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Abstract. The overarching goal of this research was to map crop water productivity using 
satellite sensor data at various spectral, spatial, radiometric, and temporal resolutions 
involving: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, (b) MODIS 
250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) Indian Remote 
Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data. The spectro-biophysical 
models were developed using IRS and Quickbird satellite data for wet biomass, dry biomass, 
leaf area index, and grain yield for 5 crops: (a) cotton, (b) maize, (c) winter wheat, (d) rice, 
and (e) alfalfa in the Sry Darya basin, Central Asia. Crop-specific productivity maps were 
developed by applying the best spectro-biophysical models for the respective delineated crop 
types. Water use maps were produced using simplified surface energy balance (SSEB) model 
by multiplying evaporative fraction derived from Landsat ETM+ thermal data by potential 
ET. The water productivity (WP) maps were then derived by dividing the crop productivity 
maps by water use maps. The results of cotton crop, an overwhelmingly predominant crop in 
Central Asian Study area, showed that about 55% area had low WP of < 0.3 kg/m3, 34% had 
moderate WP of 0.3-0.4 kg/m3, and only 11% area had high WP > 0.4 kg/m3. The trends were 
similar for other crops. These results indicated that there is highly significant scope to 
increase WP (to grow "more crop per drop") through better water and cropland management 
practices in the low WP areas, which will substantially enhance food security of the 
ballooning populations without having to increase: (a) cropland areas, and\or (b) irrigation 
water allocations. 

Keywords: Crop water productivity, remote sensing, spectro-biophysical models, simplified 
surface energy balance model, MODIS, Landsat ETM+, IRS, Quickbird. 

Journal of Applied Remote Sensing, Vol. 3, 033557 (12 October 2009)

©  2009 Society of Photo-Optical Instrumentation Engineers [DOI: 10.1117/1.3257643]
Received 23 Jul 2009; accepted 8 Oct 2009; published 12 Oct 2009 [CCC: 19313195/2009/$25.00]
Journal of Applied Remote Sensing, Vol. 3, 033557 (2009)                                                                                                                                    Page 1

Downloaded from SPIE Digital Library on 20 Oct 2009 to 129.15.14.53. Terms of Use:  http://spiedl.org/terms

mailto:x.cai@cgiar.org
mailto:a.platonov@cgiar.org
mailto:j.vithanage@cgiar.org
mailto:chandra.biradar@ou.edu
mailto:Venkat.dheeravath@wfp.org
mailto:yafitush@volcani.agri.gov.il
mailto:victor@volcani.agri.gov.il
mailto:naftalig@moag.gov.il
mailto:bendor@post.tau.ac.il


1 INTRODUCTION, BACKGROUND, AND RATIONALE 
Water is one of the most critical resources for human life and survival. However, the stress on 
water use is only increasing with the global population expected to reach around 10 billion by 
2050. Securing the food and livelihoods for the rapidly increasing populations will put heavy 
demand on water. Further, the populations in the emerging markets are becoming increasingly 
consumer oriented requiring more food and products which all require water to produce. On 
the other hand, climate change impacts are creating uncertainties in water availability due to 
changes in seasonal climate patterns, reduced glacier sizes, and heavy over-exploitation of 
ground water.  

Reference 1 has shown that the possible biggest saving in water is likely to come from 
growing more food with less water (increasing water productivity (WP) or "more crop per 
drop" philosophy). Currently, there are tremendous differences in the quantum of water used 
to produce a unit of grain within and between farm fields in various parts of the world as a 
result of different water and farmland management techniques [2]. This opens up an 
opportunity to study the causes of differences in water use to produce unit of grain, pin-point 
areas where these differences occur, and strategize approaches of increasing water 
productivity.  

Water productivity studies are generally conducted in four approaches: (a) field 
experiments, (b) soil-plant-atmosphere transfer and hydrological modeling, (c) coupling of 
hydrological models and remote sensing, and (d) remote sensing/GIS techniques alone. 
Numerous studies on WP have been conducted through field experiments. Zwart and 
Bastiaanssen [2] reviewed measured WP values (kg/m3) from 84 publications and indicated 
huge differences. Ref. 3, also based on literature review, further gathered WP values 
expressed in economic terms (United States dollars/m3) for 42 regions in 5 continents. The 
field experiments approach provides critical initial understanding of water productivity 
values. However, this method is time, labor, and money consuming [4]. Also, field 
experiment method is usually applicable only to small scale area and thus has enormous 
difficulties in addressing the issue of scale, which is a major concern in WP studies [5-7]. The 
second approach involves two types of modeling, soil-plant-atmosphere models such as Soil, 
Water, Atmosphere, and Plant (SWAP), and Decision Support System for Agrotechnology 
Transfer (DSSAT) focus on plant water cycling in soil, plant and atmosphere continuous 
processes, and estimates yield as a response to the processes. Distributed hydrological models 
such as Soil Water Assessment Tool (SWAT), and Options Analysis in Irrigation Systems 
(OASIS), have the potential to provide time series results across pre-set scales. However, 
modeling setup and calibration is again difficult in data scarce regions. Unavoidable 
assumptions impose uncertainties and errors to model outputs [8]. Some researchers tried to 
link hydrological models with remote sensing as the third approach. Land use/land cover 
information, crop biophysical parameters, yield and evapotranspiration interpreted from 
satellite images are taken as inputs to models [9] or as reference data for model calibration 
[10]. Remotely sensed spatial patterns can be well integrated with modeled time series ground 
processes, hence providing the greatest potential for improved understanding of WP 
variations and the causes. The fourth approach aims to employ remote sensing and 
Geographical Information Systems (GIS) to map WP across spatial and temporal scales. Ref. 
11 firstly used remotely sensed data to estimate both crop yield and evapotranspiration for 
WP study in Bhakra command area, India. This approach was further developed to estimate 
both yield and actual evapotranspiration (ET) using Surface Energy Balance Model Algorithm 
for Land (SEBAL) [12]. Remote sensing approach overcomes data scarcity and scale 
limitations in conventional studies, reduces uncertainties, and covers large spatial domain 
over time. The inherent strength of remote sensing for WP mapping and nascent state of its 
development in terms of methods and approaches offer an opportunity to conduct systematic 
studies on agricultural water management performance evaluation.  
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Given the above background, the overarching goal of this paper was to develop methods 
and protocols of water productivity mapping (WPM) using remotely sensed data of various 
resolutions involving (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, 
(b) MODIS 250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) 
Indian Remote Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data.. The proposed 
approach involved mapping: (a) crop types, (b) crop productivity, (c) crop water use (or actual 
ET), and (d) water productivity. The Syr Darya river basin in the Central Asia was chosen as 
study area given the large and extensive irrigation in the areas developed during former Soviet 
Union Era. The study collected extensive dataset on biophysical, yield, meteorological, and 
land use gathered from the farm fields during the crop growing seasons of 2006 and 2007. 

2 DEFINITION OF AGRICULTURAL WATER PRODUCTIVITY 
Agricultural water productivity is the physical mass of production (e.g., biomass, grain yield) 
or economic value of production to quantum of water used or delivered for the production 
[13]. It measures how the system converts water into goods and services. The generic 
equation is: 

)/mt (mWater inpu
) or $ /m(kg/mwater use ived from Output der) or $/mWP (kg/m 23

22
33 =      (1) 

Output derived from water use includes physical measures, e.g., crop yield, biomass, fish, and 
livestock production which are all expressed in unit of kilogram; it can be also expressed in 
economic values (e.g., dollars) like market value of grain yield and/or biomass. Water input 
can be gross inflow, net inflow, available water, irrigation, and actual evapotranspiration. 

With the inherent strength of remote sensing, this study uses crop productivity expressed 
in kg/m2 as numerator and crop consumptive water use (actual evapotranspiration) as 
denominator, both of which are derived from satellite data with ground information input. 

3 STUDY AREA 
Syr Darya river basin (SRB) is located in Central Asia, covering an area of 444,000 km2 
including parts of Kyrgyzstan, Tajikistan, Uzbekistan and Kazakhstan (Fig. 1). It receives 
snowmelt water from Himalayas and drains into Aral Sea. With diverse range of altitude from 
0 to 7,500 meters above average sea level, the annual average temperatures range from -10 to 
5 0C at higher elevations and up to 15 0C at lower reach. The crops grown in SRB are 
predominantly cotton along with maize, rice, alfalfa in summer season and wheat in winter. 
The annual diversion from SRB is almost equal to total annual inflow, which imposes serious 
problem for the eco-system of downstream area and the Aral Sea [14]. Excess irrigation also 
creates problems including sali-alkalization and water logging in the upper and middle reach. 

Within SRB, two representative study areas (Galaba and Kuva; see Fig. 1), which are 
representative agricultural regions, were selected. Both sites are located in middle reach 
where irrigated areas are concentrated. The two sites have significant differences in soil 
fertility, crop and water management practices. Part of Galaba is strongly affected by soil 
salinity and has poor farming input, while Kuva is well cultivated and has higher production. 
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Fig. 1. Geographic location of the study area. 

4 DATA ACQUISITION AND CHARACTERISTICS 
A wide array of data including satellite sensor imagery, routine collection of groundtruth data 
are gathered throughout the crop growing seasons of years 2006 and 2007 along with 
secondary GIS data including administrative boundaries, road, railway and river network, 
cities and agro-ecological zones.  

4.1 Satellite sensor data 
Satellite sensor data at various resolutions were gathered for years 2006 and 2007. List of 
images are summarized in table 1. 

Table 1. Satellite sensor data used in this study 

Sensor Resolution (m) Image list 
Quickbird 2.44 2006 Jul 26, Aug 3 

IRS 23.5 
2006: Apr 18, Jun 5, Jun 15, Jun 20, Jul 9, Jul 14, Jul 18,     
Aug 26, Sept 24, Oct 27, Nov 6;                                            
2007: an 31,Apr 18,May 26,Jun 19,Jul 18,Aug 30,Sept 4 

ETM+ thermal 60 2006 Apr 24, May 10, Jun 11, Jul 29, Aug 14, Oct 1 
MODIS 250 Every 8 day for 2006 
MODIS 500 Every 8 day for 2006 

4.2 Normalization of satellite sensor data 
The Quickbird, IRS, and ETM+ sensors have different radiometric resolutions, spectral 
waveband widths [15-17], and the data are acquired in different days, time, view angles, and 
atmospheric conditions. Hence their respective digital numbers (DNs) carry different levels of 
information and cannot be directly compared. Therefore, they were converted to absolute 
units of radiance, then to at-sensor reflectance, and finally to surface reflectance after 
atmospheric correction.  
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While MODIS surface reflectance product data can be directly obtained from the United 
States Geological Survey (USGS) Earth Observing System Data Gateway 
(http://edcimswww.cr.usgs.gov/pub/imswelcome/). Data normalization of other sensors is 
more or less of similar steps. These include converting from DN to radiance using calibration 
factors as provided for in individual image header files. For Quickbird image this is: 

 

jiBandPixel DNorabsCalFactL ,, ∗= λ    (2) 
 

Where BandPixelL ,  is band integrated radiance (W m-2 sr-1), λorabsCalFact  (W m-2 sr-1 
count-1) is absolute calibration factor as is 0.064 for Pan band, 0.016 for blue, 0.014 for green, 
0.013 for red and 0.015 for NIR bands. jiDN ,  is digital number (unitless) of pixel in row i 

and column j. Then the band average radiance can be calculated by dividing BandPixelL ,  by 
effective bandwidth.  

IRS P6 spectral radiance (W m-2 sr-1 µm-1) was computed using the following equation: 
 

255
, GainDN

L ji ∗
=λ      (3) 

 
The specific Gain (W m-2 sr-1 µm-1) settings of the bands are: for band 2 it is 26.609 for gain 
1, 18.471 for gain 2, 12.064 for gain 3, and 8.988 for gain 4. Band 3 is 27.32, 18.179, 15.131, 
and 10.304 respectively. Band 4 is 31.018, 20.695, 15.757, and 10.876 respectively. For band 
5 it can be further divided into two situations: where temperature <24 º C (6.903, 3.397, 
1.644, 0.767) and >=24 º C (6.944, 3.406, 1.636, 0.752). These values could be obtained from 
the individual image header files. 

The combined surface and atmospheric reflectance of the Earth is computed with the 
following formula [17]: 

 

)cos(

2

s
p ESUN

dL
θ

πρ
λ

λ

∗
∗∗

=     (4) 

 
Where pρ  is the at-satellite exo-atmospheric reflectance factor (unitless), d is the earth to sun 

astronomic distance (unitless) at the acquisition date, λESUN  (W m-2 sr-1 µm-1) is the mean 

solar exo-atmospheric irradiance, and Sθ  is solar zenith angle in degrees. 
Time-invariant sites were used within image area to normalize multi-date imagery through 

use of perfect bright and perfect wet pixels as per the approach described in Ref. 18. In 
absence of perfect bright and wet pixels, atmospheric correction was performed using the 
improved dark object subtraction technique [19] to derive surface reflectance from at-sensor 
reflectance. All the images have been geo-referenced using Global Land Cover Facility 
(GLCF) Landsat ETM+ GeoCover products. 

4.3 Field plot data  
Field plot data was collected throughout the summer crop growing seasons (April-October) of 
2006 and 2007 from the two study sites. Field visits were conducted around every 15 days and 
the data was collected for 5 crops: wheat, cotton, maize, rice and alfalfa. Measurements were 
carried out at randomly chosen points scattered in selected farms, resulting in 1003 records 
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from all the visits at different crop growing phases of 2006 and 2007. The items collected at 
each point include biophysical and yield variables of crops, land use/land cover 
measurements, soil variables, water variables, and metrological data (Table 2). 

Cotton usually has more than one time harvests. Cotton yield in this paper is the sum of 
lint yield from first and second harvest. Visual estimations were made on field land cover 
(percentage crop canopy, water, weed, and soil). These data will be invaluable in crop type 
identification and in separating croplands versus non-croplands. An infiltration experiment 
was carried to determine soil water infiltration characteristics. 

Table 2. Characteristics of field plot data used in this study. 

Variable Unit Collecting  
Method 

Sample 
size 

Mean 
value 

Sample 
size 

Mean 
value 

Sample 
size 

Mean 
value 

Sample 
size 

Mean 
value 

A. General     Cotton Cotton Wheat Wheat Maize Maize Rice Rice 
Coordinate degree Hand-held GPS 585 - 191 - 116 - 43 - 

Soil type - Visual 
observation 15 - 15 - 6 - 2 - 

                      
B. Crop variables for spectro-biophysical\Yield modeling 
NDVI - NDVI camera 566 0.487 166 0.622 105 0.571 43 0.602 
PAR µmol m-2s-1 LAI meter 580 1060 174 1029 105 960.4 38 957.9 
LAI m2/m2 LAI meter 580 1.338 173 2.057 105 1.204 38 2.84 
Wet biomass kg/m2 Cut and count 577 1.801 172 1.499 108 2.186 37 2.166 
Dry biomass kg/m2 Cut and count 575 0.772 172 0.563 106 0.994 37 0.884 
Crop height mm Ruler 576 453 172 569.5 108 920.9 41 610.2 
Soil cover % Visual estimation 585 61.8 175 30.1 113 49.3 42 8.2 
Canopy cover % Visual estimation 585 34.1 173 58.0 113 36.5 42 69. 8 
Yield ton/ha Laboratory 45 2.109 45 3.495 18 2.983 6 4.523 
                      
C. Variables to study the factors affecting Water Productivity             
EC dS/m EM-38a  315 106.6 48 91.1 62 110.3 26 79.9 
Soil moisture % Laboratory 36 12.55 9 16.9 15 11.95 6 18 
Crop density plant/m2 Cut and count 577 21.1 172 253.8 97 18.2 39 343.1 
Weed cover % Visual estimation 585 5.0 173 12.9 108 14.4 42 10.6 
Water cover % Visual estimation 585 3.51 173 0.56 108 0.01 42 13.7 
Crop health grading Visual estimation 572 3.16 172 3.29 108 3.23 41 3.78 
Crop vigor grading Visual estimation 573 3.00 172 3.09 108 3.03 41 3.61 
                      
D. Meteorological variables for plant water use estimations or ET calculations 
Air  
temperature Celsius degree Automated    

weather stationb 5798 22.1             

Relative  
humidity %  5798 50             

Wind direction degree  5798 169.8             
Wind Speed KM/h   5798 1.38             
Rainfall mm   5798 151.8             
                      
E. Water applied measurements                 
Irrigation 
application Mm Weirs 5 293 2 80.57 4 158.9 4 355.2 

Note: a = Average value of vertical and horizontal measurements were given. 
        b = the "watchdog" station was set up in Galaba site and the data was used for all crops. 
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5 METHODS 
The methods for water productivity mapping using remote sensing are described in this 
section. Methods, broadly, consist of: (i) Crop productivity mapping; (ii) Water use mapping; 
and (iii) water productivity mapping. 

5.1 Crop productivity mapping (kg/m2) 
Crop productivity is the numerator of water productivity in this study. The crop productivity 
mapping has 3 distinct steps: 

5.1.1 Crop type mapping 
Crop type map is essential to estimate crop yield and crop water consumption. With the rapid 
development of landuse/landcover (LULC) detecting techniques, the LULC dynamics 
including cropping patterns (e.g., crop area, crop type, and crop rotation) over larger area are 
made possible [20]. Mapping crop type dynamics requires multi-temporal image data 
covering different crop growing seasons, and involves sets of interpretation techniques. For 
example, harmonic analysis to identify crop types is widely adopted by using, e.g., AVHRR 
NDVI [21] and MODIS data [22]. Geerken et al. (2005) [23] developed conventional Fourier 
analysis and adopted a Fourier Filtered Cycle Similarity (FFCS) method. More studies used 
hierarchical crop mapping protocols involving a number of steps, e.g., decision tree [20, 24]. 
Rao developed crop specific spectral libraries first and then used them to distinguish crop 
types [25]. Further, Thenkabail et al proposed spectral matching techniques to group similar 
classes from time-series NDVI data and match them with ideal spectral data bank [26].   

In this study, we used unsupervised classification backed by class identification and 
labeling protocols [26, 27] to develop crop type maps at various resolutions: MODIS 500m, 
MODIS 250m, IRS 23.5m, and Quickbird 2.44m. The process involved the use of spectral 
matching techniques to analyze the time-series images. The class identification and labeling 
process involved the use of bi-spectral brightness-wetness-greenness plots, space-time spiral-
curves, Google Earth very high resolution imagery (for the areas outside Quickbird images), 
and groundtruth data [28]. A hierarchical class labeling system was adopted to synthesize sub-
classes. A groundtruth dataset containing GPS coordinates, pictures and visual observations 
carried out through the project period was used to support class identification and validation. 
The detailed procedure is beyond the scope of this paper but can be found in Ref. [27].  

Winter wheat and cotton are the two major crops in SRB. However, the growing periods 
of these two crops are overlapping from April to June, meaning the two crops have to be 
grown in separate croplands. Wheat is almost the only crop in winter season, whereas there 
are other crops like rice, maize along with cotton in summer season. The growth period of 
common crops in SRB is shown in Table 3.  

Table 3. Crop calendar of the five major crops in the Syr Darya river basin. 

  Stage Cotton Winter wheat Maize Rice Alfalfa 
Initial 30 30 20 25   
Development 50 140 35 25   
Middle 60 40 40 55   

Growth  
Length (days) 
  Late 55 30 30 25   
Dates Sowing 15-Apr 10-Oct 10-Jun 21-May 2004-Sept 
  Harvesting 15-Oct 10-Jun 10-Oct 28-Sep 2006-July 
Note: the source is from combination of field survey and FAO irrigation and drainage paper 
56 [29]. 
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5.1.2 Spectro-biophysical/yield modeling 
Quantitative relationships between spectral reflectivity versus grain yield and vegetation 
biophysical parameters help to monitor ecosystem and predict crop production. These models 
work in two distinct approaches: (a) physically based modeling and (b) statistical regression. 
Bastiaanssen and Ali (2003) [30] coupled photosynthetically active radiation (PAR) model 
[31], light use efficiency model [32], and surface energy balance algorithm for land (SEBAL) 
[33] into one model to estimate crop biomass and then yield employing harvest index (HI) 
concept. Some other models (e.g., Scattering by Arbitrary Inclined Leaves or SAIL) are 
widely used to produce crop parameters like leaf area index (LAI), which are then taken as 
inputs to crop growth models to predict potential yield [34]. Statistical regression is another 
popular way to model biophysical parameters [35]. Numerous models have been established 
using linear or non-linear equations based on data sourced from, e.g., AVHRR [36], MODIS 
[37], Landsat TM/ETM+ [35, 38, 39], ASTER [40], airborne [41], hyperspectral data [15, 42], 
and LIDAR [43]. While most of these models are accurate at farm plot level, their 
performance in consistent evaluation at regional scale over years is to be improved.  

The NDVI, a combination of red and NIR bands to reflect vegetation healthiness, is 
extensively used in most of above mentioned studies. However, many studies also showed 
that involvement of other bands were equally important. Lee et al. (2004) [44] proved that 
NDVI, combined with surface temperature, soil moisture, and rainfall data can significantly 
improve crop yield estimation accuracy. Narrow bands from hyperspectral data showed 
strength in specific biophysical parameters modeling. It was found strong relationships with 
crop characteristics in specific narrow bands in the longer wavelength portion of the red (650-
700 nm) [15, 42].  Similar findings were also observed for cotton crop in China [45]. 
Optimum use of spectral bands is essential in maximum utilization of remotely sensed data. 

In this study, the spectral wavebands and two band vegetation indices (TBVIs) 
(independent variables) were related to biophysical variables and grain yield (dependent 
variables). The TBVIs consider all possible 2-band normalized indices [15, 42]. So, an IRS 4-
band data have 6 unique 2-band indices which are: TBVI21, TBVI31, TBVI32, TBVI41, 
TBVI42, and TBVI43. For example, TBVI21 is defined as: 

 

12
1221

BandBand
BandBandTBVI

+
−=     (5) 

 
Similarly, all unique indices from Quickbird are also considered for developing 

relationships with crop variables. 
Spectral reflectance and TBVI values corresponding to groundtruth point locations were 

extracted from time series IRS images and related to field biophysical measurements made 
close to the image acquisition date. 25% of the points were reserved for validation. The well 
distributed IRS images improve the model input data coverage to most of crop growth period 
which makes the simulation more robust. However, Quickbird image is of one time hence is 
related to GT data of one date. Various types of spectro-biophysical/yield models including 
linear, multivariate linear, and non-linear (Quadratic, Logarithmic, Exponential, and Power) 
models were tested. The crop variables were modeled best based on the best fit R2 values. The 
multivariate linear models were established taking up to three variables as given in Eq. 6. 

 
dxcxbxaY +∗+∗+∗= 321      (6) 

 
Where Y is dependent variable (wet biomass, dry biomass, LAI and yield); x1, x2, x3 are 
independent variables (band spectral reflectivity and TBVIs); a, b, c and d are coefficients to 
be determined. The general trend observed is the more independent variables are taken, the 
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higher R-square values the model gets. For example, given model type of band spectral 
reflectance for wet biomass, the three-variable model has higher R-square value than two-
variable model has. However, less variable model is preferred unless significant difference is 
in place (R2 difference > 0.1). Similar type of models were developed using data from other 
crops, other variables with spectral data from bands, and TBVIs for Quickbird instrument.  

5.1.3 Extrapolation of models to larger spatial domains  
The best spectro-biophysical/yield models were extrapolated to larger areas using crop type 
maps leading to crop productivity maps including variables such as biomass (kg/m2), LAI 
(m2/m2), and yield (tonne/ha). Extrapolation of spectro-biophysical models to larger areas 
were possible only when models are robust and were developed based on extensive datasets, 
preferably, considering data from multiple dates and multiple seasons with spatially well 
distributed sample locations and having a large sample size [35] which were well satisfied in 
this study.  

Spectro-biophysical models were established for individual crop. Hence they have to be 
applied to respective crop field only. Taking cotton as example, areas outside cotton fields 
were masked out from original IRS and Quickbird images using crop type maps. Biomass, 
LAI and yield models of cotton were setup in ERDAS Imagine "Model maker", and then 
applied to the image accordingly. In this way cotton productivity maps were produced.  

5.2 Water use maps (actual evapotranspiration, mm) 
Water used (actual evapotranspiration) by crops was determined based on Simplified Surface 
Energy Balance (SSEB) model [46] using thermal imagery and meteorological data. The 
SSEB assumes linear relationship between latent heat flux (ET) and land surface temperature. 
Hot pixel and cold pixel were used to represent "no ET" or "maximum ET" (potential 
evapotranspiration, ETp). Therefore, the actual ET (ETa) values of other pixels are linearly 
distributed between the range of hot pixel (ETa=0) and cold pixel (ETa=ETp), resulting in a 
proportional ET fraction value (ETfrac) for each pixel as expressed in Eq. 7: 
 

CH

XH
frac TT

TT
ET

−
−

=       (7) 

 
Where, ETfrac is ET fraction ranging from 0 to 1, TH and TC are the temperature of hot and 
cold pixels respectively; Tx is the surface temperature of any pixel on the image. Actual ET of 
day i (ETa, i) map can be generated by multiplying ETfrac with ETp of day i as shown in Eq. 8.  
 

fracpia ETETET *, =      (8) 
 

Ideally, ETp should be spatially explicit as ETfrac does. However this was limited by the 
number of meteorological stations. In this study ETp from single station was used.  

5.2.1 ETfrac  
Thermal bands of six Landsat ETM+ images acquired from April to October were used to 
derive ETfrac maps. Land surface temperatures were generated from the thermal bands for the 
sensor pass time and areas outside study extents were masked out.  
 
Choosing of hot and cold pixels has to be carefully decided. Although some areas like 
concrete roads or settlements are likely to have higher temperature, hottest pixel should be 
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chosen from dry bare farm land where ET is almost zero while temperature is lower than the 
former. To avoid noise or effects of other extreme conditions, several (5-10) pixels, instead of 
single one, were chosen to calculate average values as for hot (TH) and cold (TC) pixel. The 
TH and TC were identified for each of the six land surface temperature maps. Using Eq. 7, 
ETfrac maps were generated.   

5.2.2 Potential ET (ETp) 
Weather data from automated weather station is synthesized from hourly interval to daily 
basis and cross checked with weather data from nearby agro-climate station. These data were 
then used to calculate potential ET using Penman-Monteith equation and crop coefficients Kc 
as recommended by FAO. 

5.2.3 Seasonal crop water use maps (ETa) (mm) 
The seasonal crop ET (ETa, s) maps were produced by summing up the ETa for the entire crop 
growth period. Ideally, ETa is computed on a daily basis and summed up for the number of 
growing days. However, this is not feasible due to absence of daily high-resolution images. 
Three steps were involved to calculate ETa, s. 

(1) ETa maps of individual dates: ETa maps of the six individual dates corresponding 
to Landsat ETM+ images were produced by multiplying ETp maps with ETfrac maps of the 
same dates using Eq. 8; 

(2) ETa maps for crop growth period: Crop growth period is identified in table 3. 
Monthly ETa maps were produced first by multiplying ETa of individual dates with 30 or 31 
(number of days of the month). A partial period is used when the crop exists only in part of 
the month (e.g., if the crop is harvested on 12th of a month, then only 12 days of that month 
were used). The underlying assumption is that while ETp varies, ETfrac remains constant 
throughout the entire month, which is a practical way to aggregate daily ET in a relatively 
short period (one moth) in which no significant land cover changes occur. Sum of the monthly 
ETa maps leads to evapotranspiration map for entire growth period.  

(3) ETa maps for each crop: Crop type maps were used to extract ETa map for 
corresponding crop.  

5.3 Water productivity maps (kg/m3) 
The output derived from water use in this study is wet/dry biomass and yield, which are all 
converted to the unit of kg/m2. The crop water use as derived from remote sensing is actual 
ET in the unit of mm, which is converted to m3/m2. Water productivity maps were then 
produced by dividing the crop productivity maps by water use maps using Eq. 1.  

6 RESULTS AND DISCUSSIONS 
The results and discussions will first present crop productivity maps including crop type maps 
and biophysical models. This is followed by water use maps and then WP maps. The ability 
of satellite sensor data from MODIS 500m, MODIS 250m, IRS 23.5m, and Quickbird 4m in 
determining WP were examined and discussed. 

6.1 Crop type maps 
The irrigated areas for Galaba study site determined using satellite sensor data at various 
resolutions were summarized in Table 4. These areas were determined by considering sub-
pixel areas of MODIS 250m and 500m maps [27] and full pixel areas of IRS and Quickbird. 
The results showed that the area of croplands (including farm fallows) increased with increase 
in spatial resolution of the imagery in the homogeneous contiguous irrigated areas of SRB. 
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This was because, in coarser resolution imagery, the fragmented areas such as road-network 
and wastelands often get added up to larger areas such as the irrigated areas. This will make 
the irrigated areas higher than they actually are. In contrast, in the finer resolution imagery 
these smaller fragmented classes separate themselves into distinct class of their own, which 
will lead to more precise estimate of irrigated areas.  

Only IRS and Quickbird imagery were able to separate all the five crop types studied in 
this paper. Thereby, only IRS and Quickbird images were used further for WP estimates. The 
MODIS data had the ability to differentiate irrigated areas from other land use for dominate 
crops of cotton, wheat and to less accuracy, rice, but could not differentiate other crop types.  

Table 4. Irrigated areas at 4 resolutions. The irrigated areas for Galaba study site as 
determined using satellite sensor data at 4 distinct resolutions. Unit: ha 

Aggregated Irrigated 
LULC type  

Quickbird 
(2.4m)  

IRS P6 
(23.5m)  

MODIS 
(250m)  

MODIS 
(500m)  

Cotton  2068  4389  3897  5327  

Wheat N.A. 2068 3129 3197 

Rice  318  363  444  0  

Fallow  4033  1823  3029  3083  

6.2 Spectro-biophysical models 
The best spectro-biophysical/yield models were developed for each crop using the IRS and 
Quickbird data. The crop variables modeled were wet biomass (WBM, kg/m2), dry biomass 
(DBM, kg/m2), leaf area index (LAI, m2/m2), and grain yield (YLD, tonne/ha). Table 5 
summarizes the best: (a) model type, (b) bands or indices involved, and (c) R2-values. Before 
analysis, 5% of the data points were sieved as outliers which could be caused by any minor 
mistakes in sampling, measuring and data recording. For the rest points, 75% were used in the 
modeling process and 25% were reserved for model validations. Unless mentioned in the 
footnote, all models were run using the pooled data of the Galaba and Kuva study areas for 
the years 2006 and 2007 except the ones reserved for validations.  

An overwhelming proportion of the best models involved indices rather than wavebands 
(Table 5). The best models to determine WBM, DBM, LAI, and YLD were highly significant 
and explained around 80 percent variability using IRS data and about 70 percent variability 
using Quickbird data. The Quickbird models did not explain as much variability as IRS. This 
was because of the difficulty in the precise geo-location of the 2.44 m pixel. The uncertainty 
involved was slightly higher than IRS 23.5 m data. The best IRS-based models for cotton 
WBM (Fig. 2a), LAI (Fig. 2b), DBM (Fig. 2c), and YLD (Fig. 2d) are illustrated. 

The frequency of occurrence of bands in the best models was determined to ascertain the 
importance of the bands from IRS and Quickbird data. The red (30%) and the near-infrared 
(28%) bands, which are required for computation of NDVI, were most frequently occurring. 
The green band (25%) follows closely. Blue band (11%) is not very critical in modeling crop 
variables. SWIR band (6%) was found, surprisingly, less important. There are few 
conventional  NDVI based models provided high R-square values. For example, cotton we 
biomass  has an R-squared value of 0.83 involving IRS red band (band 2) and near-infrared 
band (band 3) (Table 5). However, there were several other models were non-conventional 
bands provided high r-squared values. For example, wheat wet biomass was modeled best 
with an R-squared value of 0.68 using IRS green band (band 1) and near infrared band (band 
3) (Table 5).   It is likely, that hyperspectral narrow-bands (not used in this study) can provide 
significantly higher R-squared values [42].  
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Table 5. Spectro-biophysical and yield models. The best models for determining 
biomass, LAI, and yield of 5 crops using IRS LISS and Quickbird data.  

        Best bands Best indices 

Crop Parameter Sensor 
Sample 
size 

Best   
model Band 

R-
square

Best    
model 

Band 
combination 

R-
square

Cotton Wet Biomass IRS 140 Exp 2 0.70  Power 2, 3 0.83  
    QB 41 Multi-linear1, 4 0.55  Power 3, 4 0.68  
  Dry Biomass IRS 136 Power 2 0.62  Power 2, 3 0.82  
    QB 41 Exp 2 0.52  Exp 1, 2 0.66  
  LAI IRS 135 Multi-linear3, 4 0.63  Power 1, 3 0.73  
    QB 41 Multi-linear2, 4 0.51  Exp 2, 4 0.57  
  Yield IRSA 14       Linear 2, 3 0.70  
    QBB 7       Linear 3, 4 0.61  
Wheat Wet Biomass IRS 9 Quadratic 2 0.43  Quadratic 1, 3 0.68  
  Dry Biomass IRS 14 Quadratic 1 0.21  Quadratic 3, 4 0.31  
  LAI IRS 18 Quadratic 4 0.80  Multi-linear 1,3; 2,3 0.47  
  Yield IRS 12       Linear 2, 3 0.67  
MaizeC Wet Biomass IRS 19 Power 2 0.82  Power 2, 3 0.87  
  Dry Biomass IRS 17 Exp 2 0.93  Power 2, 3 0.90  
  LAI IRS 19 Multi-linear1, 3 0.78  Multi-linear 1,2; 2,3 0.84  
RiceD Wet Biomass QB 10 Multi-linear1, 2 0.54  Multi-linear 1,2; 2,4 0.60  
  Dry Biomass QB 10 Multi-linear1, 2 0.40  Multi-linear 1,3; 2,3 0.41  
  LAI QB 10 Multi-linear2, 4 0.88  Quadratic 2, 3 0.23  
Alfalfa Wet Biomass IRS 21 Power 2 0.84  Quadratic 1, 2 0.85  
    QB 8 Multi-linear2, 4 0.77  Multi-linear 1,2; 2,3; 3,4 0.89  
  Dry Biomass IRS 21 Power 2 0.82  Exp 1, 2 0.81  
    QB 8 Multi-linear2, 4 0.73  Multi-linear 1,2; 2,3; 3,4 0.87  
  LAI IRS 21 Power 3 0.50  Exp 3, 4 0.64  
    QB 8 Multi-linear1, 3, 4 0.93  Multi-linear 1,3; 3,4 0.86  
Note:  A, Yield model using 2007 data       
  B, Yield model using 2006 data         
  C, Sample points from Quickbird for maize were inadequate   
  D, Sample points from IRS for rice were inadequate    
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Fig. 2. The best spectro-biophysical models for cotton crop using IRS data. The models showing 
relationships of IRS derived indices with: (a) wet biomass, (b) LAI, (c) dry biomass, and (d) yield. 

6.3 Crop productivity maps  
The crop variable models developed using satellite sensor data at various resolutions were 
used to extrapolate the understanding to larger areas based on crop type map. In Fig. 3, crop 
productivity maps were determined for cotton biomass (Fig. 3a) and cotton yield (Fig. 3b) 
using the best IRS models on IRS imagery. These maps provide per pixel crop productivity in 
terms of biomass, yield and LAI.  

 

Fig. 3. Crop productivity maps for cotton in the Galaba study area using IRS data 
for: (a) wet biomass (18 Jul, 2006), and (b) yield (2006). 
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6.4 Water use (actual evapotranspiration) maps  
ETa maps of the six individual dates were shown in Fig. 4. The six images, ranging from April 
to October, revealed significant spatial changes along cropping pattern changes. For example, 
a clear alternation of high ET in wheat and summer crop fields can be observed in the 
sequence of image date (from May 10 to June 11). Average seasonal water use for cotton was 
512mm, ranging from 150 to 905 mm (Fig. 5a) and for rice 619mm, ranging from 165 to 769 
mm (Fig. 5b). Although rice has much more short growing period than cotton, its daily water 
depletion is much higher, leading to higher total water use in its growing period. However, 
certain portions of cotton fields have much greater ETa,s (905 mm) than rice (769mm) which 
may be influenced by excellent growth conditions backed by longer growing period for cotton 
compared with rice. 

 
Fig. 4. Water use (ETa) maps for the Galaba study area derived from Landsat ETM+ and weather data. 

 
Fig. 5. Crop seasonal water use map in the Galaba study area for: (a) cotton crop and (b) rice crop. 
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The average ETa of the study area from April 15 to October 15, 2006 is 502 mm. The ETp of 
the same period is 1002 mm, almost double of the former, which can be explained by 
vegetation stress (e.g., water, salinity, nutrition, disease) experienced in the study area. Taking 
cotton as example, 1% of the cotton areas with an average yield of 2.5 tonne/ha, which is 
similar to field measured maximum yield, is considered as stress free areas with achievable 
yield. The average ET of the same area by SSEB is 861 mm. the potential ET calculated using 
FAO56 method, which in this case is actual ET, is 854 mm, which is very near to modeled 
values.  

6.5 Water productivity maps  
The water productivity maps have been produced for cotton, rice, wheat and maize using 
yield, wet and dry biomass as numerators in Eq. (9). Alfalfa is excluded in final WP maps 
because of its two-year growth period. Again taking cotton as example, the WP map for 
cotton yield using IRS and Quickbird were illustrated in figure 6. The average values of 
cotton WP were 0.285 kg/m3 from IRS data and 0.289 kg/m3 from Quickbird data. These 
values showed much higher variability (0-0.9 kg/m3) compared with the reviewed range (0.1-
0.35 kg/m3) in Ref. 2 which were actually measured from limited number of field points, 
implying remote sensing approach picks up the extreme plots while field measurements tend 
to miss them. Both maps showed high similarities on how the WP distributes spatially, which 
indicates that it is possible to map WP variability using both IRS 23.5 m and Quickbird 2.44 
m data. However, high resolution of Quickbird WP map explained more details compared to 
medium resolution of IRS map. Quickbird results generally have higher standard deviation, 
thus greater variability are captured. This enables to precisely pin-point areas that have lower 
or higher WP.  
 

 
Fig. 6. Water productivity maps of cotton using: (a) IRS, and (b) Quickbird data. 

 
The results in Table 6 show the areas under different water productivity groups. The WP of 
the irrigated cotton crop varied between 0-0.9 kg/m3. Of this only 11 percent of the cotton 
crop area was in 0.4 kg/m3 or higher WP. About 55% of the cotton area had WP less than 0.3 
kg/m3. And 21% of area under very low WP (< 0.2 kg/m3 ) based on IRS. This implies that 
there is highly significant scope to increase WP (to grow "more crop per drop") through better 
management practices. The challenge is to increase land and water productivity of the 55% 
low WP areas with a start on the 21% very low WP areas. The results had similar trends for 
other crops. Increasing the WP of these areas can greatly contribute to the food security of 
future generations without having to increase croplands and/or water use.  

Journal of Applied Remote Sensing, Vol. 3, 033557 (2009)                                                                                                                                    Page 15

Downloaded from SPIE Digital Library on 20 Oct 2009 to 129.15.14.53. Terms of Use:  http://spiedl.org/terms



Table 6. Areas under different water productivity for cotton crop in Galaba determined using IRS and 
Quickbird data. 

  IRS Quickbird 
WP group 
 (kg/m3) 

area 
(ha) share (%) 

area 
(ha) 

share 
(%) 

0-0.1 167.9 4.1 85.1 1.8 
0.1-0.2 695.5 16.8 970.2 21 
0.2-0.3 1421 34.4 1550.7 33.5 
0.3-0.4 1381.7 33.4 1370 29.6 
0.4-0.5 414.7 10 542.7 11.7 
0.5-0.6 50.3 1.2 93 2 
 >0.6 2.4 0.1 17.9 0.4 

6.6 Model Validation 
The validity of WP models produced in this paper were evaluated by first validating crop 
productivity (CP) models and then water use (actual ET) models.  

The CP models were evaluated by using 25% of the total groundtruth data points that were 
reserved exclusively for model testing and validation. These reserved points were used to 
calculate model derived crop variables (taking best models reported in Table 5) and compared 
with the actual crop variables (from samples reserved for validation from Table 2). Generally, 
R-squares of modeled values versus actual values varied between 0.6 to 0.8 (e.g., illustrated 
for few variables in Fig. 7). The cotton crop yield models were highly correlated with actual 
yield with R-square values as high as 0.94 (Fig. 8). 
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Fig. 7. Validation of best models. (a) Cotton wet biomass with IRS, (b) cotton dry biomass 
with IRS, (c) cotton LAI with IRS and (d) cotton LAI with Quickbird. 

 
 

Journal of Applied Remote Sensing, Vol. 3, 033557 (2009)                                                                                                                                    Page 16

Downloaded from SPIE Digital Library on 20 Oct 2009 to 129.15.14.53. Terms of Use:  http://spiedl.org/terms



 
Fig. 8. Model validation for cotton crop yield. 

 
Second part of the validation is to ensure water use (actual ET) is computed with accuracy. 
Actual ET models were built by multiplying evaporative fraction derived using Landsat 
thermal data with potential ET (see section 5.2). The potential ET is derived using well 
established Penman-Montieth equation [47] and crop coefficient (Kc) approach as suggested 
by FAO [48]. Thereby, this leaves us with validation of ET fraction. For this we compared the 
SSEB derived ET fraction with that from METRIC and found high degree of assurance (R-
square value of 0.77; see Fig. 9). The result clearly shows the reliability of SSEB as a simple 
yet efficient approach for ET fraction estimation.  
 

 
Fig. 9. Comparison between ET fraction from METRIC and SSEB models (personal correspondence 
with Dr. Gabriel Senay, developer of SSEB and Dr. Rick Allen, developer of METRIC). 

Journal of Applied Remote Sensing, Vol. 3, 033557 (2009)                                                                                                                                    Page 17

Downloaded from SPIE Digital Library on 20 Oct 2009 to 129.15.14.53. Terms of Use:  http://spiedl.org/terms



7 CONCLUSIONS 
This paper developed and illustrated methods and protocols for producing water productivity 
maps based on a study of five irrigated crop types (cotton, wheat, maize, rice, and alfalfa) and 
four crop variables (wet biomass, dry biomass, leaf area index, and grain yield) using remote 
sensing data at various resolutions. The methods involved: (a) crop type mapping, (b) spectro-  
biophysical modeling, (c) crop productivity maps by extrapolating the best spectro-
biophysical models onto crop type maps, and (d) water use maps (or actual 
evapotranspiration) from ETM+ thermal data and point reference evapotranspiration, and (e) 
water productivity maps by dividing crop productivity maps by water use maps.  

The best IRS and Quickbird spectro-biophysical models, mostly involving NIR and red 
bands, explained 65-90 percent variability in various crop variables. The IRS data explained 
about 10% greater variability than Quickbird. This was because of the uncertainty involved in 
precise location of a 2.44 m resolution Quickbird pixel. 

The research demonstrated the ability to determine water used (ETa) by various crops 
during a growing season using remote sensing. Rice and cotton used maximum water of the 5 
crops studied. Average seasonal water use of rice was 619 mm compared to 512 mm by 
cotton. However, certain portions of the cotton field that are in best growing conditions 
consumed more water (905 mm) than the highest consumed by rice (769 mm). This was also 
because of the significantly longer growing season for cotton (about 6 months) to rice (about 
4 months). However, the percentage area of cotton consuming more water than rice was very 
limited. But, the results indicated that at best growing conditions, cotton can consume more 
water than rice due to its substantially longer growing period. 

WP maps of the study area mapped using IRS data showed 55% of the total cotton area in 
low WP (<0.3 kg/m3) of which 21% was in very low WP (<0.2 kg/m3), 34% in moderate WP 
(>0.3 kg/m3 but <0.4 kg/m3), and only 11% of the total cotton area having high WP (>0.4 
kg\m3). The trends were similar for other crops. The Quickbird images provided similar trends 
in both study areas and hence further re-enforce the reported trends in WP variability using 
IRS. These results clearly imply the highly significant opportunities that exist for growing 
"more crop per drop" (increased WP) using the existing cropland and water resources to re-
enforce food security in coming decades for ballooning populations. 

Water productivity of crops reveals the crop outputs over given water input. It can be 
increased in 3 distinct approaches: increasing crop productivity (numerator), reducing water 
input (denominator), and combination of the two. In the study area of SRB in Central Asia, 
WP generally showed lower values compared to the other parts of the world (from literature), 
which means opportunity exists to increase significant proportion of WP. The water use 
(actual ET) is highly uneven while high ET is not necessarily linked to high yield or high WP. 
Better water management practices are required to reduce unnecessary ET, for example, 
evaporation from saline areas. Water productivity variations were attributed to many factors, 
as determined through farmer interviews: soil salinity (43%), water logging (31%), field 
leveling (13%), water deficit (7%) and some other factors such as weeds, soil moisture, and 
crop density 6%. 

This paper showed the inherent strength of remote sensing in WP studies. While the maps 
help to identify the spatial variability of WP within and between fields, time series data will 
further ensure robust models to reveal the temporal variability. Also factors affecting WP 
could be further advanced by direct application of multi-temporal data, which brings 
significant added value to the WP maps leading to appropriate interventions to better manage 
land and water resources and enhance WP.  
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