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Introduction

It is important to accurately estimate cropland gross 
primary production (GPP) due to its key role in the 
global food security and carbon budgets (Peters et  al. 
2007). In particular, the corn belt of the midwestern USA 
supplies 40% and 35% of global annual maize (Zea mays 
L.) and soybean (Glycine max L.) productions, respec-
tively (FAO 2013), and thus plays an important role in 
the annual carbon balance of North America (Peters 
et  al. 2007). Different approaches of GPP estimations 
have been developed in past decades. One main approach 

is the use of satellite-based production efficiency models 
(PEMs) that are developed based on the light-use effi-
ciency (LUE) concept (Monteith 1972). Formulation of 
the LUE-based PEMs to estimate GPP is as follows: 

(1)

where LUE is the efficiency with which the absorbed 
photosynthetically active radiation (PAR) is used in 
photosynthesis and FPAR is the fraction of absorbed 
PAR by vegetation. LUE is generally tabulated with 
invariant values associated to plant functional types, 
then attenuated by temperature and water stressors 
under limiting environmental conditions. An estimation 
of LUE from remote sensing is still challenging (Hilker 

GPR=PAR×FPAR×LUE,
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et  al. 2008). FPAR is commonly approximated from 
remotely sensed vegetation indices. Based on different 
FPAR concepts, there are two typical groups of satellite-
based LUE models. The first group uses the fraction 
of  PAR absorbed by vegetation canopy (FPARcanopy) 
to  simulate GPP, which includes the Moderate-
Resolution  Imaging Spectroradiometer Photosynthesis 
(MODIS-PSN) model (Running et  al. 2004), the eddy 
covariance-based LUE (EC-LUE) model (Yuan et  al. 
2007), and the Carnegie–Ames–Stanford Approach 
(CASA) model (Potter et al. 1993). FPARcanopy is often 
estimated from normalized difference vegetation index 
(NDVI) or leaf area index (LAI; Sellers et al. 1997). The 
second group uses the fraction of PAR absorbed by veg-
etation chlorophyll (FPARchl), which includes vegetation 
photosynthesis model (VPM; Xiao et al. 2004). Recently, 
several GPP models have either estimated FPARchl from 
enhanced vegetation index (EVI) or considered EVI as a 
proxy of FPARchl (Xiao et al. 2004, Wu et al. 2011). The 
VPM has been evaluated for maize (Kalfas et al. 2011) 
and soybean (Wagle et al. 2015) croplands, and showed 
an improvement on estimating GPP of croplands com-
pared to the FPARcanopy-based MODIS-PSN model. 
Even though the relatively simple LUE-based models 
have widely been used in estimating GPP at regional and 
global scales, their performance has been different (Jung 
et al. 2007, Nightingale et al. 2007) due to variations in 
model structures and parameters, and uncertainties of 
model inputs (Wang et al. 2011, Jin et al. 2015).

Another main approach to estimate GPP at different 
temporal and spatial scales is to use process-based ter-
restrial biosphere models (TBMs; Sellers et  al. 1997). 
TBMs generally represent physiological, biophysical, 
and biogeochemical processes in a mechanistic way of 
photosynthesis, respiration, and canopy energy balance 
(Sellers et al. 1997), and they require more inputs, most 
importantly meteorological, soil, and land cover infor-
mation. Most of these models rely on C3 and C4 pho-
tosynthesis models (Farquhar et al. 1980, Collatz et al. 
1992) to estimate GPP. The soil canopy observation of 
photochemistry and energy flux (SCOPE) model 
belongs to this group and can be used to simulate 
carbon, water vapor, and heat fluxes (Van der Tol et al. 
2009a).

It has recently been shown that space-borne sun-
induced chlorophyll fluorescence (SIF) observations 
offer new possibilities for monitoring photosynthesis 
from space (Frankenberg et  al. 2011, Guanter et  al. 
2014). Chlorophyll fluorescence is an electromagnetic 
emission in the 650–800 nm range originating at the core 
of photosynthetic machinery. The first global retrievals 
of SIF from the Greenhouse gases Observing SATellite 
(GOSAT; Frankenberg et  al. 2011, Joiner et  al. 2011, 
Guanter et  al. 2012) and later from the Global Ozone 
Monitoring Experiment-2 (GOME-2; Joiner et al. 2013) 
enable the establishment of a direct link between remotely 
sensed SIF and GPP of terrestrial ecosystems. A recent 
empirical study showed the ability of space-borne 

SIF  to  monitor crop photosynthesis at regional and 
global  scales and to correct existing underestimations 
by  LUE models like MODIS-PSN (Guanter et  al. 
2014). Compared to reflectance-based satellite data (e.g., 
FPAR), Joiner et al. (2014) showed that SIF can track 
spring onset and autumn decline of photosynthesis more 
closely in different biomes. Zhang et al. (2014) demon-
strated that key parameters for photosynthesis modeling, 
such as the maximum carboxylation capacity (Vcmax) can 
be derived from space-borne SIF data and the SCOPE 
model, which could improve GPP estimates. Similar to 
the fundamental estimation of GPP based on the LUE 
concept (Monteith 1972), SIF is conceptualized as 
(Guanter et al. 2014) 

(2)

where LUEf is the light-use efficiency for fluorescence. 
Obviously, both SIF and GPP are related to the flux of 
absorbed light (APAR or FPAR) with which it is used 
for vegetation photosynthesis.

Considering different concepts of FPAR (FPARcanopy 
and FPARchl), it is also necessary to perform an addi-
tional comparison of their relationships with space-
borne SIF observations in order to quantify the link 
between fluorescence and vegetation photosynthesis 
process. As chlorophyll fluorescence is closely related to 
the photosynthetic activity of vegetation, we expect con-
sistency of crop phenology in GPP and SIF. In the mean-
while, since SIF is an independent measurement, the link 
between SIF and APAR or FPAR can provide more 
insights into the usage of satellite-derived spectral veg-
etation indices as well. In addition, it is also useful to 
determine the usefulness of SIF relative to other com-
monly used vegetation indices such as land surface water 
index (LSWI) which has shown advantage for identi-
fying the crop maturity date over NDVI and EVI (Yan 
et al. 2009).

To our knowledge, no simultaneous comparison of the 
performance of space-borne SIF in estimating GPP with 
the LUE-based VPM and process-based SCOPE models 
has been made in croplands. The major objectives of this 
study were to (1) investigate consistency of seasonal 
dynamics of maize phenology based on observations of 
carbon flux, vegetation indices, and SIF, and (2) compare 
the performance of SIF for estimating maize GPP with 
a LUE-based (VPM) and process-based (SCOPE) GPP 
models. Considering the large uncertainty in the mag-
nitude of predicted GPP for croplands and substantial 
differences in the spatial and temporal variability of GPP 
by the models (Huntzinger et  al. 2012, Schaefer et  al. 
2012), this type of simultaneous comparison study would 
improve our ability to accurately estimate GPP of crop-
lands. The improved GPP estimation could not only 
benefit crop yield forecast for a wide range of public and 
private sectors, but also help better understanding the 
role of croplands in global carbon budgets and atmos-
pheric CO2 seasonal cycle (Peters et al. 2007, Gray et al. 
2014, Zeng et al. 2014).

SIF=PAR×FPAR×LUFf,
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Materials and Methods

Site descriptions and flux data

Three AmeriFlux crop sites, located at the University 
of Nebraska-Lincoln Agricultural Research and 
Development Center near Mead, Nebraska, USA, were 
used in this study. Site 1 (USNe1) is irrigated continuous 
maize, and site 2 (USNe2) and site 3 (USNe3) are planted 
in maize-soybean rotations. The difference between 
USNe2 and USNe3 sites is the USNe2 site is irrigated 
and the USNe3 site is a rainfed agricultural system. 
Detailed site information can be found in previous 
studies (Verma et al. 2005, Suyker and Verma 2012). To 
determine landscape homogeneity of the study area, 
MODIS products for land cover type (MCD12C1; 
Friedl et  al. 2010) and EVI (MOD13C2; Huete et  al. 
2002) with spatial resolution of 0.05 degrees were used. 
It was found that more than 90% of the GOME-2 pixel 
area around the Mead flux tower sites corresponded to 
croplands and the standard deviation of EVI was less 
than 0.1. Thus, we assumed landscape homogeneity 
within the GOME-2 grid, even though the footprint size 
of the flux tower (<1  km2) does not match the coarse 
resolution of GOME-2. This assumption of landscape 
homogeneity could lead to biases to some extent in the 
comparison. However, using the same SIF and flux 
dataset, previous studies demonstrated good perfor-
mance of this assumption (Guanter et al. 2014, Zhang 
et al. 2014).

Half-hourly carbon flux and meteorological data from 
three study sites for the period of 2007–2011 were 
obtained from the AmeriFlux website (available online).7 
We used flux data only for the maize growing years for 
USNe2 and USNe3 sites. Flux data were gap-filled and 
partitioned using the tool eddy covariance gap-filling and 
flux-partitioning tool from the Max Planck Institute for 
Biogeochemistry (MPI-BGC; available online).8 The net 
ecosystem CO2 exchange (NEE) was partitioned into 
GPP (GPP_EC) and ecosystem respiration (Reichstein 
et al. 2005).

GOME-2 SIF data

We used SIF data for the study period (2007–2011) 
from GOME-2 instrument onboard Eumetsat’s 
MetOp-A platform. GOME-2 has a sun-synchronous 
orbit and samples near 09:30 local time. GOME-2 
measures in the 240–790 nm spectral range with a rela-
tively high spectral resolution between 0.2 and 0.5 nm 
and a nominal footprint of 40 × 80 km2. SIF retrievals 
are based on the inversion of top-of-atmosphere meas-
urements in the 715–758 nm windows that overlap SIF 
emission. The retrieval method disentangles the contri-
bution of atmospheric absorption and scattering, 
surface reflectance, and fluorescence to the measured 

top-of-atmosphere radiance spectra. Details of the 
retrieval of SIF from GOME-2 measurements can be 
found in Joiner et al. (2013) in which an effective cloud 
fraction of <0.4 was used to filter and quality control. 
Details about the effects of cloud on fluorescence meas-
urements can be found in previous studies (Joiner et al. 
2013, 2014). The retrievals are quality-filtered and 
binned in 0.5° latitude–longitude grid boxes (Joiner 
et al. 2013).

Space-borne SIF values were extracted based on the 
coordinates of the flux tower and averaged to an 8-d 
period to match 8-d composites of MODIS data set, 
when at least five SIF retrievals were available within 
each 8-d period. Due to the coarse resolution of 
GOME-2 grid, we actually extracted the same SIF 
values for the three maize sites. GPP_EC data from 
USNe2 and USNe3 sites were used to derive an 
empirical linear model between GPP_EC and SIF 
during the growing season (Fig. 1). This GPP-SIF rela-
tionship was used to estimate GPP (GPP_SIF) for the 
USNe1 site. The predicted GPP (GPP_SIF) for the 
USNe1 site was evaluated against GPP_EC. For 
comparison, we also estimated GPP using VPM 
and  SCOPE models (GPP_VPM and GPP_SCOPE, 
respectively) for the USNe1 site.

Percentage of maize cropland within a MODIS pixel 
(500 m) and a 0.5 × 0.5 degree grid

To show the changes in proportion of croplands (maize 
and soybean) for the MODIS and GOME-2 grid pixels 
that cover the flux tower, we used the United States 
Department of Agriculture Cropland Data Layer (CDL) 
dataset for the study period (2007–2011) and aggregated 
60-m data into 500-m and 0.5× 0.5 degree grid cells, 
respectively. Within the MODIS and GOME-2 grid 
pixels, vegetation cover was dominated by maize and 
soybean (Table 1).

Fig.  1.  A relationship between 8-d tower-based gross 
primary production (GPP_EC) and sun-induced chlorophyll 
inflorescence (SIF) during the maize growing season for two 
Mead rotation sites (USNe2 and USNe3).

7 �http://ameriflux.lbl.gov/
8 �http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/

http://ameriflux.lbl.gov/
http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/
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MODIS data

The surface reflectance 8-d L3 Global 500-m product 
(MOD09A1) for the study sites were extracted from the 
data portal of the Earth Observation and Modeling 
Facility, the University of Oklahoma (available online) 
using the geo-location coordinate of each flux tower.9 A 
pixel-based quality assurance (QA) control was applied 
to generate a less noisy time series dataset by removing 
the noise of low quality, cloud, and aerosol contaminated 
pixels (Xiao et al. 2005). Eight-day composite values of 
EVI (Huete et al. 2002) and LSWI (Xiao et al. 2004) were 
calculated. The MOD15A2 FPAR product, a standard 
8-d FAPARcanopy product for EOS-MODIS (Myneni 
et  al. 2002), and the standard MODIS GPP product 
(GPP_MODIS), just for the comparison with other GPP 
estimates, were downloaded from the Oak Ridge National 
Laboratory Distributed Active Archive Center (ORNL 
DAAC) website (data available online).10 APARcanopy and 
APARchl were calculated by multiplying FPARcanopy and 
FPARchl (equivalent to EVI in this study) with PAR 
which was measured at the flux sites. To determine the 
start and end dates of the maize growing season, we chose 
a threshold of LSWI ≥ −0.1 and GPP_EC ≥ 1 g C·m2·d 
for the study sites according to Kalfas et al. (2011). For 
SIF and EVI, we fitted Savitsky-Golay functions using 
TIMESAT software to estimate onset and end of the 
growing season (Jönsson and Eklundh 2004).

VPM and input parameters

VPM estimates GPP as 

(3)

where εg is light-use efficiency (LUE, g C/mol photosyn-
thetic photon flux density [PPFD]), FPARchl is fraction 
of PAR absorbed by chlorophyll, and PAR is photosyn-
thetically active radiation. VPM uses EVI as FPARchl. 
While the detailed description of VPM has been provided 
previously (Xiao et al. 2004, Wagle et al. 2014), we briefly 
summarize it here.

The VPM employs down-regulating scalars (ranging 
from 0 to 1) to characterize the effects of temperature 
(Tscalar) and water stress (Wscalar) on the LUE (εg) as 

(4)

where ε0 is the apparent quantum yield or maximum light 
use efficiency (g C/mol PPFD). A theoretical ε0 value of 
1.5 g C/mol PPFD was used in this study, as reported in 
a previous study (Kalfas et al. 2011). Tscalar was calcu-
lated at each time step as in the terrestrial ecosystem 
model (Raich et al. 1991) as 

(5)

where T is the air temperature and Tmin, Tmax, and Topt 
represent the minimum, maximum, and optimum tem-
peratures for photosynthesis, respectively. Tmin, Tmax, 
and Topt were set to 10°, 48°, and 28°C, respectively, as 
in Kalfas et al. (2011). LSWI was used to account for the 
effect of water stress on photosynthesis as 

(6)

where LSWImax is the maximum LSWI within the plant 
growing season.

SCOPE model and input parameters

The SCOPE model is a vertical (1D) biophysical model 
that couples radiative transfer of optical and thermal 
radiation with the leaf biochemical process (Van der Tol 
et al. 2009a). The biochemical components for C3 and C4 
plants are based on Collatz et al. (1991, 1992). It simulates 
within-canopy vertical heat flux distribution, the hyper-
spectral outgoing radiances (Verhoef and Bach 2007), and 
the photosynthesis of C3 or C4 vegetation. It describes 
sun-canopy-observer geometry and leaf orientation to 
consider different biophysical processes for sunlit and 
shaded components. The novelty of SCOPE is that it 
couples a leaf-level chlorophyll fluorescence model 
(Van  der Tol et  al. 2009b) with a leaf biochemical 
model  to  calculate top-of-canopy chlorophyll fluores-
cence. Radiative transfer of chlorophyll fluorescence is 

GPPVPM =�g×FPARchl×PAR,

�g =�0×Tscalar×Wscalar,

Tscalar =
(T−Tmin)(T−Tmax)

[(T−Tmin)(T−Tmax)]−(T−Topt)
2

,

Wscalar =
1+LSWI

1+LSWImax

,

Table 1.  Changes in proportion of croplands within the grid cell of Moderate Resolution Imaging Spectroradiometer (MODIS, 
500 × 500 m) and Global Ozone Monitoring Experiment-2 (GOME-2, 0.5° × 0.5°) containing the Mead flux towers during 
2007–2011.

Year

MODIS pixel (%) GOME-2 (%)

Maize Soybean
Total 

cultivated Maize Soybean
Total 

cultivated

2007 90.91 0.00 90.91 36.04 28.36 65.68
2008 82.43 4.05 94.59 32.88 36.50 85.60
2009 90.91 0.00 92.42 37.24 31.41 85.30
2010 87.03 3.35 97.91 36.64 34.97 87.50
2011 48.95 43.04 97.89 40.30 32.83 87.67

10 �http://daac.ornl.gov/MODIS/

9 �http://eomf.ou.edu/visualization/

http://daac.ornl.gov/MODIS/
http://eomf.ou.edu/visualization/
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calculated using a module similar to the FluorSAIL 
model (Miller et al. 2005), but one that allows leaf fluo-
rescence to vary depending on position and orientation 
in the canopy. A leaf-level biochemical model calculates 
400–700 nm range fluorescence from the absorbed fluxes, 
canopy temperature, and ambient vapor, and CO2 and 
O2 concentrations in conjunction with GPP, stomatal 
resistance, and the energy balance of the leaf (Van der 
Tol et al. 2009b). The model calculates radiative transfer 
in a multilayer canopy as a function of the solar zenith 
angle and leaf orientation to simulate fluorescence in the 
observation direction. More details of this model can be 
found in Van der Tol et  al. (2009a). We used a recent 
version of SCOPE (v1.52) in this study.

Running SCOPE for photosynthesis and fluorescence 
requires inputs of meteorological forcing (incoming 
shortwave and long-wave radiation, air temperature and 
pressure, humidity, wind speed, and CO2 concentration), 
LAI, leaf angle distribution, leaf chlorophyll content 
(Cab), stomatal conductance parameter (m), and 
maximum carboxylation capacity (Vcmax). Meteorological 
inputs and LAI for SCOPE were available from the site 
measurements. Leaf angle distribution was assumed to 
be spherical, which is a good approximation in crops such 
as maize (Verhoef and Bach 2007). An estimation of Cab 
controlling the leaf and canopy radiative transfer was 

Fig.  2.  Seasonal dynamics of (a) net ecosystem CO2 
exchange (NEE) and gross primary production (GPP), and (b) 
enhanced vegetation index (EVI), land surface water index 
(LSWI), sun-induced chlorophyll inflorescence (SIF), and GPP 
at the USNe1 site during 2007–2011.

T
a

b
l

e
 2

. 
St

ar
t,

 p
ea

k,
 a

nd
 e

nd
 d

at
es

 o
f 

m
ai

ze
 g

ro
w

in
g 

se
as

on
 d

ur
in

g 
20

07
–2

01
1 

at
 t

he
 U

SN
e1

 s
it

e 
ba

se
d 

on
 t

ow
er

-b
as

ed
 g

ro
ss

 p
ri

m
ar

y 
pr

od
uc

ti
on

 (
G

P
P

_E
C

),
 la

nd
 s

ur
fa

ce
 w

at
er

 in
de

x 
(L

SW
I)

, e
nh

an
ce

d 
ve

ge
ta

ti
on

 in
de

x 
(E

V
I)

, a
nd

 s
un

-i
nd

uc
ed

 c
hl

or
op

hy
ll 

in
flo

re
sc

en
ce

 (
SI

F
).

Y
ea

r

G
P

P
 >

 1
 (

g 
C

/m
2 /

d)
L

SW
I 

>
 −

0.
1

E
V

I
SI

F

St
ar

t
P

ea
k

E
nd

St
ar

t
P

ea
k

E
nd

St
ar

t
P

ea
k

E
nd

St
ar

t
P

ea
k

E
nd

20
07

25
 M

ay
19

 J
ul

22
 S

ep
25

 M
ay

5 
A

ug
30

 S
ep

5 
M

ay
1 

A
ug

28
 N

ov
19

 M
ay

25
 J

ul
21

 S
ep

20
08

1 
Ju

n
27

 J
ul

7 
O

ct
24

 M
ay

13
 A

ug
29

 S
ep

16
 M

ar
31

 J
ul

25
 O

ct
25

 M
ay

1 
A

ug
5 

O
ct

20
09

17
 M

ay
25

 J
ul

22
 S

ep
10

 J
un

5 
A

ug
8 

O
ct

2 
M

ay
3 

A
ug

3 
D

ec
31

 M
ay

25
 J

ul
5 

O
ct

20
10

25
 M

ay
26

 J
ul

6 
Se

p
25

 M
ay

2 
A

ug
14

 S
ep

21
 M

ar
7 

Ju
l

13
 D

ec
28

 M
ay

29
 J

ul
28

 S
ep

20
11

2 
Ju

n
29

 J
ul

8 
O

ct
10

 J
un

19
 A

ug
24

 O
ct

30
 M

ar
9 

A
ug

7 
N

ov
27

 M
ay

2 
A

ug
29

 S
ep



PRADEEP WAGLE ET AL. Ecological Applications 
Vol. 26, No. 4

1216

inverted from vegetation indices (EVI and MERIS ter-
restrial chlorophyll index, MTCI (Dash and Curran 
2004)), and seasonal Vcmax was inverted from GOME-2 
SIF measurements as described in Zhang et  al. (2014). 
The SCOPE model was constrained by optimizing the 
key parameter of Vcmax by combining with GOME-SIF 
data, as discussed in Zhang et  al. (2014). The SCOPE 
was first run in forward mode, and a link between canopy 
SIF and Vcmax was derived as a look-up table. Then, SIF 
retrievals from GOME-2 were used to derive Vcmax for 

the crop flux site. The optimized Vcmax values are sea-
sonally varied, characterized with peak in the mid-
growing season (see Fig. 4 in Zhang et al. 2014). Other 
parameters of the SCOPE model, such as reflectance and 
transmittance of vegetation and soil, were set to default 
values.

Results

Consistency of maize phenology observed by seasonal 
dynamics of GPP, LSWI, EVI, and SIF

To examine the consistency of maize phenology, sea-
sonal dynamics of NEE, GPP, LSWI, EVI, and SIF from 
2007 to 2011 at the USNe1 site is presented in Fig.  2. 
Crop photosynthesis started around late May or early 
June with a rapid rise in NEE and GPP and ended in late 
September with NEE and GPP approaching zero 
(Fig. 2a). Both LSWI and SIF started to increase in late 
May to early June, indicating the beginning of the 
growing season (Fig.  2b, Table  2). SIF peaked in late 
July and declined to low values by late September to early 
October, which is consistent with the trends of GPP and 
NEE. LSWI peaked around two weeks later than GPP 
and SIF (Table 2). EVI shows consistently earlier onset 
and later senescence of maize (Fig. 2b and Table 2). We 
also noted that EVI was generally above 0.1 in the spring 
and autumn due to the effects of soil and snow when 

Fig.  3.  Relationships between tower-based gross primary 
production (GPP_EC) and (a) land surface water index (LSWI), 
(b) enhanced vegetation index (EVI), and (c) sun-induced 
chlorophyll inflorescence (SIF) for the USNe1 site during the 
2007–2011 growing season.

Fig. 4.  Seasonal dynamics of absorbed photosynthetically 
active radiation by canopy (APARcanopy) and chlorophyll 
(APARchl), and sun-induced chlorophyll inflorescence (SIF) at 
the USNe1 site during 2007–2011.
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there was no photosynthetic activity, while SIF values 
were approximately zero (Fig. 2b). These results illustrate 
that SIF was much better at capturing seasonal varia-
tions (particularly during early and late season) in GPP 
compared with remotely sensed vegetation indices (LSWI 
and EVI). As a result, SIF showed a stronger linear rela-
tionship with GPP_EC (R2 = 0.88) than did LSWI (R2 
= 0.69) and EVI (R2 = 0.83) when relationships of GPP_
EC with SIF, EVI, and LSWI were compared during the 
growing season at the USNe1 site (Fig. 3).

Seasonal dynamics of APARcanopy and APARchl were 
compared with the seasonal dynamics of SIF during 
2007–2011 in Fig. 4. The APARchl was generally lower 
than the APARcanopy. Overall, SIF tracked seasonal 
dynamics of both APARcanopy and APARchl well. 
However, APARcanopy showed earlier springtime rise 
and later autumn decline and also a slightly longer 
growing season across years when compared with SIF 
(Fig. 4b), while APARchl time series showed more con-
sistent seasonality with SIF (Fig. 4a). Consequently, a 
stronger linear relationship was found between APARchl 
and SIF (R2 = 0.92 and RMSE=0.51) than between 
APARcanopy and SIF (R2 = 0.86 and RMSE=0.65; 

Fig. 5). The results indicate that SIF is more related to 
photosynthetic components of chlorophyll-containing 
foliage in the canopy (here FPARchl) than the entire 
canopy (here FPARcanopy, MOD15A2 FPAR), which is 
composed of both photosynthetic (mostly green leaves) 
and non-photosynthetic (mostly senescent foliage and 
stems) parts of vegetation.

Comparison of GPP predicted by VPM, SCOPE, and 
SIF models

Comparison of seasonal dynamics of GPP_EC, GPP_
VPM, GPP_SCOPE, GPP_SIF, and GPP_MODIS 
during the 2007–2011 growing season at the USNe1 site 
shows that GPP_VPM, GPP_SCOPE, and GPP_SIF 
tracked the magnitude and seasonal dynamics of GPP_
EC well (Fig. 6). This is also supported by strong positive 
relationships (R2 = 0.87–0.95) of GPP_EC with GPP_
VPM, GPP_SCOPE, and GPP_SIF (Fig. 7). However, 
GPP_MODIS was substantially lower compared to 
other GPP estimates and GPP_EC and showed a poor 
correlation with GPP_EC (R2 = 0.47). These results 
illustrated good performance of all three approaches, 
which were significantly improved compared to the 
standard MOD17 GPP algorithm in estimating maize 
GPP. Among those three approaches, SCOPE and SIF 
slightly underestimated maize GPP, while VPM slightly 
overestimated it when they were compared to GPP_EC. 
Our results show that SCOPE model showed the best 
performance (RMSE = 1.58  g C/m2/d and R2 = 0.95) 
than did VPM (RMSE = 2.27 g C/m2/d and R2 = 0.91) 
and SIF (RMSE = 2.72  g C/m2/d and R2 = 0.87). 
Seasonal sums of GPP_EC, GPP_VPM, GPP_SCOPE, 
and GPP_SIF over the growing season for the USNe1 
site are provided in Table  3. On an average, the per-
centage of relative error (% RE) ranged from 6.3% for 
VPM to −4.3% for SCOPE and −5.5% for SIF during 
2007–2011. For SCOPE and SIF approaches, GPP esti-
mations were especially low in 2008 (−12.4% and 

Fig. 5.  Relationships between 8-d sun-induced chlorophyll 
inflorescence (SIF) and absorbed photosynthetically active 
radiation by (a) canopy (APARcanopy) and (b) chlorophyll 
(APARchl) at the USNe1 site during the 2007–2011 growing 
season.

Fig.  6.  Seasonal dynamics of tower-based gross primary 
production (GPP_EC) and predicted GPP by VPM 
(GPP_VPM), SCOPE (GPP_SCOPE), SIF (GPP_SIF), and the 
standard MOD17 GPP product (GPP_MODIS) during the 
2007–2011 growing season at the USNe1 site.



PRADEEP WAGLE ET AL. Ecological Applications 
Vol. 26, No. 4

1218

−21.1%, respectively), while VPM overestimated GPP 
estimates by 13% in 2010.

Discussion

Vegetation indices have often been used to identify 
crop phenology for cropland management and produc-
tivity estimation (Churkina et al. 2005, Fisher et al. 2006, 
Jans et al. 2010, Wagle et al. 2015). Recently, space-borne 
SIF observations have provided an alternative way to 

monitor photosynthesis from space (Frankenberg et al. 
2011, Guanter et al. 2014). In this current study, the com-
parison of vegetation indices, including EVI and LSWI, 
and SIF with tower-based CO2 flux showed the 
consistency of SIF in characterizing the start and end 
dates of the maize growing season at the USNe1 site 
(Fig. 2 and Table 2). It was also found that SIF showed 
a stronger relationship with GPP_EC (R2 = 0.88) than 
did EVI (R2 = 0.83) and LSWI (R2 = 0.69; Fig. 3). Results 
show that EVI performed poorly in describing maize 

Fig. 7.  Relationships between tower-based gross primary production (GPP_EC) and predicted GPP by (a) VPM (GPP_VPM), 
(b) SCOPE (GPP_SCOPE), (c) SIF (GPP_SIF), and (d) the standard MOD17 GPP product (GPP_MODIS) for the USNe1 site 
during the 2007–2011 growing season.

Table 3.  Annual sums of tower-based gross primary production (GPP_EC) and predicted GPP by VPM (GPP_VPM), SCOPE 
(GPP_SCOPE), and sun-induced chlorophyll inflorescence (GPP_SIF) at the USNe1 site during the maize growing season. 

Year GPP_EC GPP_VPM RE GPP_SCOPE RE GPP_SIF RE

2007 1754.3 1844.2 5.1 1685.9 −3.9 1659.1 −5.4
2008 1703.7 1697.4 −0.4 1491.7 −12.4 1343.8 −21.1
2009 1840.0 2014.6 9.5 1711.9 −7.0 1790.6 −2.7
2010 1566.0 1769.7 13.0 1640.1 4.7 1574.3 0.5
2011 1578.1 1643.8 4.2 1530.0 −3.0 1598.0 1.3

Notes: Unit is in g C/m2. RE (%) is relative error of GPP_VPM, GPP_SCOPE, and GPP_SIF compared to GPP_EC.
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phenology (Fig. 2b), consistent with the finding of a pre-
vious study (Richardson et al. 2012). SIF also showed a 
slightly earlier onset of the growing season as compared 
with the GPP_EC (Fig. 2b). This can be attributed to the 
spatial differences of GOME-2 footprint and flux tower 
footprint. The larger footprints of GOME-2 SIF 
probably contained more than one crop and other veg-
etation types. However, considering the fact that 
GOME-2 sensors are not yet optimized for SIF measure-
ments, our results demonstrate that space-borne SIF can 
provide an additional way to investigate the seasonality 
of photosynthetic activity of maize.

The comparison of SIF with APARcanopy and APARchl 
suggested that SIF is more related to PAR absorbed by 
photosynthetic components of maize canopy (Figs. 4 and 
5). Assuming a constant LUE in canopy photosynthesis 
for crops in Eq.  2 (Ruimy et  al. 1996), variations of 
canopy chlorophyll fluorescence are dependent on 
APARchl for maize. Hence, though SIF measured from 
space is the amount of photons that are re-emitted from 
the whole canopy, Figs. 4 and 5 suggest that SIF is more 
driven by photosynthetic components of canopy because 
only the PAR absorbed by photosynthetic pigments 
(APARchl) drives leaf photosynthesis and chlorophyll 
fluorescence. The PAR absorbed by non-photosynthetic 
components (e. g., senescent foliage, branches, stems, and 
litter) cannot be used in carbon assimilation and chloro-
phyll fluorescence generation processes. The MOD15A2 
FPAR product utilizes reflectance from the whole veg-
etation canopy, including the influence of non-
photosynthetic components (Zhang et  al. 2005, 2009), 
resulting in slightly overestimation of the actual APAR 
(Fig.  4) and weaker relationship between FPARcanopy 
and SIF than between FPARchl and SIF (Fig.  5). It 
should be noted that, as in this study, EVI has been used 
to estimate or replace FPARchl in several studies (Xiao 
et  al. 2004, Gitelson et  al. 2006, Sims et  al. 2008). 
Recently, it has been shown that other vegetation indices 
such as MTCI had a slightly stronger linear relationship 
with FPARchl than did EVI and NDVI due to its accurate 
representation of canopy chlorophyll content (Ogutu and 
Dash 2013). More direct retrieval of FPARchl has 
emerged from MODIS reflectance data and a radiative 
transfer model (Zhang et al. 2005, 2009), showing more 
consistent results with CO2 flux for cropland and 
broadleaf forest sites (Cheng et al. 2014). These improved 
products can be used for further analysis in the future.

The performance of the three GPP modeling 
approaches (VPM, SCOPE, and SIF) was highly con-
sistent in their predictions of seasonal dynamics and 
magnitudes of GPP as compared with GPP_EC (Fig. 6). 
Consequently, there were strong positive relationships 
between predicted GPPs and GPP_EC (Fig. 7) and dis-
crepancies of the seasonal sums of predicted GPPs and 
GPP_EC were small (RE < ±10% in most cases; Table 3). 
The underestimation for SCOPE and SIF approaches in 
2008 was due to the lower SIF value in 2008 because the 
persisted wet and cool weather in spring 2008 (the 

Midwest flood) had delayed maize planting in this area 
(Hatfield 2012). However, maize was still planted on 
schedule (April 29) at the Mead site (USNe1). Because 
of the spatial mismatch between GOME-2 and flux tower 
footprints, SIF might not reflect the flux tower conditions 
well in this condition. Among three approaches, the 
process-based SCOPE model showed the best perfor-
mance by constraining the Vcmax parameter derived from 
satellite retrievals of SIF. Space-borne SIF observations 
can be used to retrieve the seasonal variability of Vcmax 
for maize and soybean (Zhang et al. 2014). Their results 
showed that incorporation of seasonally varying Vcmax 
through SIF improved the modeling of GPP and LUE 
for both C3 and C4 crops compared to an invariant Vcmax 
used in the SCOPE model. The consistency of GPP esti-
mates by SCOPE and other two approaches in this study 
highlights the use of SIF for the benchmarking of process-
based TMBs. Our results illustrate that space-borne SIF 
can be used not only to constrain process-based models 
for improving GPP predictions but also to develop an 
empirical relationship with GPP_EC (as shown in Fig. 1) 
to accurately estimate and extrapolate GPP over large 
maize cropland areas.

Our results show that the standard MOD17 GPP 
product significantly underestimated GPP for this high 
productive maize site (Fig. 6), consistent with the findings 
of previous studies in croplands (Chen et  al. 2011, 
Guanter et al. 2014, Zhang et al. 2014, Wagle et al. 2015). 
The main reason for such significant underestimation is 
that the MOD17 GPP algorithm assumes only one crop 
type in the biome properties look-up table (BPLUT; 
Running et al. 2004) and uses a maximum crop LUE of 
0.30 g C/mol PPFD for both C3 and C4 crops, which is 
substantially smaller than the values for both maize (C4 
type) and soybean (C3 type; Cheng et  al. 2014, Zhang 
et al. 2014, Wagle et al. 2015). Hence, even though the 
MOD17 GPP algorithm utilizes an overestimation of 
in-situ FPAR from the MODIS FPAR product 
(FPARcanopy), it is not enough to offset too low prescribed 
maximum LUE (Heinsch et al. 2006, Wagle et al. 2014), 
which leads to underestimation of GPP.

Conclusions

Considering large uncertainties associated with current 
GPP models, especially for croplands (Huntzinger et al. 
2012, Schaefer et al. 2012), there is a pressing need for 
additional data to constrain the GPP model estimates. 
In this study, we evaluated the ability of three different 
approaches (LUE-based VPM, process-based SCOPE, 
and space-borne SIF) to estimate GPP at a maize site in 
Mead, Nebraska, USA. Overall, all three approaches 
captured seasonal dynamics and magnitude of maize 
GPP well as compared with GPP_EC, and they were 
significantly improved compared to the MOD17 GPP 
product. Our results illustrate that, by integrating with 
GPP_EC, space-borne SIF can provide reasonable esti-
mates of maize GPP without using additional 
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information such as climate inputs and satellite-based 
vegetation indices which are required by the process-
based (SCOPE) and satellite-based LUE (VPM) models, 
and data-oriented diagnostic techniques based on the 
FLUXNET network of tower sites and remote sensing 
vegetation indices (Jung et al. 2011). Furthermore, space-
borne SIF data not only can provide an additional way 
to investigate the seasonality of photosynthetic activity 
of maize, but also can constrain process-based GPP 
models for improving GPP estimates. It should be noted 
that the assumption of homogenous landscape within the 
footprint of GOME-2 is tenuous and we acknowledge 
the inherent difficulties to compare it with relatively small 
spatial scale of flux tower measurements. With the launch 
of the Orbiting Carbon Observatory-2 (OCO-2) 
(Frankenberg et  al. 2014) in 2014 and the Sentinel-5 
Precursor (TROPOMI; Veefkind et  al. 2012) satellite 
missions in 2016, availability of a higher spatial reso-
lution more space-borne SIF data would be more helpful 
to address this issue. In addition, whether our evaluations 
hold beyond the maize considered in this study is a 
question for future research to address, and an additional 
work is needed to expand this analysis to other crop types 
such as C3 crops (soybean and wheat) for a cross-site 
comparison.
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