-based fusion
(Shao et al., 2019). The deep learning-based fusion of LC/S2 has the

potential to adequately use the spatial information of Sentinel-2 to
downscale the Lansat-8 images from 30-m to 10-m spatial resolution
(Shao et al., 2019). With the development of the deep learning-based
fusion network at the GEE platform, it will improve the LC/S2 blending
time series images to develop crop mapping algorithms at the field scale
over large spatial domains.

5. Conclusions

There is a need to map and monitor the spatial-temporal dynamics
of sugarcane fields at the field scale over large spatial domains. In this
study we developed a pixel- and phenology-based sugarcane mapping
tool, which uses the time series optical images (Landsat, Sentinel-2A/B)
and microwave images (Sentinel-1A/B) and the decision tree algo-
rithms to identify and map croplands, cropping intensity (single, double
and triple cropping in a year) and sugarcane. We generated an annual
map of sugarcane fields in 2018 at 10-m spatial resolution in Guangxi,
China, and the green-up dates of those sugarcane fields in 2019. This
study shows that Landsat, Sentinel-2 and Sentinel-1 together may
provide adequate numbers of good observations for sugarcane mapping
in a study area with small crop fields and frequent cloud cover. The
proposed pixel- and phenology-based sugarcane mapping tool has the
potential to be applied for mapping sugarcane plantations in other
years or other places in China. The resultant maps provide essential
information for sugarcane crop management and impact studies on
economics and the environment.
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Fig. 12. Sensitivity analysis of phenology parameters for the sugarcane
mapping. The producer's, user's and overall accuracies are used as in-
dicators to compare the resultant sugarcane map (SC_map) and the
sugarcane map without green-up date (SC_no_GUD), green-up speed
(SC_no_GUS), start date of peak season (SC_no_SDPS), and senescent
date (SC_no_SD) phenology parameters. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the
web version of this article.)
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