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Abstract

Since 1996 when Highly Pathogenic Avian Influenza type H5N1 first emerged in southern China, numerous studies sought
risk factors and produced risk maps based on environmental and anthropogenic predictors. However little attention has
been paid to the link between the level of intensification of poultry production and the risk of outbreak. This study revised
H5N1 risk mapping in Central and Western Thailand during the second wave of the 2004 epidemic. Production structure
was quantified using a disaggregation methodology based on the number of poultry per holding. Population densities of
extensively- and intensively-raised ducks and chickens were derived both at the sub-district and at the village levels.
LandSat images were used to derive another previously neglected potential predictor of HPAI H5N1 risk: the proportion of
water in the landscape resulting from floods. We used Monte Carlo simulation of Boosted Regression Trees models of
predictor variables to characterize the risk of HPAI H5N1. Maps of mean risk and uncertainty were derived both at the sub-
district and the village levels. The overall accuracy of Boosted Regression Trees models was comparable to that of logistic
regression approaches. The proportion of area flooded made the highest contribution to predicting the risk of outbreak,
followed by the densities of intensively-raised ducks, extensively-raised ducks and human population. Our results showed
that as little as 15% of flooded land in villages is sufficient to reach the maximum level of risk associated with this variable.
The spatial pattern of predicted risk is similar to previous work: areas at risk are mainly located along the flood plain of the
Chao Phraya river and to the south-east of Bangkok. Using high-resolution village-level poultry census data, rather than sub-
district data, the spatial accuracy of predictions was enhanced to highlight local variations in risk. Such maps provide useful
information to guide intervention.
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Introduction

In January 2004 Thailand saw unprecedented epidemics of

highly pathogenic avian influenza (HPAI) of the H5N1 subtype.

Socio-economic impacts of the disease resulted from the losses of

birds killed by the disease or by culling, and from the disruption of

trade and market activities imposed by disease control measures

such as movement restrictions and a temporary ban of poultry

product exports [1,2]. In addition to smallholders who raise

poultry for a living and contribute significantly to home

consumption, Thailand has a modern and very active commercial

poultry sector, and has become one of the main exporters of

poultry products in the region. The epidemics had a strong impact

both on smallholders and on the commercial sector. The HPAI

H5N1 virus that caused the epidemics was new to Thailand, but

had been first identified in Guangdong Province of China in 1996,

where it evolved before spreading internationally [3].

Thailand experienced two main epidemic waves in 2004. From

January to March the first wave struck the country, and was

brought under control. No outbreaks were detected from April to

June but the disease returned in July. In October, following several

weeks of outbreaks, Thailand decided to launch a massive survey,

called the ‘‘X-ray survey’’ [1]. The survey involved hundreds of

thousands of trained, field inspectors with the aim of producing a

comprehensive view of the epidemiological situation in the field, in

support of short-term responses to the epidemic, and longer-term

planning of control strategies. Statistical models based on these

data were used to identify risk factors, and to identify and map the

main areas at risk from the disease [4,5]. Those results helped

focus surveillance and the development of control policies with

regards to free-grazing ducks, the density of which had been

identified as a key risk factor [5,6]. The survey has since been

repeated twice per year under the supervision of the Department

of Livestock Development.
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The data on epidemic wave from July 2004 to March 2005 have

been analysed by several authors [4,7–9]. The results depended on

the risk factors considered and administrative level of analysis, but

all identified domestic ducks as a key risk factor. Since 2004, HPAI

H5N1 has spread to many other countries and numerous studies

have analyzed HPAI H5N1 risk factors under different agro-

ecological conditions in countries such as Indonesia, Bangladesh,

Romania and Nigeria. Despite these numerous studies, some risk

factors have been overlooked. A recent review of HPAI H5N1

spatial models [6] identified two such risk factors: flood-water and

poultry production systems.

Duck farming is associated with multiple rice cropping in

Thailand [10] which, in turn, implies the presence of a dense

network of irrigation canals. HPAI H5N1 virus has been shown

experimentally to persist in water for at least 17 days [11]. A flock

with ducks infected with HPAI H5N1 could shed virus into the

water of a canal and, potentially, infect a chicken farm located

downstream through contaminated drinking water, even in the

absence of direct contact between those two flocks (irrigation water

being considered as one of the tree main sources of drinking water

for poultry along with rain water and piped water when available).

Water has long been suspected to play an important role in the

persistence and spread of HPAI H5N1, but surprisingly few studies

have included a measure of the abundance of water in the

landscape as a risk factor [12,13].

Many previous studies on HPAI H5N1 distribution have

included indicators of chicken, duck or poultry abundance as a

risk factor but few made an explicit distinction between the types

of poultry production systems in their analyses. The link between

intensification of the poultry sector and the risk of HPAI

emergence and spread has received some attention [14,15], but

few studies have attempted to quantify it. One reason for this may

be the distinction in poultry censuses between different types of

production systems. Some studies have tried to resolve this, for

example by using crude threshold values of flock sizes to define

different levels of intensity in production [16] or by using

anthropogenic risk factors, which are generally associated with

intensive production, as surrogates [9]. Although poultry produc-

tion can be categorised in many different ways, a simple approach

is to separate poultry farming in two categories: extensive and

intensive [15]. Otte et al. [15] define intensive production as

having increased levels of inputs, of one kind or another, in order

to maximize outputs; typically the yield, measured in kilograms of

meat (or other product) per animal, per year. Extensive farming in

this context refers to backyard production, typically with low

inputs and generally used for family consumption, or sold to local

markets. Poultry production in Thailand has undergone significant

changes in the last decades shifting from small-scale extensive

production systems towards more specialized farming involving

very large flocks and increased inputs. The distinction between

intensive and extensive production is important because it has

implications for several epidemiological factors. These include the

level of investment in animal health; bioexclusion and biocontain-

ment measures; the absolute numbers of hosts per farm; and the

potential virus load should a farm become infected. Recognising

the importance of this distinction, Van Boeckel et al [17] developed

a method to distinguish extensive from intensive chicken and duck

farms based on holding size, as determined from the 2004 X-ray

poultry census data in Thailand. This was used to produce detailed

maps of chicken and ducks raised in extensive and intensive

production systems.

This study aimed to revise some of the previous HPAI H5N1

statistical modeling of HPAI H5N1 risk in Thailand in order to

test recently developed poultry production structure variables. In

addition, we also tested some risk factors related to the presence of

water. We also aimed to improve over previous studies carried out

at the sub-district level (3rd administrative level) by analyses carried

out at the village level (4th administrative level). Finally, we used a

different modeling approach, namely Boosted Regression Trees

(BRT; [18]), a method inspired by the non-parametric classifica-

tion and regression trees methods that is of increasing use in

epidemiology.

Methods

Data
The study area was restricted to the east-central region of

Thailand (Fig. 1) in order to match the extent of the area where

water-related risk factors had been extracted from remote-sensing

data. This area includes 93% (1687 cases) of the confirmed HPAI

H5N1 cases that were recorded during the second wave (1814

cases).

Four datasets were used in this study: the locations of villages,

the locations of laboratory-confirmed HPAI H5N1 cases, the

poultry census carried out during the first X-ray survey in October

2004, and a set of additional predictor variables. All data were

projected in UTM 47N (WGS84 datum).

The Thailand village data set corresponds to point-based units

and represent the fourth administrative level division of the

country (1 = province; 2 = district, 3 = sub-district and 4 = village).

The coordinates of 29,354 villages were obtained from the

Ministry of Transport for the study area except in urban area

surrounding the city of Bangkok where this sub-division of the

territory is not used.

The HPAI H5N1 cases data were collected in 2004 by

Department of Livestock Development through their testing of

suspicious cases identified by the X-ray survey active surveillance.

Positives cases were confirmed by polymerase chain reaction of

samples collected from dead animals. The X-ray survey was a

significant change to the surveillance approach used previously so,

Figure 1. Distribution of HPAI H5N1 outbreaks and flooded
areas. The distribution of flooded areas (A) and Higly Pathogenic Avian
Influenza outbreaks (B) follow a comparable distribution pattern in the
Central-Eastern region of Thailand and at local scale in Phitsanulok and
Phetchabun provinces (C). The grey zone represents the area excluded
from model training due to absence of poultry data.
doi:10.1371/journal.pone.0049528.g001

Risk Models for Avian Influenza in Thailand
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in order to include only data collected under similar surveillance

conditions, the data considered in this study were restricted to

those collected after 1 October 2004.

The poultry census data collected during the X-ray survey

included counts of eight duck and chicken categories (broiler

chickens, layer chickens, native chickens, broilers duck, layer

ducks, Muscovy ducks, meat typed free grazing ducks and egg

typed free grazing duck). These were categorized in four groups, as

described in Van Boeckel et al. [17]: intensively raised ducks,

extensively raised ducks, intensively raised chickens and exten-

sively raised chickens. The categorization was achieved using a

data-driven approach based on the number of birds per holding.

The Log10-transformed numbers of birds in each category were

used as predictor variables in the village level analysis, and the

Log10-transformed densities of birds per km2 were used for the

sub-district level analysis.

In addition to poultry production system variables, four other

potential predictor variables were tested (Table 1, Fig. S1). As

indicated by previous models [7] the number of crop cycles per

year [19] and the human population density [20] were included. A

third additional variable was the proportion of area covered by

lakes, rivers or floods in a 1 km neighborhood around each village

location. This was determined by the proportion of 30 m2 pixels

classified as lake, river or floods in the neighborhood of each

village (see below for the definition of this neighborhood).

Classification of pixels as lake, river or flood was carried out by

unsupervised clustering of Landsat imagery captured during the

period of the second wave of the epidemic (Thanapongtharm et al.,

submitted). In order to avoid including predictors showing co-

linearity, All predictors were checked for cross correlation. All

correlation coefficient values obtained were less than 0.41.

Preprocessing
The specific village location does not necessarily reflect the area

over which animals counted in the village are distributed. In order

to summarize the predictors associated with each village, it was

necessary to assign each village a neighborhood area. The

delineation of this neighborhood was obtained by a two-step

procedure: i) Thiessen polygons were calculated around each

village center in the dataset, ii) the Thiessen polygons were then

intersected with a one 1 km radius buffer around each village

center. This procedure restricted the neighbourhood area where

villages were far apart and avoided overlap where they were close

together and resulted in circular neighbourhoods in remote areas

where villages were distant from each others, and in broken circles

when the density of villages was high (Fig. 2). The size of the buffer

was chosen according to the median minimum distance to the

nearest village in our data set (0.954 km), and according to the

resolution of the predictors.

For the village level analysis, predictor variables were averaged

for each of the 29,354 village neighborhoods. For the sub-district

level analysis, predictor variables were aggregated from the village

level data and averaged over the area of the 2,569 sub-districts.

The poultry data were then matched with the villages if a common

identifier was available. This resulted in a dataset with matching

records for 18,941 villages (65%) and 2,548 sub-districts (99%),

after exclusion of an area in the North-Eastern region for which

village-level data were lacking (Fig. 3). The geographical

distribution of villages that could not be linked to any poultry

data was mapped, and showed no obvious spatial pattern, nor

apparent association with the distribution of the covariates.

The HPAI H5N1 cases were matched to the village and sub-

district data sets. Each village and sub-district was assigned a

disease status as follows: i) positives: for which an outbreak was

confirmed during the 2nd epidemic wave, between 1 October

2004 and 1 March 2005 (including 740 villages and 561 sub-

district) and ii) negatives: which had not been diagnosed positive

for HPAI H5N1 between 23 January 2004 and 13 February 2009.

The second step allowed to insure that villages and sub-districts

categorized as negatives did not encountered HPAI during the

second wave of the epidemic or any other previous or later

epidemic episode, thereby limiting the risk of including false

negative where HPAI H5N1 was present but that failed to be

declared to the authorities during the second epidemic wave. The

rate of matching between outbreak and poultry data was of 99% at

the village level and 100% at the sub-district level.

Table 1. Eco-climatic and anthropogenic predictors tested for correlation against presence of Highly Pathogenic Avian Influenza
type H5N1.

Variable Name Acronym Reference Spatial Resolution (meters)

Mean Crops/year ncrop Xiao et al 2006 [19] 500

Presence of lake lake Kmean classification clustering derived LandSat imagery 30

Presence of River or Floods riverflood Kmean classification clustering derived LandSat imagery 30

Population Density ls2008 LandScan Global Population Database [50] 1000

doi:10.1371/journal.pone.0049528.t001

Figure 2. Villages ‘‘bubble’’ pattern in Nakhon Ratchasima
Province. Villages are identified as point-based administrative units of
Thailand. Their area was artificially delimited by intersecting Thiessen
polygons with a one kilometre radius circular buffer.
doi:10.1371/journal.pone.0049528.g002
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Modelling
Boosted Regression Trees (BRT) were used to model the

probability of HPAI H5N1 presence as a function of the predictor

variables. BRT were developed by [21] and are increasingly being

used to predict species distributions [22,23] and have also been

used to predict disease risk, for example with HPAI H5N1 [24].

BRT implements boosting to regression trees. The procedure is

iterative and implies fitting a first regression tree to the dependent

variable, estimating the residuals, fitting a second tree to the

residuals, update the predictions, estimate the residuals, fit a new

regression tree to the new residuals, etc… The iterative loop is

continued until there is no gain in predictability in adding new

trees. When the response variable is binomial, the predictions of

BRT are a probability of presence estimated on a scale of 0 to 1.

These are estimated by adding the prediction of each regression

tree multiplied by a parameter called the learning rate, that is

implemented to allow a gradual fitting process. The procedure is

explained in details in Elith et al. [2008] in the sections

‘‘Boosting’’, p 804, and ‘‘How multiple trees produce curvilinear

functions’’, p 811. BRT is reported (i) to generate better

predictions than do linear regression approaches [25]; (ii) to

account implicitly for interactions among predictor variables; and

(iii) to allow for non-monotonous relationships between the

modelled response and the predictor variables [18]. These latter

two points are in contrast to the logistic regression approaches

previously used to model the risk of HPAI H5N1 in Thailand

[7,8].

In order to use training data with a balanced ratio of positive

and negative villages, or sub-districts in the analysis, and to assess

the variability of the effects of the predictor variables, a Monte

Carlo procedure was implemented to produce a random sub-

sample of positive and negative cases over 25 iterations. Logistic

regression was indeed shown to be quite sensitive to highly

unbalanced proportion of positives and negatives [26]. The

training sets tested half of the HPAI H5N1 positives (370 villages

or 254 sub-district) against an equal number of negatives. BRT

models do not require a balanced set of positive and negatives, but

since we aimed to compare the goodness of fit of BRT and logistic

models, we kept the procedure identical. The BRT parameters

chosen followed those used by Martin et al. [24] to model the risk

of HPAI H5N1 in China: initial number of trees = 50; training

rate = 0.005; tree complexity = 5, bag fraction = 0.75, and alter-

native parameters were tried (Table 2). The BRT approach does

not provide hypothesis tests for the significance of individual

variables. However, it is possible to evaluate the relative

contribution (RC) of each predictor variable in a BRT model by

estimating the proportion of times that a variable is selected for a

splitting knot in a tree, weighted by the squared contribution of the

tree towards model improvement [27]. This contribution was

estimated for each of the 100 BRT models, and averaged to give

an overall RC measure for each predictor variable. A particularly

interesting feature of BRT is its capacity to plot the effect of each

variable on the fitted value. The profile of the fitted value and each

predictive variable was also averaged over the 100 runs, to show

the relationship between the predictor and the predicted values.

In order to compare the overall accuracy of the BRT method

with that of Gilbert et al. [7] we also used an auto logistic regression

model to characterize the risk of HPAI H5N1 at the village level.

The auto logistic regression was subjected to the same sampling

procedure as the BRT to use a balanced ratio of positive and

negative outbreak values. In order to account for the potential bias

associated with spatial autocorrelation an additional index was

added as predictors variable in both the logistic regression model

and the BRT model. This index is an inverse distance weighed

sum of the residual spatial autocorrelation (RAC) limited to a

search radius of 5 Km [28]. All analysis were conducted in R

(cran.r-project.org), and the BRT runs were carried out using the

cross-validation functions developed by [18].

Evaluation and prediction
The overall accuracy of the models was estimated as the average

area under the receiver operator curve of the 100 iterations

(AUC). The AUC was estimated both on the basis of the data set

used to train the model (‘‘model set’’), and on an evaluation set of

741 villages and 508 sub-district that were not used to train the

model (‘‘test set’’). A point-based prediction map was derived from

the models trained at the village level and a risk map with a

resolution of 1 km2 was produced by applying the sub-district level

model to the predictor variables.

Results

Maps of predicted HPAI H5N1 risk in the study area for the

village level and at the sub district level analysis are show in Fig. 3a

and Fig. 3b. The maps show a similar distribution of the risk. The

uncertainty maps associated with the risk prediction are presented

in Fig. 3c Fig. 3d. The median value of the coefficient of variation

deviation was 18% at the sub-district level and 8% at the village

level. The main areas predicted to be at risk were located along the

course of the Chao Phraya river (in Suphan Buri, Nakon Sawan

and Phitsanulok provinces), the Ping River (Kamphaengpet

Province) and to the East of Bangkok (Chachoengchao and

Nakon Nayok provinces). The risk maps provide different but

complementary information: the results from the sub-district

analysis display a relatively continuous description of risk across

the area, due to the level of aggregation of the predictor variables,

which makes no sense in areas within sub-districts where there are

no people or poultry. In contrast, the village-level predictions

follow the locations of the villages but do not estimate relative risk

between villages. This is highlighted in Fig. 4 for an area along the

Lam Takhong river in Nakon Racthasima Province.

The BRT models showed good overall agreement between

observed and predicted risk of HPAI H5N1 outbreak. The mean

Figure 3. Predicted risk of HPAI outbreak. Maps of average
predicted risk at the village level (A) and at the sub district level (B) for
25 iteration of the Boosted Regression Trees model. (C) and (D)
represent the corresponding uncertainty maps (coefficient of variation,
log scaled) associated with the risk prediction. The grey zone represents
the area where poultry data were unavailable for training models.
doi:10.1371/journal.pone.0049528.g003
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AUC obtained for the village level and sub-district level analysis

were 0.773 and 0.737 respectively; showing similar model

accuracy between the village level and sub-district level models.

The mean AUC obtained with a village level logistic regression

model was 0.761; and were comparable to the results obtained

using BRT No significant differences in mean AUC were obtained

among the BRT models at the village or sub-district levels the

village level logistic regression model; the mean of each falling

within the 95% confidence interval of each other (Table 2).

However evaluation based on the model set revealed that the BRT

approach had a significantly higher degree of accuracy (AUC = 0.

862) compared with the logistic regression (AUC = 0.771). No

significant change in mean AUC was observed from changing the

bag fraction, within the range 0.5 to 0.8, or the learning rate,

within the range 0.01 to 0.005 (Table 2), for the village level BRT

model.

In contrast, the relative contributions (RC) of the predictors to

the BRT models (Fig. 5) and the dependency profiles between

each predictor and the risk of HPAI H5N1 presence (Fig. 6 &

Fig. 7) for the village level analysis were different from those of the

sub-district level analysis.

The residual auto covariate predictor (RAC) had a higher RC at

the village level (RC = 22.54) compared to the sub-district level

(RC = 4.22), which highlights the difference of importance of the

spatial autocorrelation term according the scale of the analysis,

with an apparent stronger effect of spatially auto-correlated

outcome at the village level than at the sub-district level.

At the village level, three groups of predictors variables could be

identified based on their relative contributions to the model:

important contributors, moderate and very low contributors. The

proportion of area covered by rivers or floods and the number of

intensively raised ducks per village formed a first group of

important predictors; with RC of 17.94% and 15.93% respective-

ly. The dependency profile for the proportion of area covered by

rivers or floods Fig. 6 (d) shows that the villages with 1 to 15% of

the surface covered in water have a higher risk of HPAI H5N1.

Predicted risk increases with the number of ducks raised

intensively up to a value of approximately 25,000 birds Fig. 5

(h). However, a low proportion of the villages hosted industrial

duck farms (9.4%) and none of these fell within the lower range of

bird numbers. A second group of predictor variables, which made

moderate RC (8.46 to 11.36%), included the number of rice crops

per year, human population and the numbers of extensively raised

ducks and chickens. The dependency profile for these predictors

showed that i) extensively raised birds increased the risk of HPAI

H5N1 when found in high numbers, ii) the number of rice crops

per year had a substantial influence on predicted risk only in areas

subjected to multiple crop cycles, and iii) human population

density influenced the predicted risk mostly in densely populated

areas (.100 inhabitants per village). Interestingly the group of

predictors with low RC (,2%) to the model included the number

of chickens raised intensively and the proportion of lakes in each

village. Accordingly, the dependency profiles of these two

predictor variables were very flat.

At the sub-district level, one variable stood out with a high RC

to the model (24.74%): the density of ducks raised intensively.

Compared to the village-level analysis, the profiles of predicted risk

as a function of predictor variables appeared smoother, probably

resulting from the higher degree of aggregation (Fig. 6 and Fig. 7).

However, the link between the predicted risk and intensively raised

ducks remained prominent: the level of predicted risk increasing

with increasing density of intensively raised ducks in each sub-

district. Compared to the village level, a higher number of

predictor variables with moderate RC were observed, ranging

8.79 to 16.60%,. These included the proportion of area covered by

rivers or floods, human population density, and the density of

Table 2. Meta-Sensitivity analysis for Boosted Regression Trees HPAI H5N1 risk model.

BRT meta parameters Admin. Level AUC (model) CORL(test) AUC (test) AUC 95% C.I.

lr = 0.005; bf = 0.5 Village 0. 863 0.476 0.773 [0.743; 0.803]

lr = 0.005; bf = 0.5 Sub-District 0. 862 0.414 0.737 [0.705; 0.769]

Logit Sub-District 0.771 0.456 0.761 [0.727; 0.794]

lr = 0.01; bf = 0.75 Village 0.867 0.481 0.775 [0.729; 0.819]

lr = 0.001; bf = 0.75 Village 0.869 0.469 0.769 [0.732; 0.805]

lr = 0.005; bf = 0.8 Village 0.872 0.470 0.767 [0.737; 0.803]

lr = 0.005; bf = 0.5 Village 0. 863 0.476 0.773 [0.743; 0.803]

lr = learning rate; bg = bag fraction; Logit = Logistic Regression Model.
doi:10.1371/journal.pone.0049528.t002

Figure 4. Local risk predictions (sub-district vs village). A
comparison of local risk maps highlight the added value of village level
prediction compared to the continuous risk surface based on sub-
district poultry data. Village level poultry data allows improved
targeting of potential intervention measures.
doi:10.1371/journal.pone.0049528.g004

Risk Models for Avian Influenza in Thailand
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chickens raised extensively. The proportion of area covered by

rivers or floods made a lower contribution to the sub-district-level

model (RC = 16.60%) compared to the village-level

(RC = 17.94%) model. For chickens raised extensively, there was

an increase in the predicted risk for values up to 102.3 that tended

to level-off, and then decrease for the highest values. The predictor

variables showing the lowest contribution to the model were

similar at the sub-district level and at the village level (intensively

raised chickens and the proportion of lakes in each village) with the

exception of the RAC (RC = 4.22).

Discussion

The spatial distribution of HPAI H5N1 outbreaks during the

second epidemic wave of 2004 has been studied by several authors

[4,7–9]. The analysis described in this paper builds on previous

results in three areas. First, it includes some predictor variables

that had not previously been evaluated: chicken numbers in

extensive and intensive production systems, and variables indic-

ative of the distribution of water in the landscape at the time of the

epidemic. Second, the analysis was carried out at the village level;

allowing more detailed predictions of disease risk, which may give

Figure 5. Predictors relative contribution to HPAI H5N1 risk model. Number of crop cycles (n.crops), fraction of a village neighborhood/sub-
district covered with lake water (lake), human population density (Hpop, log10 scale), fraction of a village neighborhood/sub-district covered with
river water or floods (floods), residual spatial autocorrelation (RAC), number/density per square kilometer of extensively raised chickens (Ext.Ch),
intensively raised chickens (Int.Ch), extensively raised ducks (Ext.Du) and intensively raised ducks (Int.Du). Flooded areas and intensively raised duck
shows the highest contribution to model at the village level (A) whereas at the sub-district level (B) the intensively raised ducks density is the main
determinant of risk of outbreak. The relative contributions are based on the number of times a variable is selected for a node in the Boosted
Regression Trees model weighted by the squared improvement to the model as a result of each node and averaged over all trees. Contributions are
scaled so that the sum adds to 100.
doi:10.1371/journal.pone.0049528.g005

Figure 6. Relationship between risk factors and HPAI H5N1 fitted risk function at the village level. The HPAI H5N1 risk functions of the
BRT models are plotted for the number of crop cycles (n.crops; A), fraction of a village neighborhood covered with lake water (lake; B), human
population density (Hpop, log10 scale; C), fraction of a village neighborhood covered with river water or floods (floods; D), residual spatial
autocorrelation (RAC, E), number of extensively raised chickens (Ext.Ch; F), intensively raised chickens (Int.Ch; G), extensively raised ducks (Ext.Du; H)
and intensively raised ducks (Int.Du; I). The grey lines present the predicted line for each of the 25 iterations and the black line is the average
prediction.
doi:10.1371/journal.pone.0049528.g006
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more precise estimates of the effects of the risk factors included in

the analysis. Third, an alternative statistical approach was

implemented in the form of BRT; allowing the influence of each

predictor variable to be evaluated across the range of its values.

The emphasis was placed on the identification of risk factors and

their interpretation in agro-ecological terms rather than on overall

model accuracy. Accordingly, the number of predictor variables

was limited to a small number of biologically meaningful variables

to aid interpretation (e.g. altitude was excluded despite its

predictive power as it is expected to act as a surrogate for

variability within other agro-ecological factors).

As with previous studies [7–9], it was found that domestic ducks

were an important risk factor for HPAI H5N1 in this epidemic.

However, this study has further established that among those

domestic ducks, the ones raised in intensive systems were more

strongly associated with HPAI H5N1 presence than those raised in

extensive systems. This could be explained by different factors.

First, the historical practice of raising free-grazing ducks, which

represents up to a third of duck production in Thailand [17], has

increased in scale to acquire intensive production characteristics:

flocks of several thousands of ducks are clustered in small areas

with motorised transportation of birds from one rice paddy field to

another [29,30]. Given the very high numbers of ducks raised in

this system, intensive logistics are required for collection and

transportation of ducks and eggs, and transformation into various

products [31]. These logistics may increase the risk of long-

distance transmission along transportation networks. Second, in

order to take advantage of economies of scale and the increased

productivity associated with intensive production practices,

intensively raised birds are highly selected for standard character-

istics and high productivity traits: little space is left for genetic

heterogeneity. Therefore flocks of genetically homogenous and

intensively raised birds tends to be kept and transported in high

densities. Those high densities translate into higher contact rates

between individuals that favour disease transmission and facilitates

perpetuation of infections at the flock level. Conversely, the

number of extensively raised ducks in a village was only

moderately associated with the risk of outbreaks. In many other

countries, and in areas where duck production is dominated by

extensive systems, duck densities have been found not to be

significant risk factors, for example in Indonesia [32] and in

Bangladesh [33–35]. It appears that within duck-producing

regions, domestic ducks only contribute substantially to HPAI

H5N1 risk when they are raised intensively.

The contribution of intensively raised chickens to predicted risk

of HPAI H5N1 was very low, at both village and sub-district levels.

This possibly results from increased bio-exclusion practices in

intensive broiler and layer farms that were implemented after the

first epidemic wave and have reduced the risk of farm-to-farm

transmission [36,37]. It should be noted, however, that imperfect

bio-exclusion and bio-containment measures in intensive chicken

farms may have largely contributed to the emergence of HPAI

H5N1 in other regions [38].

It was shown that the abundance of water from rivers and floods

was an important risk factor even for minor flood events. Indeed,

the maximum level of predicted risk was reached if only 15% of

the village neighborhood was flooded (Fig. 6 (d)), which appears to

be a low threshold for regions where intensive, irrigated rice

cropping is dominant (Thanapongtharm et al. Submitted). This

result is consistent with the work of Thanapongtharm et al.

(Submitted) based on the same dataset, but using different

modeling technique, and with previous studies carried out in

China [24], where a similar indicator was used for water. It is also

consistent with studies in Thailand [39] and in Romania [40],

where a binary variable was used to describe the presence of rivers,

streams, canals or flooded land in the areas surrounding outbreaks,

and was identified as a significant risk factor. The previous studies

that have investigated the role of water on H5N1 outbreak

locations were carried out over larger spatial extents and at coarser

spatial resolutions [24]. It has been shown here that this may have

Figure 7. Relationship between risk factors and HPAI H5N1 fitted risk function at the sub-district level. The HPAI H5N1 risk functions of
the BRT models are plotted for the number of crop cycles (n.crops; A), fraction of a village neighborhood covered with lake water (lake; B), human
population density (Hpop, log10 scale; C), fraction of a village neighborhood covered with river water or floods (floods; D), residual spatial
autocorrelation (RAC; E), number of extensively raised chickens (Ext.Ch; F), intensively raised chickens (Int.Ch; G), extensively raised ducks (Ext.Du; H)
and intensively raised ducks (Int.Du; I). The grey lines present the predicted line for each of the 25 iterations and the black line is the average
prediction.
doi:10.1371/journal.pone.0049528.g007
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influenced their results since the effect of water was stronger for

the finer, village level analysis (relative contribution = 17.94%)

compared to the coarser, sub-district level analysis (relative

contribution = 16.60%). In the three studies mentioned above

the water indicator was extracted from global or regional land use

datasets. Such datasets cannot account for seasonal variability of

water levels or exceptional flood events. In contrast, the water

indicator that used here was produced directly from Landsat

imagery collected during the second HPAI H5N1 epidemic wave

(see Thanapongtharm et al. submitted) and therefore represents

the actual extent of the seasonal floods at the time of the outbreaks.

These results, which highlight the role of water, facilitate the

interpretation of other indicators such as the number of rice crop

cycles per year that have been previously identified as potential

risk factors [10]. A straightforward agro-ecological interpretation

was still lacking for this indicator. In this study, the fact that the

presence of water from rivers and floods tends to replace the

number of crop cycles in the higher resolution analysis (village

level vs. sub-district level) suggests that it may better reflect the

causal mechanisms that influence HPAI H5N1 risk, e.g. water-

borne transmission. What these results suggest, is that the effect of

cropping intensity may reflect the density of irrigated land that is

required for multiple cropping, and that it is the irrigation that

provides a network of streams, which in turn contributes to HPAI

H5N1 spread through water contamination. Little is known about

the pathways of transmission through contaminated water [41,42].

The results presented here call for studies to be carried out based

on the collection of samples from poultry and the environment, to

combine information on outbreak locations, irrigation and river

networks, water flow directions and sources of drinking water used

in farms in order to investigate such pathways.

In contrast to the findings of [43] and [44] in China, the results

presented here showed the proportion of area covered by

permanent lake not to be a good predictor of HPAI H5N1

presence. The geographical context of these two studies, however,

needs to be put into perspective with the density of the poultry in

the landscape surrounding lakes. In China, intensive agriculture

and domestic duck production is abundant in the landscape

surrounding large lakes such as the Poyang Lake in Jiangxi

Province. In Thailand though, such agricultural landscapes are

distributed in the central plains with few permanent lakes. Another

possible limit of the study is the fact that cases were detected by

testing of suspicious flocks, and there is a possibility of

underreporting of asymptomatic infections. Those asymptomatic

infections have been reported in duck flocks, but very rarely in

chicken. The study by Thanapongtharn et al. (submitted) analysed

chicken and duck outbreaks separately, and found very similar risk

factors and strength of associations. The fact that the same risk

factors were identified in both species, suggest that asymptomatic

infection that are expected to affect duck data far more than

chicken data do not seem to strongly influence the identification of

risk factors.

In addition to providing a finer estimate of the effect of several

risk factors, the village-level model also allowed the HPAI H5N1

risk maps to be refined.. This point-based village level risk map

displays somewhat differently from the continuous risk surface

obtained from the sub-district level model. Both products are

complementary in terms of their potential uses: A continuous risk

surface has the advantage of providing an overall picture of HPAI

H5N1 risk in Thailand that could be used to inform a national

disease-control strategy, refine surveillance programs and, ulti-

mately, to allocate resources to provinces with higher risk. The

village-level analysis allows individual villages to be assessed in

terms of risk, and lends itself to intervention organized at the

village-level by veterinary officers.

In general, BRT have two main advantages over logistic

regression analysis. First, they have been shown in the literature to

provide a better fit to the data, even when the fit is evaluated

against a separate data set, and this was already demonstrated in a

comparative study [25] and more specifically for HPAI H5N1 in

China [24]. BRT approaches are particularly suitable for

modelling the effect of predictors that do not have a monotonic

influence on risk, and are therefore better able to account for

complex relationships. In this study, BRT had a much better fit

than logistic regression when predictions were evaluated against

the data used to train the model, but provided comparable

goodness of fit when predictions were evaluated against the

evaluation data set. In previous studies, such evidence of over-

fitting by BRT was already noted, but the better goodness of fit

was maintained when models were evaluated against a separate

data set [24], which was not the case here. However, where BRT

may prove more convenient to use than logistic regression

approaches is in the interpretation of the results. Logistic

regression models provide significance levels and regression

coefficients associated with the different risk factors on the logit

of the response. In contrast, BRT provides a profile of the effect of

each individual predictor on the predicted outcome over the range

of its values (Fig. 6). This feature enabled not only the

identification of intensively raised ducks and flood events as

important risk factors, but also showed the ranges of values of these

predictor variables over which their effect was most important.

Such information may contribute, for example, to designing a

targeted surveillance strategy based on the geographical location of

intensive duck production units, and seasonal flooding.

Lastly, a step forward in the way of providing evidence-based

material to assist the local authorities would be to evaluate the

effect of interventions strategies such as culling or vaccinations for

different epidemic scenarios. However the statistical models used

so far to study HPAI H5N1 are not dynamic and rely on a

combination of covariates sampled at different points in time.

Processes based individual models such as the ones developed by

[45–49] are probably more suited to this purpose. However one of

the major challenges of this shift of the modeling framework will lie

in the ability to integrate parsimoniously the findings from

statistical analyses, such as the role of intensively raised free-

grazing ducks, into process based models.
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