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Woody plant encroachment of eastern redcedar (Juniperus virginiana L., hereafter referred to as “red cedar”) into
native grasslands in the U.S. Southern Great Plains has significantly affected the production of forage and live-
stock, wildlife habitats, as well as water, carbon, nutrient and biogeochemical cycles. However, time series of
red cedar maps are still not available to document the continuously spatio-temporal dynamics of red cedar en-
croachment across landscape, watershed and regional scales. In this study, we developed a pixel and phenolo-
gy-based mapping algorithm, and used it to analyze PALSAR mosaic data in 2010 and all the available Landsat
5/7 data during 1984–2010with the Google Earth Engine (GEE) platform. This pilot study analyzed 4233 images
covering N10 counties in the central region of Oklahoma, and generated red cedar forest maps for 2010 and five
historical time periods: the late 1980s (1984–1989), early 1990s (1990–1994), late 1990s (1995–1999), early
2000s (2000–2004), and late 2000s (2005–2010). The resultant maps for 2010, the late 2000s, early 2000s,
and late 1990s were evaluated using validation samples collected from Google Earth's high-resolution images
and geo-referenced field photos. The overall (producer and user) accuracy of these maps ranged from 88% to
96% (88%–93%, and 96%–99%). The resultantmaps clearly illustrated an increase in red cedar encroachmentwith-
in the study area at an annual rate of ~8% during 1984–2010. Thesemaps can be used to support additional stud-
ies on the driving factors and consequences of red cedar encroachment. This study also demonstrated the
potential to trace the historical encroachment of red cedar into grasslands using time series Landsat images
and PALSAR data.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Woody plant encroachment has occurred globally across many eco-
systems over the past century due to the effects of fire suppression,
overgrazing, and climate changes (Archer et al., 1994; Barger et al.,
2011; Van Auken, 2000). The Southern Great Plains (SGPs) of the US
had five- to sevenfold greater woody plant expansion than other re-
gions of the US (Zou et al., 2016), whichwas primarily caused by unreg-
ulated human settlement and livestock grazing (Hennessy et al., 1983;
Inglis, 1964). More than 20 documented woody species have
encroached into the grassland and savanna ecosystems of North Amer-
ica over the past century (Barger et al., 2011). Juniper encroachment
mainly threatens the tall- and mixed-grass prairies of the Great Plains
(Barger et al., 2011). In Oklahoma, Juniperus virginiana L. (eastern
and Plant Biology, University of
3019-5300, USA.
redcedar) was reported to be encroaching into the grasslands and re-
placing the dominant oak trees in recent decades (DeSantis et al.,
2010; Williams et al., 2013). The increased encroachment of eastern
redcedar into native plant communities has threatened the sustainabil-
ity, biodiversity, and productivity of native prairie ecosystems (Briggs et
al., 2005; Engle et al., 1996). This shift in grassland species dominance
has further affected ecosystemprocesses includingwater, carbon, nutri-
ent, and biogeochemical cycles (Caterina et al., 2014; Williams et al.,
2013; Zou et al., 2016).

Woody encroachment maps are vital for rangeland management,
conservation planning, biodiversity assessment, and climate change
studies. However, a time series of maps based on historically observed
woody plant encroachment have not been produced at the regional
scale (Gavier-Pizarro et al., 2012; Ge and Zou, 2013), the absence of
which constrains our capacity to understand the ecological conse-
quences, environmental impacts, and drivers of woody plant encroach-
ment. For example, Ge and Zou (2013) simulated the impacts of eastern
redcedar encroachment on regional climate in the SGPs. In their model
simulation, the input maps of red cedar expansion were generated
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randomly, since the real maps of red cedar encroachment were not ex-
istent. In addition, the creation of regional-scale time series woody en-
croachment maps could reduce the uncertainty of continental-scale
carbon budgets (Barger et al., 2011). Currently, it is hard to estimate
the woody-plant expansion rate and describe the shapes of expansion
curves for North America based on observations at two time points
(Barger et al., 2011). Therefore, it is imperative to produce annual and
multi-year maps of woody plant encroachment at regional and conti-
nental scales.

Traditional field survey approaches do not adequately document the
expansive amount of data required to accuratelymap the spatio-tempo-
ral distribution and dynamics of woody plant encroachment at regional
scales (Engle et al., 1996; Waser et al., 2008). Remote sensing images
with long term data archives are alternative data sources to these stud-
ies. So far, most remote sensing studies have focused on (1) detecting
trees in woodlands using very high spatial resolution (VHSR) aerial im-
ages (Anderson and Cobb, 2004; Poznanovic et al., 2014; Strand et al.,
2006) and Lidar data (Falkowski et al., 2006), and (2) calculating the
woody coverage in grasslands or savannas using multiple data sources,
including Landsat Thematic Mapper/Enhanced Thematic Mapper Plus
(TM/ETM+), radar, and Lidar (Sankey and Glenn, 2011; Urbazaev et
al., 2015; Yang et al., 2012). These studies were conducted at small spa-
tial scales (e.g., rangeland or landscape) for a single year. Furthermore,
no work has been established on mapping the encroaching species in
grassland or savanna ecosystems over several decades.

The Landsat program has provided continuous Earth observation
since the first satellite launch in 1972 (Wulder et al., 2012; Wulder et
al., 2008). Images from Landsat TM, ETM+, andOperational Land Imag-
er (OLI) have been recording continuous land cover changes with con-
sistent spatial (30 m) and temporal (16 day) resolutions since 1984
(Wulder et al., 2016). An increasing number of land cover change stud-
ies have been conducted since the open access of the Landsat archive
data in 2008 (Woodcock et al., 2008). However, optical remote sensing
is sensitive to vegetation canopy (e.g., foliage cover), whichmay overes-
timate woody plant extent caused by the confusion with herbaceous
vegetation or omit somewoody plants with deciduous and semi-decid-
uous characteristics (Shimada et al., 2014). Synthetic Aperture Radar
(SAR) sensors can penetrate clouds, and the longer wavelength SAR
(L-band SAR) has better capability to obtain the vegetation structures
(e.g., stem density, biomass.) (Baghdadi et al., 2009; Cloude and
Papathanassiou, 2003). The great volume scattering from leaves, trunks,
and branches provides promising signatures for the classification of for-
est coverage (Chen et al., 2016; Qin et al., 2015a; Shimada et al., 2014).
The Advanced Land Observing Satellite (ALOS) Phased Array type L-
band Synthetic Aperture Radar (PALSAR) was launched by the Japan
Aerospace Exploration Agency (JAXA) in January 2006 and stopped op-
eration in April 2011. It provided numerous data for forest (Qin et al.,
2015a; Shimada et al., 2014) and plantation (Dong et al., 2013;
Miettinen and Liew, 2011) mappings at the global and regional scales.
Recent studies have shown that the combination of Landsat time series
images and PALSAR data provides opportunities to monitor historical
changes of forest resources (Lehmann et al., 2015).

The accuracy of land cover classification is impacted by both algo-
rithms and remote sensing images (spatial, temporal and spectral reso-
lutions). Broadband sensors have beenwidely used to generate regional
or global land covermaps,which included vegetation types at the biome
scale (Friedl et al., 2010; Gong et al., 2013; Loveland et al., 2000). Map-
ping at the plant species level has been mainly conducted using
hyperspectral data with narrow bands (Clark et al., 2005; Martin et al.,
1998) or VHSR images (IKONOS, WorldView-2, etc.) (Pu and Landry,
2012). Nevertheless, there are not sufficient amounts of hyperspectral
and VHSR data for monitoring the long-term land cover changes at
the species level. Several studies used time series images to track land
surface phenology and generate land cover maps for crop species and
forest plantations (Dong et al., 2013; Xiao et al., 2005; Zhong et al.,
2014), and separate cropland and pasture in complicated savanna
landscapes (Mueller et al., 2015). These studies suggested the time se-
ries images can be used to extract seasonal, annual and multi-annual
phenological indicators for plant species of interest. For example, time
series Landsat images have been used to classify crop types and map
rubber plantations by generating phenological metrics (Zhong et al.,
2014) or selecting unique phenological windows (Dong et al., 2013) at
regional scales. It is still unknown about the potential of 30 m Landsat
images to recognize the species of trees (e.g., eastern redcedar) which
has encroached into the grassland ecosystem.

This study intends to propose an approach to map the historical en-
croachment of eastern redcedar forest back to the 1980s by integrating
PALSAR data in 2010 and long-term Landsat TM/ETM+ images during
1984–2010 usingGoogle Earth Engine (GEE) cloud computing platform.
Our three objectives were: (1) to develop a pixel and phenology-based
algorithm to map the eastern redcedar encroachment into the grass-
lands based on PALSAR and Landsat time series images; (2) to quantify
the dynamics of eastern redcedar encroachment by using remote sens-
ing observations in five historical time periods of the late 1980s (1984–
1989), early 1990 (1990–1994), late 1990s (1995–1999), early 2000s
(2000–2004), and late 2000s (2005–2010); and (3) to quantitatively
evaluate the recognition capability of moderate spatial resolution im-
ages of Landsat and PALSAR at the species scale using the pixel and phe-
nology-based algorithm.

2. Material and methods

2.1. Study area

The study area (35°12′N–36°44′N, 96°25′W–98°59′W) covers N10
counties (~28,303 km2) across central and western Oklahoma (Fig. 1).
It has a temperate continental climate. The annual mean air tempera-
ture is near 16 °C. The average annual precipitation is ~810 mm, and
the northwestern regions are drier than the southeastern parts. The to-
pography is generally flat with elevation ranging from 215 m to 612 m
above sea level (Fig. S1a). Themajority of this area is in the Central Great
Plains ecoregion,with some small patches in the Cross Timbers and Flint
Hills ecoregions (Fig. S1b) (Woods et al., 2005). Croplands, grasslands,
and forests are the major land cover types, the combination of which
accounted for about 90% of the study area. The spatial extent of urban
areas were very small as captured on VHSR imagery dated 03/01/2011
from Google Earth (GE) (Fig. 1).

The study area is in the ecotone that connects the eastern deciduous
forest and the tallgrass prairie, which includes a gradient fromwoody to
non-woody vegetation (Hoagland, 2000; Myster, 2009). According to
early vegetation investigations (Johnson and Risser, 1975), the latest
Oklahoma Ecosystem Map (OKESM) (Diamond and Elliott, 2015), and
our field survey in 2015 (Fig. 1), the deciduous forests in our study
area are dominated by oaks, especially post oak (Quercus stellata) and
blackjack oak (Q. marilandica). Eastern redcedar is the dominant ever-
green species in forest and woodland/shrubland areas, while other ev-
ergreen tree species (e.g. pine) are few. In addition, bottomland
hardwood forests (e.g., elms, pecan) can be seen along rivers or creeks.
Eastern redcedar is evergreenwithout leaf color changes in fall. The spe-
cies in post oak-blackjack and bottomland hardwood forests are decid-
uous types, which have seasonal leaf emergence and leaf fall (http://
www.forestry.ok.gov/ok-tree-guide). The leaf phenology can be detect-
ed by time series optical remote sensing signals, which facilitates the
separation of eastern redcedar forest from deciduous forests of oaks
and other hardwood species.

Substantial eastern redcedar encroachment has occurred in this for-
est-prairie ecotone over the last several decades (Engle et al., 1996;
Williams et al., 2013). Nearly no eastern redcedar was observed in the
1950s (Rice and Penfound, 1959). Forest surveys were conducted dur-
ing the 2000s using standard dendrochronological methods covering
our study area (DeSantis et al., 2011). The results showed that the east-
ern redcedar number increased from the 1960s to 1970s, and became
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Fig. 1. The location of the study area and the counties it covers. A very high spatial resolution image dated 03/01/2011 from Google Earth and the field photos taken in 2015 are shown in
this figure.

235J. Wang et al. / Remote Sensing of Environment 190 (2017) 233–246
the primary recruitment species from themid-1970s to the 2000s. Also,
the eastern redcedar basal area increased from 0% to 43% and tree den-
sity increased from 2% to 56% between the 1950s to the 2000s (DeSantis
et al., 2011).
2.2. Data

2.2.1. PALSAR data and pre-processing
The PALSAR datasets provided by the Earth Observation Research

Center, JAXA, offer opportunities to develop forest maps at regional
and global scales (Shimada et al., 2014). The 25mPALSAR orthorectified
mosaic datasets from 2007 to 2010were generated from the annual HH
and HV data acquired between June and October with Fine Beam Dual
(FBD) polarization mode. The HH and HV data have been processed by
geometric correction using a 90 m digital elevation model and radio-
metric calibration (Shimada et al., 2009; Shimada and Ohtaki, 2010).
The mosaic data of HH and HV were expressed by gamma-naught
(γo), due to the normalization of backscatter by the realistic illumina-
tion area (Shimada et al., 2014).

We downloaded all the 25 m PALSAR orthorectified mosaic data for
Oklahoma in 2010. The Digital Number (DN) values (amplitude) of HH
and HV were converted into backscattering coefficient (gamma-
naught) in decibel using the following calibration coefficient (Shimada
et al., 2009).

γo ¼ 10� log10bDN
2Nþ CF

where γo is the backscattering coefficient in decibel; DN is the digital
number value of pixels in HH or HV; and CF is the absolute calibration
factor of −83.

2.2.2. Time series Landsat data and pre-processing
The GEE platformwas used to collect and process all the Landsat im-

ages in this study.Weused all the available standardU.S. Geological Sur-
vey Center (USGS) surface reflectance products of Landsat 5/7 covering
the study area over Jan. 1984 toMar. 2011,which have been collected in
the GEE platform. The surface reflectance data was generated from the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS),
which includes the calibration from at-sensor radiance to the top of at-
mosphere (TOA) reflectance and the atmospheric correction from TOA
reflectance to surface reflectance (Masek et al., 2006; Vermote et al.,
1997). The study area is located within the Landsat scene of path/row
28/35. The pixels near the boundary of the study area had more obser-
vations due to the overlap of neighboring Landsat scenes (paths/rows of
27/35, 27/36, 28/34, 28/36, 29/34, 29/35).We constructed the 3-dimen-
sional data cube of land surface reflectance using these seven overlap-
ping Landsat scenes (a total of 4233 images). Fig. 2 shows the annual



Fig. 2. The annual distribution of Landsat images used in this study. Statistics were conducted by (a) path/row, (b) month and (c) sensors.
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distributions of all the available Landsat TM/ETM+ surface reflectance
data over the study period by Landsat path/row (Fig. 2a), by months
(Fig. 2b), and by sensors (Landsat 5/7) (Fig. 2c).

The quality of all observations for individual pixels in the data cube
was assessed. The bad observations from clouds, cloud shadows,
snow/ice and scan-line corrector (SLC)-off gaps were identified as
NODATA according to the Fmask (Zhu andWoodcock, 2012) andmeta-
data. Fmask had good performance to detect cloud and cloud shadows
from Landsat 5/7 images with overall accuracy N90% (Zhu and
Woodcock, 2012). The number of individual pixels from good Landsat
5/7 observations were counted during the winter (including Dec., Jan.,
and Feb.) for each year (Fig. S2). In 1984 and 1986, about 2% pixels in
the study area had zero good observations in the winter season, while
in the other years, all the pixels had at least one good observation during
the winter (Fig. 3).
Fig. 3. Percentage of pixels with various good observation co
We calculated three vegetation indices (VIs) based on the surface re-
flectance data with good observations: Normalized Difference Vegeta-
tion Index (NDVI) (Tucker, 1979), Enhanced Vegetation Index (EVI)
(Huete et al., 2002), and Land Surface Water Index (LSWI) (Xiao et al.,
2005). NDVI and EVI are related to the vegetation greenness, and
LSWI is sensitive to the vegetation water content. The times series
data of these three VIs can be used to analyze the vegetation phenology
(Huete et al., 2002; Xiao et al., 2006).

NDVI ¼ ρNIR−ρred

ρNIR þ ρred
ð1Þ

EVI ¼ 2:5� ρNIR−ρred

ρNIR þ 6� ρred−7:5ρblue þ 1
ð2Þ
unts in the annual winter (Dec–Feb) from 1984 to 2010.
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LSWI ¼ ρNIR−ρSWIR

ρNIR þ ρSWIR
ð3Þ

where ρblue, ρred, ρNIR and ρSWIR are the surface reflectance values of blue
(450–520 nm), red (630–690 nm), near-infrared (760–900 nm), and
shortwave-infrared bands (1550–1750 nm).

2.2.3. Field survey data
Field surveys were carried out three times duringNovember 7–21 in

2015 to collect ground reference data for training and validation sam-
ples. These field surveys mainly focused on the species (e.g. red cedar,
oaks, and bottomland hardwoods) of forests and woodlands. We also
noted other land cover types including shrubland, grassland, and crop-
land. The regions with large vegetation coverage were chosen as sam-
pling sites. At each site, we took at least five photos with GPS cameras
and recorded the vegetation characteristics (e.g. growth stage, composi-
tion of community). Field photos were taken following the rules de-
scribed in-detail in previous publications (Qin et al., 2015b; Wang et
al., 2015). Fig. 1 shows the distribution of the field photos, with a total
number of 1970. These photos can be accessed freely at the global
data portal at the Earth Observation andModeling Facility (EOMF), Uni-
versity of Oklahoma (http://www.eomf.ou.edu/photos/) (Xiao et al.,
2011). The training Region of Interests (ROIs) were digitized according
to these field photos and the GE images during the winter and early
spring over 2005–2010. Although the field photos were taken in 2015,
they offered important references on vegetation types for the visual in-
terpretation. We collected training ROIs stratified randomly across the
red cedar and non red cedar forest areas (with plots/pixels of 46/
11,712 for red cedar and 30/10,698 for other trees). The distributions
of the training ROIs and the boundaries of all the used GE VHSR images
are shown in Fig. S3. In this study, the phrase ‘other trees’ refers to those
non red cedar species, mainly composed of oaks and bottomland
hardwoods.

2.3. Algorithm to identify red cedar forest

Forest is defined as land (N0.5 ha)with tree canopy cover larger than
10% and minimum tree height of 5 m, according to the United Nations
Food and Agriculture Organization (FAO) (FAO, 2012). The workflow
for mapping long-term (1984–2010) red cedar forest included three
sections (Fig. 4). First, a baseline forest map in 2010 was produced
using a decision tree algorithm based on 25 m 2010 PALSAR data.
Fig. 4.Workflowof red cedar forestmapping using 25m PALSARmosaic data in 2010 and Lands
in previous publication (Qin et al., 2016a). (For interpretation of the references to color in this
Second, the 2010 red cedar forest map was produced using a pixel and
phenology-based algorithm based on the 2010 forest map and the
Landsat images in the winter of 2010 (Dec. 2010–Feb. 2011). Finally, a
red cedar forest stand-agemap in 2010 was produced based on the his-
torical red cedar forest maps. The historical red cedar forest distribu-
tions were generated based on the 2010 forest map and Landsat times
series images in 1984–2010 using the pixel and phenology-based algo-
rithm. The red cedar forest maps were produced for the late 1980s
(1984–1989), early 1990s (1990–1994), late 1990s (1995–1999),
early 2000s (2000–2004) and late 2000s (2005–2010). The detailed
workflow is described in the following paragraphs.

2.3.1. Phenology and signature analysis of red cedar and non red cedar
forests

We selected three sites (Fig. S4a) with a largely homogeneous vege-
tation extent that represented red cedar, oak and bottomlandhardwood
forest types, according to the landscapes from the GE images and the
field photos (Fig. S4b–g). Time series of three VIs (NDVI, EVI and
LSWI) at these three sites were created using Landsat 5/7 data from
2005 to 2011 to examine the phenological characteristics of the forest
types (Fig. 5). Oak and bottomland hardwood forests had more signifi-
cant seasonal variations in the three VIs than did the evergreen red
cedar forest. In comparison, red cedar forest had significantly lower
VIs in summer and higher VIs in winter, which suggests the potential
to separate red cedar forest from other forest types. In winter, NDVI
and LSWI showed larger differences between red cedar and other forest
types than EVI did. However, LSWI tended to be influenced by ice and/or
snow cover, which have a higher reflectance in the visible and near in-
frared bands than vegetation (Xiao et al., 2004).

To map the red cedar at regional scale over multiple years, we ana-
lyzed the seasonal characteristics of NDVI based on the training ROIs
of red cedar (11,712 pixels) and other trees (10,698 pixels) over a peri-
od of 2005–2010. We calculated the monthly mean NDVI (NDVImean)
for individual pixels based on the Landsat 5/7 NDVI time series with a
8-day interval. We analyzed the mean values and standard deviations
of monthly NDVImean for all the pixels of red cedar and non red cedar
forests, in each year (Fig. S5) and in multiple years together over
2005–2010 (Fig. 6). The comparison of monthly NDVImean in summer
and in winter suggested NDVImean in winter has a better ability to sep-
arate red cedar trees from other trees, as themonthly NDVImean of red
cedar forests in winter wasmuch higher than that of other forest types.
These results also suggested that a threshold of about 0.4 can be used to
extract the red cedar forest based on the winter NDVImean.
at time-series images over 1984–2010. A detailedworkflow for forestmappingwas shown
figure legend, the reader is referred to the web version of this article.)

http://www.eomf.ou.edu/photos/


Fig. 5. Seasonal and interannual variations of Landsat (TM/ETM+)-derived vegetation indices (NDVI, EVI and LSWI) for forest samples of (a) red cedar, (b) oak and (c) bottomland
hardwood during 2005–2010. The winter in each year were delineated by grey boxes. The landscapes of these forest samples were shown in Fig. S4. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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To confirm this information, we analyzed the signature distribution
in HH, HV, and NDVImean in summer and in winter based on 2010
PALSAR data, 2010 Landsat 5/7 NDVI time series, and training ROIs of
red cedar and non red cedar forests (Fig. 7). Fig. S6 shows these individ-
ual images and their spectral data. Red cedar and non red cedar forests
had similar backscatter signature in PALSAR HH and HV, which can be
used to extract a boundary of forests mixed with red cedar and non
red cedar. In contrast, the spectral signature fromNDVImean in summer
and in winter showed some differences between red cedar and non red
Fig. 6. The monthly mean and standard deviation (SD) of NDVI of red cedar and non red
cedar forests. These values were calculated based on the training ROIs over years of
2005–2010. The monthly mean and SD of NDVI of red cedar and non red cedar forests
for individual years during 2005–2010 were shown in Fig. S5. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
cedar forests. NDVImean in winter had the maximum between-class
variance, which had the highest discrimination ability. Statistical analy-
sis showed that using a threshold of 0.40 can separate 95% of red cedar
pixels (N0.4) from 99% of the pixels of non red cedar forest (b0.4) (Fig.
7d).

2.3.2. Algorithm of red cedar forest mapping
We have developed a decision classification algorithm for mapping

forest based on 50m PALSARmosaic data (Dong et al., 2012a), the inte-
grated data of 50 m PALSAR and MODIS (Qin et al., 2015a; Qin et al.,
2016b), and the integrated data of 25 m PALSAR and Landsat images
(Chen et al., 2016). Previous studies showed forests, water, cropland,
and other land cover types had different backscatter signature in HH,
HV, HH/HV (Ratio), andHH-HV (Difference), which can be used to iden-
tify these land cover types (Chen et al., 2016; Dong et al., 2012a; Dong et
al., 2012b; Qin et al., 2015a). We recalculated the frequency distribu-
tions of HH, HV, HH/HV and HH-HV for five main land cover types in
this area (Fig. S7), based on 25 m PALSAR data in 2010 and land cover
samples (Fig. S8). To generate a forest and non-forest map, this study
followed the PALSAR-based forest mapping algorithm using 25 m
PALSAR mosaic data in 2010 with updated thresholds of
−16 b HV b −8 & 2 b Difference b 8 & 0.3 b Ratio b 0.85 (Qin et al.,
2016a). Then, this PALSAR-based 25 m forest map in 2010 was
resampled to 30 m to match Landsat spatial resolution. This forest
map composed by red cedar and non red cedar types provided a base-
line forest mask to overlay with the phenology characteristics from
the time series Landsat data for the red cedar forest mapping.

A pixel and phenology-based algorithm was developed to map the
red cedar forest in 2010 and five historical time periods. According to



Fig. 7. Frequency histograms of red cedar and non red cedar forests in 25m 2010 PALSAR (a) HH, (b) HV bands, and in themean NDVI during the (c) summer and (d) winter of 2010. The
solid line in (d) shows the threshold of 0.4 separating95% of the red cedar pixels from99% of the pixels of non red cedar forests. The statisticswere based on the training regions of interests
(ROIs) of red cedar and non red cedar forests. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the analysis in Section 2.3.1, Landsat images in winter were used to cal-
culate the NDVI time series and generate themeanNDVImap inwinter.
ThemeanNDVI in winter larger than 0.4was used to separate red cedar
forest from other forest types.

In summary, we first produced the red cedar forest map in 2010
based on the 25 m PALSAR data in 2010 and the Landsat-derived NDVI
time series in the winter of 2010 using the rules of (1)
−16 b HV b −8, and 2 b Difference b 8, and 0.3 b Ratio b 0.85, and
(2) the winter NDVImean N 0.4. Second, following these rules, we pro-
duced the annual red cedar maps over 1984–2009 based on the 2010
PALSAR data and the annual time series Landsat data in the winter.
Then, the annual red cedar maps were combined into 5 historical time
periods using frequency combination to reduce the uncertainties caused
by image quality or other factors. The 5 time periods were defined with
5 or 6 years as a group, including the late 1980s (1984–1989), early
1990s (1990–1994), late 1990s (1995–1999), early 2000s (2000–
2004) and late 2000s (2005–2010). During each time period, we count-
ed the number of individual pixels identified as red cedar based on the
annual red cedar maps. A pixel with a number ≥ 3 (frequency ≥ 50%)
was identified as red cedar. Third, the stand-agemap of red cedar forest
in 2010 was produced by examining the first red cedar occurrence time
for individual pixels based on the red cedar map in 2010 and the maps
in five historical time periods. In this study, the 2010 PALSAR data was
used to trace back the historical red cedar distribution, as long-term
PALSAR data did not yet exist. We assumed that the 2010 PALSAR data
provided the maximum red cedar distribution during 1984–2010, be-
cause the red cedar has encroached continuously into Oklahoma grass-
lands during recent decades (Williams et al., 2013; Zou et al., 2016).

2.4. Accuracy assessment of red cedar forest maps

A stratified random sampling design was used to acquire validation
samples to estimate the accuracies of the red cedar forest maps. We
stratified two classes of red cedar and non red cedar forests. Good prac-
tices for assessing accuracy of land cover changes suggested that the
allocated sample size in each stratum in proportion to the area of the
stratum can receive smaller standard errors for producer's and overall
accuracies. At the same time, the comprise between user's versus
producer's and overall accuracies should be considered by increasing
the sample size in the rare classes (Olofsson et al., 2014). Non red
cedar forest types occupied much larger areas than red cedar forests,
therefore we collected more ROIs for non red cedar forests and in-
creased the ROIs proportion of red cedar forests for good practices.
The ROIs were collected manually through visual interpretation based
on ground-reference photos and VHSR images in winter from GE. The
validation ROIswere digitized after 1995, due to the available GE images
in winter within the study area beginning in 1995. We collected valida-
tion ROIs for the year 2010 and three time periods of the late 1990s,
early 2000s, and late 2000s. We acquired plots/pixels of red cedar and
non red cedar forests of 24/5072 and 43/7326 in 2010, 44/4877 and
34/6853 over 2005–2010, 48/3546 and 37/5527 over 2000–2004, and
27/2829 and 38/4734 over 1995–1999, respectively. The ROIs of these
four periods have different spatial distributions determined by the loca-
tions of the available GE images (Fig. S9a–d). Fig. S9e,f show the zoom-
in landscapes of red cedar and non red cedar forests in winter from GE
images. These ROIs were used to assess the accuracy of the red cedar
maps in different periods. We calculated the adjusted accuracies and
area estimates with 95% confidence intervals using the methods pre-
sented by Olofsson et al. (2013).

2.5. Comparison with other available red cedar datasets

The Oklahoma Ecological System Mapping (OKESM) project was
launched in 2012, and finished by the summer of 2015 (Diamond and
Elliott, 2015). The OKESM map was produced to describe the current
statewide vegetation distribution. This product was created based on
multiple data sources of remote sensing, digital soils, slope, and streams
using a decision tree classification approach. The remote sensing images
used for theOKESMmapwere between Dec. 2010 andAug. 2011 for the
eastern regions of Oklahoma, and between Apr. 2013 and Jan. 2014 for
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the western regions of Oklahoma. It includes 165 vegetation types with
10 m spatial resolution. The overall user's accuracy was 85%, according
to the accuracy assessment with the ground-collected data (Diamond
and Elliott, 2015). This product can bedownloaded freely from theOkla-
homa department of wildlife conservation website (http://www.
wildlifedepartment.com/facts_maps/ecoregions.htm).

We compared the 2010 red cedar map (PALSAR/Landsat-RC2010)
with the optical image-based OKESM red cedar map in 2015 (OKESM-
RC2015). In the OKESMmap, the eastern redcedar appeared in multiple
vegetation type legends including eastern redcedar forest, woodland,
shrubland, and the mixed ecosystems of eastern redcedar and other
trees. The OKESM_RC2015 was generated by selecting the vegetation
types related to the eastern redcedar forest or woodland. We aggregat-
ed the 10 m OKESM-RC2015 two-value map into a 30 m OKESM-
RC2015 percentage map. This comparison included two aspects: (1)
the spatial distribution of red cedar and (2) the area assessment at the
county scale. We visually compared the spatial differences of these
two products at 30 m spatial resolution, and analyzed the area
Fig. 8. (a) The red cedar forest map in 2010. (b, c, d) are the zoom-in views of three regions labe
legend, the reader is referred to the web version of this article.)
differences by linear regression. The areas were calculated based on
these two products at the county level.
3. Results

3.1. The maps of eastern redcedar forest

Wemapped Juniperus virginiana L. (eastern redcedar) distribution in
2010 and five historical periods from 1984 to 2010. Fig. 8 shows the re-
sultant red cedar forest map (PALSAR/Landsat-RC map) in 2010. This
map also shows the non red cedar forest extracted from the 2010
PALSAR-based forest map. The blank areas represented the non-forest
areas which were not classified in this study. Within the study area,
some counties had clear red cedar encroachment in 2010, including
Caddo, Blaine, Deway, Logan and Payne counties. Fig. 9 shows the resul-
tant red cedar maps during five phases from the late 1980s to the late
2000s, with an interval of five or six years. The forest of other trees
led as 1, 2, 3 in (a), respectively. (For interpretation of the references to color in this figure

http://www.wildlifedepartment.com/facts_maps/ecoregions.htm
http://www.wildlifedepartment.com/facts_maps/ecoregions.htm


Fig. 9. (a–e) The red cedar forestmaps infiveperiodswith 5–6 years as an interval. Thesemaps showed the forest distribution in 2010 derived from the 2010 PALSARdata. (f) The red cedar
areas in five different periods, (g–k) shows the zoom-in views for five periods from the late 1980s to the late 2000s for the region highlighted by the blue box in Fig. 9a. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shown in the five epoch maps were extracted from the 2010 PALSAR-
based forest map.
3.2. Accuracy assessment

Accuracy assessments of these resultant maps was conducted for
2010 and three time periods of the late 1990s, early 2000s and late
2000s using the validation ROIs introduced in Section 2.4 (Fig. S9).
The accuracy of the maps in the late 1980s and early 1990s was not
assessed, because the VHSR images for validation from GE were not
available until 1995. The assessment results demonstrated that the red
cedar and non red cedar maps had reasonably good accuracies
(Table1). The overall accuracies (OA) were 96%, 95%, 94% and 95%, and
the Kappa coefficients were 0.91, 0.86, 0.88 and 0.91 in 2010, late
2000s, early 2000s, and late 1990s, respectively. The red cedar category
had producer accuracies (PA) of 93%, 90%, 88%, and 90%, and user accu-
racies (UA) of 97%, 96%, 98%, and 99% in these resultantmaps. This result
suggested that the red cedar maps in different periods of time were
comparable with each other, and it was possible to monitor red cedar
encroachment from 1984 to 2010 based on the PALSAR/Landsat-RC
maps in the five epochs.

The accuracies of PA, UA and OA were adjusted according to the
mapped areas of red cedar and non red cedar forests (Table S1). These
maps achieved adjusted OAs of 0.94–0.96. The red cedar type in these
maps have adjusted PAs between 0.78 and 0.89, and adjusted UAs be-
tween 0.96 and 0.99. We estimated the red cedar forest areas in 2010,
late 2000s, early 2000s and late 1990s with 95% confidence interval
margins based on the validation ROIs. The adjusted areas increased
from about 811 km2 in the late 1990s to 1236 km2 in 2010 (Table S1).

3.3. Dynamics of red cedar encroachment and stand age analysis

Therewas significant red cedar encroachment in the study area from
1984 to 2010 according to the PALSAR/Landsat-RCmaps (Fig. 9a–e) and
themapped red cedar area analysis (Fig. 9f). In the late 1980s, red cedar
in the study area occupied ~300 km2. Then, the red cedar encroached
slightly during the early 1990s, reaching an area of ~400 km2. The red
cedar encroachment mainly happened in the counties of Caddo, Blaine,
Dewey and Payne counties during this period. In the late 1990s, the red
cedar expanded into Logan, Major and Canadian counties and the area
increased to ~600 km2. Then, the red cedar continuously encroached
in these counties during the 2000s, and the area reached ~900 km2 in
the early 2000s and ~1000 km2 in the late 2000s. The PALSAR/
Landsat-RC maps in the five historical time periods showed a continu-
ous encroachment of red cedar, with themost significant encroachment
occurring in the late 1990s and early 2000s. During the entire period of
1984–2010, the annual red cedar encroachment rate was about 8%. Fur-
ther analysis of the geographical patterns of the red cedar encroach-
ment at the county level was presented in supplementary data (text
and Fig. S10).

The stand-age map of the red cedar forest in 2010 was generated by
overlaying the historical red cedar forest maps in five time periods (Fig.
10a). Fig. 10d shows the percentage distributions of red cedar forest
with different stand ages including 1–5 (~20%), 6–10 (~23%), 11–15
(~22%), 16–20 (~11%) and larger than 20 (~24%) years old. Most of



Fig. 10. The stand-agemap (a) and two zoom-in views (b, c) for the case regions shown in black boxes of 1, 2 in (a). (d) shows the stand-age histogram of the red cedar forest in 2010. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the red cedar forest (~57%) had a stand age larger than 10 years old,
which agreed with the significant red cedar encroachment during the
1990s. 23% of the red cedar forest had a stand age of 6–10 years, and
20% of that had a stand age of b5 years, which coincides with the red
cedar encroachment shown in the 2000s.

3.4. A comparison of the PALSAR/Landsat-RC mapwith the OKESM-RCmap

We compared the 2010 PALSAR/Landsat-RC map with the optical
image-based red cedar map derived from the OKESM in 2015 (Fig.
11). The spatial distributions of the red cedar in these twomapswere vi-
sually in high agreement (Fig. 11a and b). The red cedar areas derived
from the two maps at county level had a significant linear relationship,
with R2 of 0.93 (Fig. 11c). The slope of 1.34 indicates that there is
Fig. 11. The comparison of the 2010 red cedar forest map produced in this study (PALSAR/Land
(OKESM_RC2015, Fig. 11b). (c)Area comparison of PALSAR/Landsat_RC2010 andOKESM_RC201
The zoom-in view of the region shown in black box in Fig. 11b. (f) the zoom-in red cedarmap fr
from OKESM_RC2015 for the case region in Fig. 11e. The background of Fig. 11f, g was the Goog
maps of PALSAR/Landsat_RC2010 and OKESM_RC2015, respectively. (For interpretation of the
article.)
moderate difference in red cedar forest area estimates between these
two map products for our study area. Therefore, one case region
(black boxes in Fig. 11a, b) was selected for zoom-in analysis on these
two maps. The red cedar forest distributions derived from the two
maps for the case region were shown in Fig. 11d, e. By comparison, we
can see some inconsistent patches of red cedar in this case region.
Therefore, another zoom-in view (black boxes in Fig. 11d, e)was select-
ed for analysis based on the GE images. Fig. 11f and g show the red cedar
distributions (pink areas) in the zoom-in view extracted from the
PALSAR/Landsat-RC2010map and theOKESM-RC2015map, respective-
ly. The background of Fig. 11f, g used the same image on 03/23/2011
from GE. This zoom-in view comparison revealed that OKESM-RC2015
missed some red cedar forests, which may result in some discrepancies
of red cedar area estimations between these two products. The overall
sat_RC2010, Fig. 11a) and the red cedar map from the Oklahoma EcosystemMap in 2015
5 at the county level. (d) The zoom-in viewof the region shown inblack box in Fig. 11a. (e)
om PALSAR/Landsat_RC2010 for the case region in Fig. 11d. (g) The zoom-in red cedarmap
le Earth image on 03/23/2011. The pink areas in Fig. 11f, g show the red cedar forests from
references to color in this figure legend, the reader is referred to the web version of this
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accuracy of 85%was reported for the OKESMmap, but the specific accu-
racy for the red cedar forest in this area is unknown. In addition, the
2010 PALSAR/Landsat-RCmapwas developed based on the Landsat im-
ages from Dec. 2010 to Feb. 2011, while the OKESM-RCmap was devel-
oped based on the images from 2013 to 2014. A real difference of red
cedar forest cover in these two periods may exist, and it could contrib-
ute to the inconsistency between these two maps.
4. Discussion

4.1. Source errors of red cedar forest map in 2010 from PALSAR and Landsat
images

It is a challenge to classify pixelswithmixed vegetation types in land
covermapping or thematic object extractions (Gong et al., 2013; Herold
et al., 2008; Sterling and Ducharne, 2008). Considering the red cedar
trees within each individual pixel, canopy coverage and tree height de-
termined the classification accuracy in this study. This could be ex-
plained by the remote sensing data. The backscatter signals of low
frequency SAR (e.g. PALSAR) are related to the three dimensional struc-
tures (including crown and height) of forest (Cloude and
Papathanassiou, 2003). VIs developed from optical data weremore sen-
sitive to the canopy cover (Shimada et al., 2014). These two factors have
been confined in most of the forest definitions (FAO, 2012; Friedl et al.,
2010; Liu et al., 2005; Qin et al., 2015a; Shimada et al., 2014). However,
studies to quantitatively evaluate the roles of these two factors on the
classification accuracy at the sub-pixel level are lacking. This study
used the FAO definition of forests as lands with tree canopy coverage
larger than 10%. The recognition capabilities of 2010 PALSAR/Landsat-
RC map at different coverage levels of red cedar canopy in individual
pixels is uncertain. The VHRS images from GE and the National Agricul-
ture Imagery Program (NAIP) clearly show tree canopy coverage on the
ground surface.We selected three case regions using the simple random
design based on these VHRS images, and each region had an extent of
about 1 km × 1 km (Fig. 12a). The red cedar canopies were digitalized
at individual pixels by visual interpretation based on the GE images in
winter (Fig. 12b, Fig. S11). The boundaries of each pixel with shapefile
format were obtained by generating a 30 m fishnet based on the
PALSAR/Landsat-RC maps. Then, we calculated the coverage of red
cedar canopy within each individual pixel, and examined whether the
specific pixel was recognized or not in the PALSAR/Landsat-RC maps.
Fig. 12c shows the recognition capability of the 2010 PALSAR/Landsat-
RC map at different coverage levels of red cedar trees within each
pixel. There was 90% probability to recognize the pixels with red cedar
coverage higher than 60%, and this probability decreases with decreas-
ing red cedar coverage (Fig. 12c). There was 30% recognition probability
in the sparse areas with red cedar canopy coverage ranging 10%–20%.
One possible reason was that the unrecognized pixels with red cedar
Fig. 12. (a) Spatial distributions of three sample regions with total number of 2838 pixels. The
interpretation of red cedar canopy in each pixel. (c) The percentage of recognized and unrecogn
of the references to color in this figure legend, the reader is referred to the web version of this
coverage higher than 10%may have low red cedar height, which cannot
be characterized as forests. Another explanationmight be that red cedar
forests were young with low backscatter signals. Previous studies
showed that PALSAR-based forest products had good performance
identifying mature forests, but it is possible to omit the sparse and/or
low-height forests and woodlands (Qin et al., 2016b; Shimada et al.,
2014). If additional data becomes available, further studies will be con-
ducted to evaluate the performance of the PALSAR/Landsat-RC maps
with red cedar height, density, or biomass gradients at the sub-pixel
scale.
4.2. Uncertainly analysis of red cedar forest maps during 1984–2010

The accuracy of mapping the dynamics of red cedar encroachment
into grasslands could be potentially affected by factors within the data
and algorithm. It is a challenge to collect good quality data within the
phenological window of time to map the annual red cedar distribution
and validate the results (Fig. 3, Fig. S2). Although the pixel-based algo-
rithm increased the information input, amounts of pixels were short
of sufficient good observations at annual scale, and the data availability
showed significant inter-annual variations (Fig. 3, Fig. S2). The quality of
input images (Gong et al., 2013) and the uneven availability of Landsat
images at temporal and spatial scales (Hansen et al., 2016) posed signif-
icant challenges to land cover mapping. Therefore, we produced multi-
year red cedar maps in time periods of 5 or 6 years to reduce the uncer-
tainties caused by the data availability.

Accuracy assessments of the red cedarmaps had some uncertainties
resulting from the limited ground reference data and available VHSR
images over time. We only evaluated the red cedar maps in three time
periods, the late 1990s, the early 2000s, the late 2000s and the one in
2010. The accuracies of red cedar maps in the late 1980s and the early
1990s were still uncertain, although red cedar distribution patterns
agreed with the maps produced by survey questionnaires (Engle et al.,
1996). In addition, the spatial distributions of validation ROIs (Fig. S9)
for different time periods were confined by the available VHSR images.
For example, the ROIs in 2000–2004 (Fig. S9c)were only obtained in the
eastern part of the study area, therefore some uncertainties may be
caused in the accuracy assessment by the incomprehensively spatial
representatives of the validation ROIs.

The phenology feature of red cedar trees having green foliage in the
winter is also true for other evergreen trees. Due to the differences from
canopy structure, leaf compositions, and phenological phases, the
threshold used in this study could exclude some evergreen trees, but
could not eliminate the confusions caused by the species with similarly
spectral signature (Friedl et al., 2010; Herold et al., 2008). In this study,
the commission errors did not affect the resultant maps too much
(Table 1), which could be explained by the tree compositions in the
grassland ecosystem as discussed in Section 4.3.
red cedar canopy within each pixel was visually drawn (Fig. S11). (b) The zoom-in visual
ized red cedar pixels at different pixel-based red cedar coverage levels. (For interpretation
article.)



Table 1
Accuracy assessment of red cedar forest maps based on the validation regions of interests (ROIs) from field photos, and Google Earth images in different periods. More information about
the ROIs was shown in Fig. S9.

Periods Ground truth pixels in each period Classified pixels User Accuracy (UA)

Red cedar Non red cedar

2010 Red cedar 4698 141 4839 97%
Non red cedar 374 7185 7559 95%
Ground truth pixels 5072 7326 12,398 OA = 96%
Producer accuracy (PA) 93% 98% Kappa = 0.91

2005–2010 Red cedar 4402 170 4572 96%
Non red cedar 475 6683 7153 93%
Ground truth pixels 4877 6853 11,730 OA = 95%
Producer accuracy (PA) 90% 98% Kappa = 0.86

2000–2004 Red cedar 3190 61 3170 98%
Non red cedar 437 5466 5903 92%
Ground truth pixels 3546 5527 9073 OA = 94%
Producer accuracy (PA) 88% 99% Kappa = 0.88

1995–1999 Red cedar 2553 29 4414 99%
Non red cedar 276 4705 4407 94%
Ground truth pixels 2829 4734 8821 OA = 95%
Producer accuracy (PA) 90% 99% Kappa = 0.91
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4.3. Potential for mapping long-term red cedar encroachment at regional
scale

This study presented the potential of mapping the dynamics of red
cedar encroachment to grassland at the regional scale through combin-
ing PALSAR data and time series Landsat data by using a pixel and phe-
nology-based algorithm. Although the red cedar forest maps in the late
1980s and early 1990s were not validated, these maps showed consis-
tent red cedar distribution with the maps obtained by survey question-
naires in 1985 and 1995 (Engle et al., 1996). These two resultant maps
also showed the eastern redcedar expanded along river drainages,
which provides remote sensing evidence for the study by Engle et al.
(1996). The red cedar forest maps in other periods had reasonable pro-
ducer accuracies of 88%–93%. The successful practice in this study could
be explained by data availability, algorithm, and vegetation types.

The L-band PALSAR images have shown good performance on map-
ping forest (Shimada et al., 2014) and plantations (Chen et al., 2016;
Dong et al., 2013; Miettinen and Liew, 2011). The release of 25 m
PALSAR mosaic images offered improved spatial resolution datasets
for forest mapping (Shimada et al., 2014). The Landsat data provided a
long term (since the 1970s) data source at 30 m spatial resolution for
time series analysis (Woodcock et al., 2008; Wulder et al., 2012).
Using all good observation data of individual pixels from both the TM
and ETM+ images improved the description of phenology information
(Dong et al., 2016; Dong et al., 2015) and increased the temporal range
of the study. The GEE platform facilitated the collection and processing
of all the surface reflectance data from 1984 to 2011. A recent study
on paddy rice mapping has shown the efficient capability of the GEE
platform for the land cover mapping based on thousands of images
(Dong et al., 2016).

The different phenological characteristics between red cedar trees
and other trees (e.g. oaks) in the study area could be represented by
vegetation indices of NDVI/EVI/LSWI (Figs. 5, 6). For example, in the
winter, the red cedar trees have canopies with green leaves, while
other dominant trees have significant defoliation. Thus, the red cedar
can be identified effectively with the images in the winter. Based on
this analysis, this study proposed the pixel- and phenology-based algo-
rithmwith all good observations of Landsat 5/7 at a given pixel as input.
This algorithm has better potential for time series analysis than tradi-
tional image- and statistics-based algorithms for two major reasons:
(1) pixel-based algorithms increase the data input to describe the phe-
nology (Fig. S2), and (2) phenology-based algorithms can be used re-
peatedly at a given area with similar climate and ecosystem types
over time (Dong et al., 2015; Zhong et al., 2014).
Deciduous forest and prairies, which include tall, mixed, and short
grasses, are two plant communities in western Oklahoma (Bruner,
1931). This study examined the dynamics of red cedar encroachment
into native grasslands in the ecotone between deciduous forests and
grass prairie. Red cedar trees had unique phenology spectra which dif-
fered from that of the dominant deciduous trees. Therefore, the pheno-
logical characteristics of red cedar and deciduous trees could be
successfully used tomap the red cedar forest in grassland regions by re-
mote sensing images using the phenology-based algorithm in this
study.

4.4. Implications for extensive applications and future development

To our knowledge, this is the first attempt to monitor the dynamics
of red cedar encroachment to native grasslands using remote sensing
approaches at the regional scale. The pixel- and phenology-based algo-
rithm based on PALSAR and time series Landsat images may have the
potential to be applied widely (1) to other grassland regions, and (2)
to extract other invasive tree species by adjusting the threshold used
in this study. Detailed and long-term red cedarmaps provide important
data sources for themanagement of grasslands, and for the exploring of
causes and consequences of woody plant encroachment at the regional
scale (Barger et al., 2011; Gavier-Pizarro et al., 2012; Ge and Zou, 2013;
Turner et al., 2003). Currently, this work was limited at both the spatial
extent and the temporal range. We will apply this approach to map the
dynamics of red cedar encroachment across the grasslands in Oklahoma
and the Southern Great Plains. The release of the PALSAR2 data
(Shimada et al., 2014) provides an opportunity to map the red cedar
patterns after 2010. Limited by the quality and quantity of the input
data, this study produced the multi-year red cedar maps. The annual
red cedar time seriesmaps could be generated in the future through im-
proving the mapping algorithms and using more data sources (e.g.
Landsat 8, Sentinel-2).

5. Conclusions

Woody plant encroachment is occurring globally inmultiple ecosys-
tems, especially in the grassland of the southern great plains of the USA.
The lack of long-term red cedar maps at the regional scale severely
limits our understanding of the ecosystem and climate feedbacks on
woody plant encroachment, rangeland management and biodiversity
conservation. Landsat data provided the possibility to trace back the re-
gional land cover changes to the 1980s at 30 m spatial resolution. This
study integrated 4233 Landsat 5/7 images from 1984 to 2010 with the
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PALSAR data in 2010 to monitor the red cedar dynamics in the central
region of Oklahoma by a pixel and phenology-based algorithm. The
Landsat-based time series vegetation indices can capture the phenolog-
ical differences of red cedar and other trees, which facilitated the red
cedar mapping in this study. The moderate spatial resolution images
of Landsat and PALSAR had good performance to identify the regions
with red cedar coverage larger than 50%, and the identification capabil-
ity reduced with the decreasing of red cedar coverage. The uneven
image qualities at spatial and temporal scales and algorithm could
cause some uncertainties that occurred on the resultant red cedar
maps. Further studies are needed to apply this pixel- and phenology-
based algorithm using PALSAR and time series Landsat images to
other grassland regions.
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