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Abstract: The overarching goal of this paper was to espouse methods and protocols for 

water productivity mapping (WPM) using high spatial resolution Landsat remote sensing 

data. In a world where land and water for agriculture are becoming increasingly scarce, 

growing “more crop per drop” (increasing water productivity) becomes crucial for food 

security of future generations. The study used time-series Landsat ETM+ data to produce 

WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya 
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river basin of Central Asia. The WPM methods and protocols using remote sensing data 

consisted of: (1) crop productivity (ton/ha) maps (CPMs) involving crop type 

classification, crop yield and biophysical modeling, and extrapolating yield models to 

larger areas using remotely sensed data; (2) crop water use (m3/ha) maps (WUMs) (or 

actual seasonal evapotranspiration or actual ET) developed through Simplified Surface 

Energy Balance (SSEB) model; and (3) water productivity (kg/m3) maps (WPMs) 

produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated 

WUMs (actual ET) by multiplying the ET fraction by reference ET. The ET fraction was 

determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET) and 

“cold” pixels (maximum ET). The grass reference ET was calculated by FAO Penman-

Monteith method using meteorological data. The WPMs for the Galaba study area 

demonstrated a wide variations (0-0.54 kg/m3) in water productivity of cotton fields with 

overwhelming proportion (87%) of the area having WP less than 0.30 kg/m3, 11% of the 

area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 

0.36 kg/m3. These results clearly imply that there are opportunities for significant WP 

increases in overwhelming proportion of the existing croplands. The areas of low WP are 

spatially pin-pointed and can be used as focus for WP improvements through better land 

and water management practices.  

 

Keywords: Water productivity mapping, remote sensing, water use, crop productivity, 

crop yield modeling, simplified surface energy balance model, Central Asia, Syrdarya river 

basin. 

 

 

1. Introduction 
 

Increasing water scarcity and competition for the water and land from agricultural and non-

agricultural sectors drive the need to improve crop water productivity to guarantee adequate food for 

future generations with the same or less water and land than that is currently available for agriculture 

[1-3]. Increasing water productivity can be important pathway for poverty reduction, especially in 

developing countries, where the variability of water productivity of within and between fields is very 

high, according to the specific conditions under which the crop are grown [4].  

The crop water productivity is a vital parameter to assess the performance of irrigated and rainfed 

agriculture [5], it can be represented in physical or economic units [6]. The physical crop water 

productivity (kg/m3) is the ratio of crop yield (ton/ha) to the amount of water used (m3/ha). The 

economic water productivity ($/m3) relates the economic benefits per unit of water used. Water 

productivity studies at different scales are the direction of investigation of many researchers in the 

world, but existing studies [7-10] are predominantly dependent on non-remote sensing approaches, 

based on capturing point data and/or official statistics.  

In recent years several remote sensing methods have been developed (SEBAL, METRIC), which 

contributed valuable data for irrigation management. Time-series remote sensing data in optical and 

thermal bands provides an excellent opportunity to understand and map water productivity (kg/m3) 
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over large areas [11]. Usually the low spatial resolution satellite images (NOAA AVHRR, MODIS) 

were the source for water use and water productivity analysis in the world [12-16]. A limited number 

of such studies used the high spatial resolution remote sensing data [17-22], but not in Central Asia 

region.  

Given the above background, the overwhelming emphasis of this study was to develop 

comprehensive sets of simplified methods and protocols for water productivity mapping (WPM) using 

high spatial resolution satellite images (Landsat ETM+), based on combination of crop classification, 

modeling of crop yield, and water use (actual evapotranspiration) computation for crops using thermal 

band data and surface energy balance models.  

The study used satellite images for the year 2006 and focused on WPMs of irrigated cotton fields 

inside the Galaba study area of the Syrdarya river basin, in Uzbekistan, Central Asia.  

 

2. Study area 
 

The study area (Galaba farm) is located in the middle part of the Syrdarya river basin (Figure 1). 

The climate at the study area is sharply arid, the low amount of precipitation (260-320 mm/year) 

occurs in autumn-winter-spring time, with common maximum in March. The coldest month is January, 

when monthly average air temperature varies from 0-13 оC. The absolute minimum temperature is not 

lower than -18 оC. The highest duration of solar hours is in summer months, reaching up to 295-390 

hours per month. 

 

Figure 1. Location of the study area. 
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The soil of Galaba farm is representative for the Syrdarya province: heavy loamy soil, and variable 

soil salinity. A numerous sample site locations were selected to capture within and between fields 

spatial variability of vegetation condition for different crops (winter wheat, cotton, rice and maize) 

inside the Galaba study area. The regular phenological observations and crop yield measurements at 

harvest time were made during the 2006 crop growing season. 

 

3. Processing of satellite images 
 

A series of Landsat-7 ETM+ satellite images (Table 1) were acquired and used in this study. The 

SLC-off gaps were filled by image provider. The images cover the cropping season and have a 

frequency of about one image per month. Each image was georeferenced to WGS-84 coordinate 

system by using, as a reference, the GeoCover products [23].  

The use of gap filled images is justified due to several reasons. First, the study area (Galaba farm) is 

located in the center of images, so the gap filling pixels are an insignificant proportion of the total 

image area. Second, the Landsat-7 ETM+ images (after May, 2003) comes with the gap masks for 

each band and only non-gap filled part of images were used in this research to develop yield models. 

Third, once the yield model were developed using only non gap filled data, the spatial extrapolation of 

the model were performed using complete image data (gap filled portion included) for completeness. 

Fourth, one of the best method for SLC-off gap filling was used and this involved using the nearest 

possible dates to maintain spectral integrity of multi-temporal data. Fifth, the Landsat is the only 

satellite providing the high spatial resolution thermal imagery (except ASTER which is highly 

infrequent). These factors highlight the use of gap-filled images and on how best to use them to avoid 

the effects of gap-filling. 

 

Table 1. Characteristics of Landsat ETM+ data used in this study. 

Acquisition Date Julian Day 
Sun Elevation Sun Azimuth Earth-Sun distance 

(deg.) (deg.) (Astronomic unit) 

2006_0424 114 56.388 138.573 1.005779 

2006_0510 131 60.608 134.262 1.010059 

2006_0611 162 64.404 125.537 1.015454 

2006_0729 210 60.030 128.871 1.015165 

2006_0814 226 56.740 134.465 1.012679 

2006_1001 274 42.732 152.052 1.000576 

 

3.1 Digital number to radiance 
 

The Landsat ETM+ 8 bit digital numbers were converted to radiances using the equation:  

 

L = gain * DN + offset                                                                      (1) 

 

This can also be expressed as: 



Sensors 2008, 8              
 

8160

 

L =
MINDNMAXDN

LMINLMAX

__ 


 * (DN – DN_MIN) + LMIN                      (2) 

where: L is the radiance (W m-2 sr-1 m-1), DN_MIN = 1, DN_MAX = 255, and DN are the digital 

number of pixels, LMIN and LMAX are the spectral radiances (W m-2 sr-1 m-1) for each band at 

DN_MIN and DN_MAX, respectively are presented in Table 2. 

 

3.2 Radiance to reflectance 
 

A reduction in between-scene variability can be achieved through a normalization for solar 

irradiance by converting spectral radiance, as calculated above, to planetary reflectance or albedo [24, 

25]. This combined surface and atmospheric reflectance of the Earth is computed with the following 

formula: 

p = 
SESUN

dL








cos*

** 2

                                                                      (3) 

where: p is the at-satellite exo-atmospheric reflectance (percentage), L is the radiance (W m-2 sr-1 

m-1), d is the earth to sun distance in astronomic units at the acquisition date [25], ESUN is the mean 
solar exo-atmospheric irradiance or solar flux (W m-2 sr-1 m-1) [26], and S  is solar zenith angle in 

degrees (i.e.; 90 degrees minus the sun elevation or sun angle when the scene was recorded as given in 

the image header file). 

 

Table 2. Spectral radiances (LMin/LMax) and mean solar exoatmospheric irradiances 

(ESUNλ) for Landsat-7 ETM+ bands.  

Gain  Band1 Band2 Band3 Band4 Band5 Band6 Band7 

Low  LMin -6.2 -6.4 -5.0 -5.1 -1.0 0.0 -0.35 

Low  LMax 293.7 300.9 234.4 241.1 47.57 17.04 16.54 

High LMin -6.2 -6.4 -5.0 -5.1 -1.0 3.2 -0.35 

High LMax 191.6 196.5 152.9 157.4 31.06 12.65 10.80 

ESUNλ 1969 1840 1551 1044 225.7  82.07 

 

3.3 At-sensor temperature from thermal bands 
 

Landsat produces two thermal images, one using a low gain setting (Band 6L), saturated at 347.5 K 

and other using a high gain setting (Band 6H), saturated at 322 K. Usually Band 6H is used for 

analysis of vegetated surfaces. The thermal band converted to at-sensor (satellite) radiance using 

equation (2) and to at-satellite temperature using the formula: 

 T = K2 / Ln (K1/ Lλ + 1)      (4) 

where: T - at-sensor (satellite) temperature in degree Kelvin 

K2 – calibration constant, (for Landsat-7: K2 = 1282.71) 

K1 – calibration constant, (for Landsat-7: K1 = 666.09) 

 Lλ – spectral radiance in W m-2 sr-1 m-1 
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3.4 Normalized difference vegetation index (NDVI) 
 

A widely used vegetation index is Normalized Difference Vegetation Index (NDVI), which defined 

as the ratio: 

NDVI = (NIR - Red) / (NIR + Red)     (5) 

where: NIR and Red are the spectral reflectance of the vegetated land surface in the near infrared  

(Band 4) and red (Band 3) Landsat bands, respectively [27]. 

 

4. Field-plot data characteristics 
 

Field-plot data were acquired to correspond with the satellite sensor overpass dates (Table 1). Data 

from 273 field-plot points were gathered during the 2006 year.  The data consisted of biophysical 

parameters such as wet and dry biomass (kg/m2), crop yield (ton/ha) and leaf area index (LAI) (m2/m2) 

measurements by AccuPAR LP-80 ceptometer [28]. Meteorological data (air temperature, relative 

humidity, solar radiation, wind speed and rainfall) were measured by a WatchDog weather station 

[29], installed inside Galaba farm. Enough care has been taken while selecting the location of the trial 

field-plots (replications) to represent the between-fields variability of crops condition across the farm. 

Usually the plant samples, together with other measurements, were taken every 15 days inside each 

test field of Galaba farm for the four main crops: cotton (5 fields), wheat (4 fields), rice (2 fields), and 

maize (2 fields). The average values of various variables collected from the field-plots are shown in 

Table 3.  

The local variety of cotton (E4727) was sown in all cotton test fields, the sowing date varied from 6 

of April, to 16 of May. The date of first harvesting was in range (9-16) of September and second 

(final) pick-up was made at 30 of September. The cotton yield from each test field at 3-5 locations was 

measured by lint harvesting from the area of 10 m2 and the samples weighting.  

 

Table 3. Field-plot data characteristics of various variables for different crops. 

Crop 
Number 

of 
samples 

Day of 
Year 

Mean values from the samples 
Wet biomass Dry biomass Leaf Area Index Crop Yield

(kg/m2) (kg/m2) (m2/m2) (ton/ha) 

Wheat 28 
127 1.69 0.4 2.16 

1.850 145 1.33 0.65 2.17 
158 0.65 0.43 1.32 

Cotton 162 

127 0.02 0.00 0.07 

1.230 

145 0.04 0.01 0.28 
158 0.12 0.02 0.49 
173 0.25 0.05 0.60 
188 0.88 0.23 1.78 
200 1.25 0.26 2.38 
214 1.22 0.35 2.04 
229 1.52 0.62 2.53 
247 3.05 1.41 1.71 
256 3.09 1.36 1.87 
271 1.90 1.06 1.40 
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Table 3. Cont. 

Rice 43 

173 0.29 0.04 0.65 

4.315 

188 0.75 0.24 1.59 
200 1.02 0.24 1.24 
214 1.54 0.80 2.12 
229 1.91 0.72 5.56 
247 3.49 1.58 5.60 
256 4.41 2.18 3.24 
271 1.17 0.65 1.24 

Maize 40 

173 0.02 0.00 0.19 

3.305 

188 0.04 0.01 0.25 
200 0.07 0.01 0.47 
214 0.37 0.07 0.87 
229 1.05 0.48 0.99 
247 3.63 1.90 1.48 
256 3.25 1.74 1.52 
271 3.09 1.98 1.05 

 

5. Methods  
 

The applied methodology of crop water productivity mapping (WPM) consists of the following 

steps: 

1. Crop productivity mapping (CPM);  

2. Water use (actual evapotranspiration) mapping (WUM); and 

3. Water productivity mapping (WPM). 

 

5.1 Crop productivity maps (CPMs) 
 

The CPMs were produced for specific crops. First, this required precise delineation of crop types 

(section 5.1.1). Second, the field measured yield quantities were related to spectral indices and 

wavebands leading to crop yield models (section 5.1.2). Third, the best yield models were extrapolated 

to larger area using remotely sensed data to obtain CPMs (section 5.1.3). 

 

5.1.1 Crop type mapping using remote sensing.  

 

In this study we use the strength of the temporal data in separating crop types. The normalized 

difference vegetation index (NDVI) raster layers, created from six Landsat-7 ETM+ images give 

possibility to analyze temporal NDVI changes for pixels inside the farm fields of Galaba study areas 

with sown crops. By overlaying of polygon vector GIS layer of fields with NDVI raster layers the 

average NDVI values for each field were calculated, which were saved in the attribute table of 

geographic information systems (GIS) layer using ArcView software [30]. 
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5.1.2 Crop yield modeling by relating remote sensing indices with field-measured yield 

 

Remote sensing has proved very useful in estimating crop yields [18, 31-33] and the relationships 

have improved with the use of modern high spectral and spatial resolution sensors [34-39]. For 

example, the Normalized Difference Vegetation Index (NDVI) was found to correlate with net primary 

production, biomass, vegetation fraction, and yield [40-43].  

 

The crop biophysical and yield variables were often related to spectral measurements from space. 

The most commonly used crop variables establishing such relations were the leaf area index (LAI), 

wet biomass (WBM), dry biomass (DBM), and yield (YLD). When crop yields were not measured, it 

can be derived using knowledge of the biomass and developing harvest index (yield/biomass) 

relationships [44, 45]. In this research the main focus was in relating the measured cotton yield at test 

fields with NDVI derived from Landsat-7 ETM+ images. 

 

5.1.3 Crop productivity maps (CPMs) by applying best yield models to specific crops 

 

One of the biggest strengths of remote sensing lies in the observation of the entire landscape rather 

than just few points. With good understanding of the relationships between crop yield and vegetation 

index (section 5.1.2) it is possible to extrapolate the understanding gained through models to larger 

areas using remotely sensed data of specific crops (section 5.1.1). The approach we employed in this 

study is listed in the following steps: 

(a) measuring crop variables through field campaign (Table 3); 

(b) acquiring the images that correspond to field campaign dates (Table 1); 

(c) delineating the crop types (section 5.1.1); 

(d) developing modes that relate vegetation index with actual crop yield (section 5.1.2); and 

(e) extrapolating the best models to larger areas using remotely sensed data (section 5.1.3).  

 

5.2 Water use (actual evapotranspiration) map 
 

Water used by crops (in m3/ha or mm/m2) was determined from remote sensing by calculating the 

actual ET based on the following steps:  

 determining the ET fraction from Landsat ETM+ thermal data; 

 calculating the reference ET by applying Penman-Monteith equations; and 

 computing the actual ET by multiplying ET fraction with reference ET. 

 

5.2.1 Modeling of ET fraction (crop coefficients) by SSEB model.  

 

The ET fraction [46] or evaporative fraction [47, 48] is the ratio of actual ET over reference ET. 

The ET fraction was calculated by the Simplified Surface Energy Balance (SSEB) model, described in 

Senay et al. [46], based on assumption, that the latent heat flux (actual ET) varies linearly between the 

land surface temperature (LST) of “hot” and “cold” pixels: 
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 ETfraction = (Thot - T) / (Thot - Tcold)      (6) 

 

where: ETfraction is the fraction of ET (dimensionless); T is the land surface temperature (LST) of any 

pixel; Thot and Tcold are the LST of “hot” and “cold” pixels respectively, the LST expressed in degree 

Kelvin or Celsius. The “hot” and the “cold” pixels are selected inside the irrigated fields of the 

investigated area for each image. 

 

5.2.2 Calculation of the reference ET  

 

The reference ET (or “potential ET: term used before creating of terminology standard) can be 

calculated from meteorological data using a number of (semi-) empirical equations by different 

methods (Priestley-Taylor, Blaney-Criddle, Hargreaves, Penman, Penman-Monteith). The comparison 

of methods is briefly provided by Kassam et al. [49] and Wright et al. [50, 51]. Some methods are 

applicable for only specific climatic conditions, humid or arid [52].  

To separate the influence of the weather conditions on the evapotranspiration, the concept of 

reference ET, as the evapotranspiration from reference crop, grown in ideal conditions (disease-free, 

well-fertilized, under optimum soil water content), having the fixed parameters. There are two well 

known methods for reference ET calculations: 

 FAO method: Allen et al. [52] recommended to use the clipped grass (hypothetical crop) 

having the plant height of 0.12 m, a surface resistance of 70 s m-1 and an albedo of 0.23 for 

reference ET (ETo) calculation.  

 ASCE Method: The ASCE-PM method uses as a reference the alfalfa crop of 0.5 m plant 

height, albedo of 0.23, but different surface resistance of 50 s m-1
 at daytime and 200 s m-1 at 

nighttime, for reference ET (ETr) calculation. The method compares well against lysimeter 

measurements of alfalfa ET at Kimberly, Idaho [50] and at Bushland, Texas [53].  

The ASCE-EWRI [54] standardized the Penman-Monteith method for reference ET calculation 

from meteorological data for either alfalfa or grass reference by formula (7). 

 

)*1(*
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*)(**408.0
_

2

2

uCd

eeu
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Cn
GR

refET
asn












     (7) 

 

where: ET_ref - the reference evapotranspiration [mm day-1], 

Rn - the net radiation at the crop surface [MJ m-2 day-1], 

G - the soil heat flux density [MJ m-2 day-1], 

Т - the mean daily air temperature at 2 m height [°C], 

u2 - the wind speed at 2 m height [m s-1], 

es - the saturation vapour pressure [kPa], 

ea - the actual vapour pressure [kPa], 

(es - ea) - the saturation vapour pressure deficit [kPa], 

��- the slope vapour pressure curve [kPa °C-1], 

� - the psychrometric constant [kPa C-1]. 
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Cn (K mm s3 Mg-1 d-1 or K mm s3 Mg-1 h-1) and Cd (s m-1) are the constant, that changes with 

reference type and calculation time step (Table 4), adapted from Allen et al. [17]. 

 

Table 4. Values of coefficients for reference ET calculation. 

 

Calculation time step 
Short Reference (ETo) Tall Reference (ETr) 

(clipped grass) (alfalfa) 

Cn Cd Cn Cd 
Daily 900 0.34 1600 0.38 

Hourly during daytime 37 0.24 66 0.25 

Hourly during nighttime 37 0.96 66 1.7 

 

The crop evapotranspiration (ETc) is determined by multiplying the grass reference 

evapotranspiration (ETo) by the crop coefficient (Kc). This will be the evapotranspiration from 

disease-free, well-fertilized crops, grown in large fields, under optimum soil water content [52]:  

ETc = Kc * ETo           (8) 

The crop coefficient (Kc) integrated the differences of field crops at different stages of growth from 

the reference surface having fixed crop height, surface resistance, and albedo. The Kc can be separated 

into two coefficients: a basal crop (Kcb) and soil evaporation coefficient (Ke), so called “dual” crop 

coefficient approach [52, 55]: 

 Kc = Kcb + Ke      (9) 

The basal crop coefficient (Kcb) represents the transpiration part of ETc - the ratio of the crop 

evapotranspiration (ETc) over the reference evapotranspiration (ETo), when the soil surface is dry but 

transpiration occurred at potential rate, without water limitation. The soil evaporation coefficient (Ke) 

represents the evaporation part of ETc, after soil wetting by precipitation or irrigation. 

 

5.2.3 Calculation of actual seasonal ET (water use) for selected crops  

 

The amount of water used by crops is equal to actual seasonal evapotranspiration (ETactual). The 

evapotranspiration combines two separate processes: the evaporation from the soil surface (or water) 

and transpiration from the vegetation. The driving force of evaporation is the difference between the 

water vapour pressure at the evaporating surface and the air. The transpiration consists of liquid water 

vaporization from vegetation leaves through stomata. This water is taken by the roots from soil and 

transported through the plant. 

Both processes depend on the solar radiation supply, the vapour pressure gradient and wind speed, 

but transpiration is also influenced by crop condition (type, variety and development stage, plant 

density), environmental conditions (soil salinity, fertility and texture, amount of fertilizers and pests) 

and crop cultivation practices (soil water content). 
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During the vegetation growth the fraction of evaporation/transpiration in evapotranspiration keeps 

changing. At the early stage of growth, the soil evaporation is dominated, but when the vegetation 

covers the soil, the transpiration becomes the main process. 

The ETactual based on remote sensing data is calculated by multiplying the ET fraction (ETfraction) 

with grass reference ET (ETo):  

 

ETactual = ETfraction * ETo      (10) 

 

In recent years several methods have been developed for modeling actual ET from satellite images, 

which contributed valuable data for irrigation management. 

First, is the Surface Energy Balance Algorithm for Land (SEBAL) method, described in 

Bastiaanssen et al. [47]. It uses the images that record a visible, infrared, and thermal infrared radiation 

data from satellites such as Landsat, ASTER, MODIS, NOAA AVHRR). Actual ET is computed on a 

pixel-by-pixel basis for the instantaneous time of the satellite image, as the residual amount of energy 

remaining from the classical energy balance: 

ET = Rn – G – H      (11) 

where: ET is latent heat flux (the energy used for evapotranspiration), Rn is net radiation at the 

surface, G is soil heat flux, and H is sensible heat flux to the air. All fluxes in W m-2
 day-1 units.  

ET (mm day-1) is calculated from latent heat flux by dividing it by the latent heat of water 

vaporization (). SEBAL is used in different parts of the world. Validation of SEBAL has been 

reported by Bastiaanssen [56, 57] and Tasumi [58]. 

Second, is the Mapping EvapoTranspiration with high Resolution and Internalized Calibration 

(METRIC) method described in Allen et al. [48]. METRIC uses the SEBAL approach for estimating 

the near surface temperature gradient, as a function of radiometric surface temperature and internal 

calibration at the “hot” and “cold” pixels of the sensible heat computation. METRIC calibrated to each 

satellite image by using of alfalfa, as the reference crop, because this crop more common for USA 

condition. According to Allen et al. [59], the actual ET, calculated by METRIC, has very high 

correlation with ET, measured by lysimeters. The SEBAL and METRIC methods based on linear 

relationship between the near-surface temperature difference and the land surface temperature for 

sensible heat flux estimation, by assuming that the “hot” pixels have no latent heat (ET = 0) and the 

“cold” pixels have maximum ET. 

Using these methods require a solid knowledge of energy balance, radiation physics, vegetation 

parameters, and weather data. The methods based on theoretical and physical relationships, but include 

the empirical coefficients, which must be calibrated for local conditions [60].  

The SSEB method adopted in this paper and described in sections 5.2.1 through 5.2.3 significantly 

simple, when compared with above mentioned models to determine ETactual based on remote sensing. 

According to Senay et al. [46], the correlation coefficient between actual ET from SSEB with 

METRIC varied from 0.94 to 0.99 and with SEBAL from 0.55 to 0.79, depending on the crop type.  
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5.3 Water productivity mapping (WPM) 
 

The water productivity map (WPM) was created by dividing the crop productivity map (CPM; 

section 1.1) with water use map (WUM; section 2.2):  

   WP = (Crop productivity) / (Water use)    (12) 

where: WP is water productivity (kg/m3 or $/m3), Crop productivity is crop yield (kg/m2 or ton/ha) or 

economic value ($/ha), Water use is seasonal actual ET (mm, m3/m2 or m3/ha). 

 

6. Results and discussions 
 

6.1 Crop productivity calculations 
 

6.1.1 Crop type classification.  

 

The crop classification (Figure 3) was made by using NDVI threshold values and applying the 

decision rules (Figure 4) by “if-else” criteria in ERDAS Imagine [61] modeler.  

 

Figure 3. Crop types inside the Galaba farm, derived using time-series Landsat ETM+ 

images for year 2006. 

 
 

The pixels having regularly low NDVI (< 0.2) were assigned the class of bare soil. Rice crop was 

distinctly different from other crops during day of year (DOY) 210 through 226 (Figure 3). Cotton and 

rice fields have near similar signatures during DOY 114, 131, 162, and 274, but were distinctly 

different during DOY 162 and 210 (Figure 5). Cotton was similar to wheat during DOY 210, 226, and 

274 but was distinctly different during DOY 114, 131, and 162. Overall, time-series data facilitated 

differentiating crop types through significant NDVI variations between crop types during at least 3 of 

the 6 dates (Figure 5). The vector files of road networks and settlements in the Galaba farmland areas 

were overlaid to delineate them. Any “pepper and noise” within crop fields were smoothed using post 

processing techniques involving 3x3 window kernel smoothing by spatial modeling in ERDAS 
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Imagine [61]. Given that we had intimate knowledge of the farm fields studied due to repeated visits 

throughout the growing season, we were able to check the accuracy of classification of farm fields 

(each field having one crop). The accuracy of main crops classification was perfect, close to 100%.  

 

Figure 4. Decision rules for main crops classification. 

 
 

Figure 5. Dynamic of average NDVI for different crops in Galaba study area, derived from 

Landsat ETM+ images for 2006 year. 

 
 

6.1.2 Crop yield modeling  

 

The cotton yield (ton/ha) values, measured at test fields, were correlated with average for these 

fields NDVI, derived from Landsat ETM+ images [62]. The best relationship (Figure 6a) with an R2-

value of 0.818 was obtained for image of DOY 226 (14 August, 2006), when cotton was in mid-season 

growth stage.  
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Figure 6. Measured cotton yield versus Landsat ETM+ NDVI relationship from test fields 

of Galaba study area.  

 
 

6.1.3 Crop productivity calculations by extrapolating to larger areas.  

 

The yield model (Figure 6) was applied to all cotton fields (Figure 3) taking the NDVI image on 

DOY 226. This resulted in an image with cotton yield expressed in ton/ha (Figure 7), The limited 

number of cotton test fields did not allow us to validate the yield model on other fields, because of 

budget constraints.  

 

Figure 7. Cotton crop productivity map (CPM) derived from the best NDVI-yield 

correlation. 
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6.2 Water use (seasonal ETactual) 

 

6.2.1 Modeling of ET fraction (crop coefficient) 

 

The ETfraction (dimensionless) raster layers (Figure 8) were derived using simplified surface energy 

balance (SSEB) model (Equation 6).  

 

Figure 8. Seasonal changes of ET fraction, derived using thermal band of Landsat ETM+ 

for the Galaba study area during 2006. 

 
 

In April (Figure 8a) winter wheat is in mid-season growth stage and hence we see significant values 

of ETfraction for this crop. The ETfraction is mostly low in May (Figure 8b) and early June (Figure 8c) 

because cotton is either just planted or in early growth phases and winter wheat is harvested. The 

ETfraction increases significantly (green color spreads spatially and increases in intensity) in July (Figure 

8d) and reaches almost maximum in August (Figure 8e), when main crops (cotton, rice and maize) are 

in mid-season growth stages. In the beginning of October (Figure 8f), the main crops were harvested 

and ETfraction further increased and this can be explained by weeds germination, especially inside the 

abandoned lands, after rainfall at the end of September. Besides, the October image is contaminated by 

clouds and its shadow, which reduce the land surface temperature values.  
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Enough care is required for selecting the “hot” and the “cold” pixels, which was selected inside the 

farm fields. The minimum (“cold”) and maximum (“hot”) land surface temperatures from selected 

pixels inside six Landsat-7 ETM+ images are shown on Figure 9. 

 

Figure 9. Minimum (cold) and maximum (hot) LST values from six Landsat images. 

 
 

The ETM+ NDVI values of the cotton crop were related to ETfraction from ETM+ images of the 

same fields for 3 dates. The results showed a high degree of correlation between NDVI and ETfraction of 

the Landsat ETM+ with an R2 value of 0.6831 for April image, 0.6548 for June image, 0.8472 for 

August image, and 0.7711 for the pooled data from 3 images (Figure 10). The R2 values were lower 

for images of early date when influence of bare soil on ET was significant and the process of 

evaporation dominated over transpiration.  

 

Figure 10. Landsat ETM+ ET fraction versus NDVI relationship. 
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6.2.2 Reference ET calculation.  

 

The FAO Penman-Monteith formula (Equation 7) was applied for calculation of grass (ETo) and 

alfalfa (ETr) reference evapotranspiration, by using of daily meteorological data (minimum and 

maximum air temperature, relative humidity, wind speed, and sun shine duration hours) from the 

closest (Syrdarya) meteorological station. The correlation between ETr and ETo values were very high 

(Figure 11). 

 

Figure 11. Alfalfa (ETr) versus grass (ETo) reference ET relationship. 

 
 

Because we have monthly satellite images for ET fraction modeling, the average monthly reference 

ETo values were calculated using daily ETo values, provided in Table 5, multiplied by the number of 

days in each month during cotton growing period. 

 

Table 5. Monthly ETo (mm/day) and number of days in each month for cotton growing. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Cotton    15 31 30 31 31 30    

ETo 0.6 0.944 1.753 3.398 5.081 6.716 7.066 6.269 4.466 2.587 1.103 0.656 

 

6.2.3 Water use (ETactual) calculation.  

 

First, the daily water use (m3/ha or mm/pixel) was determined by multiplying the reference ET 

(m3/ha or mm/pixel/day) with ET fraction. (dimensionless). Since we have only one image per month, 

we assumed that the water used for a given day, for which the image was available, remains constant 

throughout the month for a given crop. Second, the water used per month per crop per pixel is 

determined leading to accumulation of water use for the pixel over a span of 1 month. Finally, water 

used by a particular crop for the entire growing season is determined for every pixel. The results are 

finally presented in thousands m3/ha of water used for the entire study area (Figure 12).  
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Figure 12. Actual seasonal evapotranspiration (ETactual) in the Galaba study area for the 

cotton growing period of year 2006. 

 
 

6.3 Water productivity mapping (WPM)  
 

The crop productivity (ton/ha) raster layer (Figure 7) is divided by seasonal water use (thousands 

m3/ha) raster layer (Figure 12) to obtain water productivity (kg/m3) map (WPM), as illustrated for the 

cotton crop (Figure 13) in Galaba study area. The WPM (Figure 13) shows within and between field 

variability in crop water productivity. The results in Figure 13 showed that nearly 87% (2,508 

hectares) of the total area (2,896 hectares) is in low WP of 0.30 kg/m3 or less. This clearly implies the 

opportunity to grow more food in existing lands through better land and water management practices. 

 

Figure 13. Water productivity map (WPM) of the cotton crop in the Galaba study area.  
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6.4 Discussions and validations 

 

The extensive literature review of WP values in the world for main irrigated crops by Zwart et.al. 

[4] showed a wide range (min – max) of WP (kg/m3) for crops: wheat (0.11 – 2.67), rice (0.46 – 2.2), 

cotton (0.10 – 1.70), and maize (0.22 – 3.99). The highest values of cotton WP (0.54 – 1.70) are 

reported in Uzbekistan [65] for drip irrigation; but in flooded irrigation by gravity flow as in this study 

the WP values were between 0.2-1.0 [14, 63, 65]. In this study maximum cotton WP in Galaba farm 

was 0.54 kg/m3; lower values mainly because of the high percentage of soil salinity (43% of farms as 

determined through field visit in this research) and water logging (31% of farms). The other factors 

that influenced WP variations were land leveling (14%), water deficit (7%), and others (5%). 

We used the yield data from the study [63] to validate the yield model (Figure 14). This re-affirms 

the validity of the crop productivity maps (CPMs). The water use maps (WUMs) depend on the 

validity of the ET fraction maps and reference ET maps. The ET fraction computed in this study using 

SSEB method is known to have very good correlation with ET fraction computed by METRIC (Figure 

15). We established this and report these results based on the data provided by the developer of SSEB 

(Dr. Gabriel Senay) and developer of METRIC (Dr. Rick Allen). The different methods of reference 

ET calculations do produce slightly different values even when using the same meteorological data 

(Figure 11). Allen et al. [63] reported the ratio of alfalfa (ETr) to grass (ETo) reference ET in the range 

(1.2 – 1.5), our results have shown the similar ratio (1.1898). To get the same actual ET values, 

applying different methods for reference ET calculation do require using of different crop coefficients.  

The ET fraction values (crop coefficients) from SSEB modeling are in the range (0-1), but 

according to Allen et al. [52], maximum Kc for main crops (cotton, rice, wheat and maize) are around 

(1.15-1.2), it means that seasonal ET can be underestimated and water productivity values 

overestimated. One solution to overcome it is to use the ET fraction from SSEB with alfalfa (ETr) 

reference ET, but the final decision does require validation by actual ET by field measurements. The 

field equipment for actual ET estimation, such as Eddy Systems and Bowen Ratio Towers [53, 64] are 

very expensive and limited budget did not allow us to validate the result of actual ET modeling by 

SSEB using data from these towers that did not exist in the region. However, given the confidence 

with which we have computed crop yield (Figure 14), ET fraction (Figure 15), and reference ET 

(Figure 11), it can be inferred that the results of this research are reasonable. The emphasis of this 

study was in development of methods and protocols for WPM using high spatial resolution data. This 

was achieved through this research. 

The need for conducting WPM studies using high spatial resolution remote sensing data from 

Landsat type sensors is critical so that crop level water use and WP can be studied. This is a significant 

advantage over coarser resolution imagery such as from MODIS. Nevertheless, the absence of frequent 

availability of high resolution images is a limiting factor. The SSEB model is very useful in a 

developing country set up where rigorous data required by METRIC or SEBAL may discourage WPM 

studies using remote sensing. 
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Figure 14. The model was validated using yield data from an independent study [63]. 

Predicted yield (ton/ha) = 0.9519 * actual yield (ton/ha)
R2 = 0.9355
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Figure 15. Comparison between ET fraction from METRIC and SSEB models (personal 

correspondence with Dr. Gabriel Senay developer of SSEB and Dr. Rick Allen developer 

of METRIC). 
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7. Conclusions 
 

The paper demonstrated the methods and protocols of water productivity mapping (WPM) using 

high spatial resolution remote sensing data from Landsat-7 ETM+ multi-spectral imagery with thermal 

bands. The WPMs were produced by first developing crop productivity maps (CPMs) through yield 

modeling and then dividing them with water use maps (WUMs) through simplified surface energy 

balance model (SSEB). The outcome was WPMs showing within and between field variations in water 

productivity (WP), pin-pointing areas of low and high WP, of irrigated crops in the Syrdarya river 

basin, Central Asia. The main limitations of the study were the absence of: (a) more frequent imagery, 

and (b) field equipment for actual ET validations. 

The cotton crops, which constitute an overwhelming proportion of the study area, showed high 

variability in WP (0-0.54 kg/m3) with 87 % of the cropped area having low WP (< 0.30 kg/m3), 11 % 

area with medium WP (0.30-0.36 kg/m3), and only a very small proportion of 2 % having high WP (> 

0.36 kg/m3). This clearly implies that there is an overwhelming proportion of cropland areas where 

better management practices of land and water can help to increase WP, thus leading to food security 

without having to increase allocations of land and water resources.  
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