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Abstract

Background: A major reservoir of Nipah virus is believed to be the flying fox genus Pteropus, a fruit bat distributed
across many of the world’s tropical and sub-tropical areas. The emergence of the virus and its zoonotic transmission
to livestock and humans have been linked to losses in the bat’s habitat. Nipah has been identified in a number of
indigenous flying fox populations in Thailand. While no evidence of infection in domestic pigs or people has been
found to date, pig farming is an active agricultural sector in Thailand and therefore could be a potential pathway
for zoonotic disease transmission from the bat reservoirs. The disease, then, represents a potential zoonotic risk. To
characterize the spatial habitat of flying fox populations along Thailand’s Central Plain, and to map potential contact
zones between flying fox habitats, pig farms and human settlements, we conducted field observation, remote
sensing, and ecological niche modeling to characterize flying fox colonies and their ecological neighborhoods. A
Potential Surface Analysis was applied to map contact zones among local epizootic actors.

Results: Flying fox colonies are found mainly on Thailand’s Central Plain, particularly in locations surrounded by
bodies of water, vegetation, and safe havens such as Buddhist temples. High-risk areas for Nipah zoonosis in pigs
include the agricultural ring around the Bangkok metropolitan region where the density of pig farms is high.

Conclusions: Passive and active surveillance programs should be prioritized around Bangkok, particularly on farms
with low biosecurity, close to water, and/or on which orchards are concomitantly grown. Integration of human and
animal health surveillance should be pursued in these same areas. Such proactive planning would help conserve
flying fox colonies and should help prevent zoonotic transmission of Nipah and other pathogens.
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Background
Habitat loss is the greatest threat to wildlife and bio-
diversity. The loss and fragmentation of wildlife habitats
can lead to increasing contact among wildlife, domestic
animals, and people, potentially leading to the emer-
gence and spread of zoonotic diseases [1]. The Nipah
virus (NiV) is one such pathogen. The novel RNA para-
myxovirus (genus Henipavirus), closely related to Hendra
virus, is named after the village Sungai Nipah in the State
of Negeri Sembilan, Malaysia from which the virus was
first isolated from a human patient in 1998 [2]. In
humans, NiV causes Nipah virus infection, presenting a
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range of clinical outcomes, from asymptomatic infection
to acute respiratory syndrome and fatal encephalitis [3].
Investigations of the origins of NiV identified the flying

fox genus Pteropus to be a major reservoir [4,5]. Subclin-
ical infections have been found in flying fox populations
in Malaysia, Cambodia, Thailand and Madagascar [4-8].
Flying foxes are mammals, members of the Pteropididae
or fruit bat family, and are the largest of all bats [9]. They
are found throughout tropical and sub-tropical Asia and
Australia and on islands of the Indian Ocean and the
western Pacific [9]. Pteropididae play a crucial role in rain-
forest ecosystems [10]. They pollinate flowers and disperse
seeds as they forage on the nectar and pollen of plants
and on the fruits of rainforest trees and vines [10]. In
Thailand, flying foxes are protected by the Wildlife
Preservation and Protection Act, B.E. 2535 (1992), which
forbids hunting protected wild animals and protects wildlife
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sanctuaries. A better understanding of the flying fox and
its habitat preferences and dispersal would be a useful
contribution to its conservation in Thailand. In addition,
such an investigation should help efforts in better prevent-
ing potential disease transmission.
Work outside Thailand shows that in response to

losses in its natural foraging areas, the adaptive Pteropus
have turned to foraging in orchards, including those
grown on pig farms where the NiV it carries are inter-
mittently passed to pigs via urine or the contamination
of partially-eaten fruit [4,5,11]. Investigation showed the
virus to subsequently spill over from pigs to other animals
and humans via respiratory droplets or close contact
[2,12]. Pig farmers and workers exposed to respiratory ill-
ness and encephalitis in pigs were the first group of
humans infected with the virus [13]. In 1999, abattoir
workers in Singapore developed Nipah virus encephalitis
[14]. Investigation showed direct contact with live pigs
imported from Malaysia appeared to be the most import-
ant risk factor for those infections [15]. In contrast, a
retrospective study of human cases in Bangladesh in 1999,
the consumption of raw date palm sap proved one of the
main risk factors of infection [16-18]. The result suggests
NiV may have passed directly from bats to humans
without an amplification host, as was apparently the
case in Malaysia [11,12]. Human-to-human transmis-
sion was observed in several outbreaks in Bangladesh
and India [18-20].
The situation of Nipah virus infection in Thailand

showed that there has been no evidence of the viruses in
domestic animals but they have been found in wildlife.
Thailand’s National Institute of Animal Health (NIAH),
the Department of Livestock Development (DLD)’s cen-
tral laboratory, conducted a retrospective study of all
specimens of swine interstitial pneumonia submitted dur-
ing 1998 to 2001 using immunohisto-chemistry (IHC)
technique [21]. All samples reported negative for NiV.
Since 2002, The DLD has conducted a sero-surveillance of
4,000 – 5,000 samples of pig per year by using Modified
ELISA technique. The pig blood samples have been col-
lected in high pig density areas and bordering area of
Thailand and Malaysia (south). Simultaneously, the veteri-
narians of the DLD have conducted clinical surveillance
by investigating any suspected cases of NiV, they can con-
sider to collect samples submitting for laboratory confirm-
ation [22] but NiV has never been found so far [23]. On
the other hand, the Molecular Biology Laboratory for
Neurological Diseases, Chulalongkorn University Hospital
conducted surveillance for NiV antibody by using enzyme
immunoassay and for NiV by using the duplex reverse
transcription–polymerase chain reaction (RT-PCR) in
Thailand’s bat population during 2002–2004. The results
showed 82 of 1,304 positives to NiV antibody and the tests
for NiV presence in the urine and saliva of 12 bat species
produced positives for 3 species of fruit bats (P. hypomela-
nus, P. vampyrus, and P. lylei) and 1 species of insect-
eating bat (Hipposideros larvatus) with being a probable
accidental case [7]. In only one species of flying fox (P.
lylei) was NiV found in both saliva and urine. A longitu-
dinal study subsequently conducted on P. lylei popula-
tions between 2005 to 2007 in Thailand showed that 2
NiV strains previously identified circulating in Malaysia
and Bangladesh were found in the bat’s urine [24]. The
study also highlighted a seasonal pattern with peaks be-
tween April and June, when viral RNA could be de-
tected in urine. This seasonal pattern was associated
with the observed fluctuation of population numbers, as
May corresponds to the time of the year when young
bats fledge [24].
The objectives of the present study were threefold.

First, we aimed to describe the characteristics of the fly-
ing fox colonies and their neighborhoods in the central
plain of Thailand (including central and eastern
Thailand) from field observations, remote sensing (RS),
and geographic information systems (GIS) data. Second,
we aimed to predict the potential distribution of flying
foxes in the study area using species distribution models
(SDM). Finally, we aimed to map the areas where the
three key elements of NiV ecology coincide, specifically
flying fox habitat, human population, and pig farms,
with the aim of informing NiV surveillance on the cen-
tral plain of Thailand.

Methods
Characteristics of bat colonies and their vicinities
Field observations
The study area covered 23 provinces of western, central
and eastern Thailand of a total area of 93,826 km2

(Figure 1). The distribution of flying foxes in central
and eastern Thailand was studied in 2004 and 2011.
Boonkird and Wanghongsa [25] surveyed the colony
of flying foxes in central and eastern Thailand 2001–
2004 and reported 16 sites in 10 provinces with 2
species of flying foxes: the Lyle’s flying fox (P. lylei)
living in central Thailand and the Large flying fox or
Greater flying fox (P. vampyrus) living along the coast of
eastern Thailand. Sedsawai et al. [26] conducted a study
of the distribution of flying foxes in central Thailand
2010–2011 and found 14 roosting sites within 10 prov-
inces, including 10 previously reported and 4 newly dis-
covered sites. Locations of bat colonies located in this area
were obtained from these previous studies complemented
by locations from field surveys by the Department of
National Parks, Wildlife and Plant Conservation (DNP)
conducted from March to August 2013. We surveyed each
of those 22 bat colonies from June 2013 to January 2014
to verify the presence of flying foxes and to collect infor-
mation on site characteristics for the roosting trees and



Figure 1 Study area of flying fox colonies. Study area covering 93,826.2 km2 of 23 provinces across western, central, and eastern Thailand
(grey); 22 flying foxes’ colonies (red circles); comparing the size and locations of the study area and Thailand map (right).
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their vicinities. We also estimated the margins of each
colony with a hand-held GPS in order to delineate their
spatial extent polygons.

Descriptive analyses
The GIS layer of the colonies was overlaid on other
layers, including of bodies of water, human population
density, elevation, and land cover. The vector map of
permanent bodies of water was provided by the Ministry
of Transportation. A human population density raster
map at 100 m resolution was obtained from the World-
pop project [27]. We used the SRTM elevation database
with 90 m spatial resolution produced by NASA [28].
A land cover map was developed using LANDSAT im-

ages with the Exelis VIS ENVI image processing software.
Eleven scenes of the LANDSAT 7 Enhanced Thematic
Mapper Plus (LANDSAT 7-ETM+) were used to cover
the 23 provinces of the study area (path/row = 131/49-50,
130/49-51,129/49-51,128/49-51). The LANDSAT 7 ETM+
sensor has six optical spectral bands at 30 m spatial
resolution and one panchromatic band at 15 m spatial
resolution and a 16 day revisit cycle. We searched the
LANDSAT image archive at the United States Geological
Survey EROS Data Center (http://glovis.usgs.gov) and
downloaded images with low cloud cover acquired in
January 2014. All images were mosaicked and the mini-
mum distance technique supervised classification method
[29] was used to classify images into 4 land cover types
most-related to flying fox habitat, including forest, irri-
gated vegetation, settlement/rainfed vegetation, and bodies
of water. The regions of interest (ROIs) were built as clas-
sification training sets using ground truth data, 2D scatter
plots, visible composition images, and spectral profiles.
We evaluated the accuracy of the classes with 100 points
per class of additional ground truth data and high-
resolution data from Google Earth images for accuracy.
Overall accuracy was 93%, with 98% accuracy for forest,
95% for irrigated vegetation, 91% for settlement/rainfed
vegetation, and 86% for bodies of water, results considered
acceptable and sufficient for the analysis.
For each bat colony polygon, we estimated summary

descriptive statistics on the environment, geography, and
anthropogenic variables. Specifically, we estimated the
area of each colony, the distance from each colony to its
nearest neighbor (another colony), the distance from
each colony to the nearest body of water, the distance
from each colony to the nearest temple, the average ele-
vation within the colony, the average human population
density, the proportion of irrigated vegetation land cover
in a 10 km buffer around the colony, and the mean

http://glovis.usgs.gov
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normalized difference vegetation index (NDVI) within
the colony acquired from LANDSAT images. The vector
map of Buddhist temples was provided by the Ministry
of Transportation.

Species distribution models
In this study, we used ensemble modeling (EM) (or con-
sensus methods or ensemble forecasting) with the ‘dismo’
and ‘raster’ packages in R, which combines the predictions
from several different statistical modeling techniques into
a single prediction. Species distribution models (SDM)
were initially used to map the ecological suitability for fly-
ing fox colonies across the study area. SDM can be used
to predict the geographical distribution of species as a
function of a series of spatial variables, as they relate spe-
cies distribution data (occurrence or abundance in known
locations) to information on the environmental and/or
spatial characteristics of those locations [30]. They have
been widely used both for describing patterns and making
predictions across terrestrial, freshwater and marine eco-
systems [30,31]. Flying fox colonies can occasionally move,
and such modeling should allow inferring other areas to
which colonies might move, even those from which they
are presently absent. The variables used to build the
models were selected according to field observations and
the results of the descriptive analysis. This would allow,
for example, to map areas where colonies are not present
at the time of the study, but where the colonies may move
in the future if they are too disturbed, or if their current
habitat became degraded. The seven different SDM
methods used in analyses include: Bioclim, Domain, gen-
eralized linear model (GLM), generalized additive model
(GAM), maximum entropy model (Maxent), boosted re-
gression tree (BRT), and random forests (RF). The Bioclim
and Domain are presence-only modeling methods. Bio-
clim characterizes the occurrences that are located within
the environmental hyper-space occupied by a species,
whereas Domain is a distance-based method that assesses
new locations in terms of their environmental similarity to
locations of presence [32]. The GLM and GAM are
presence-absence models based on the regression frame-
work. The GLM is a generalization of ordinary least
squares regression using maximum likelihood allowing
the linear model to be related to the response variable via
a logit link function. The GAM is an extension of the
GLM, where the linear predictor is the sum of smoothing
functions. It is more flexible and much as machine learn-
ing methods can fit very complex functions [33].
Maxent, BRT, and RF are machine learning methods

using presence-absence data. Maxent, sometimes mis-
leadingly referred to as presence-only methods, actually
does require the use of background data [33]. It esti-
mates species’ distributions by finding the distribution of
maximum entropy (i.e. closest to uniform) subject to the
constraint that the expected value of each environmental
variable (or its transform and/or interactions) under the
distribution matches its empirical average [34]. BRT
combines the strengths of two algorithms, regression
trees and boosting, creating a single best model from a
large numbers of relatively simple models, each formed
by a regression tree [35]. RF combines tree predictors
such that each tree depends on the values of a random
vector sampled independently and with the same distri-
bution for all trees in the forest [36]. When compared
with other methods, RF shows a very high accuracy, an
ability to model complex interactions among predictors,
and the flexibility to perform several types of statistical
analysis [37]. The predictions of the seven SDM were
then combined into a single ensemble model prediction
by weighting each prediction by the performance of its
source model, a procedure called ensemble modeling
(EM) recognized as producing significantly more robust
predictions than all the single models alone [38-42].
For three reasons, all our models were subject to 10

bootstraps. First, there was a very low proportion of posi-
tive samples in our data set, which can introduce bias into
the logistic regression analysis framework. So for each trial
we bootstrapped a different set of pseudo-absences [33,43].
Second, the bootstrapping also aims at preventing over-
fitting. That is, we aim at avoiding modeling the noise ra-
ther than the main pattern in the data by assembling
across a population of models trained with different sub-
sets of data. Third, the pseudo-absences were distributed
within a given distance of the presence sites. We wanted
to bootstrap through different distance values. The 10 sets
of absence data were randomly selected from the back-
ground and from 6–15 kilometers beyond the presence
sites. Then each set was randomly selected again and di-
vided into two parts equally: a model set used to train the
model and a test set used to evaluate the models. These
were then used as weights in combining the methods.
Nine times the number of positives was randomly selected
at each bootstrap to maintain 10% of the positive values of
the outcome variable. This 10% ratio was chosen because
previous studies compared the various prevalences across
models and reported that GAM was not influenced by
prevalence, whereas the accuracy increased up to an
asymptote when the number of presences reached one
tenth of the number of absences for GLM, BRT, and RF
[33]. All predictor variables were simultaneously tested in
the models.
The performance of the models was evaluated using

the area under the curve (AUC) of the receiver operating
characteristics (ROC) plots. AUC is a quantitative meas-
ure of the overall fit of models that varies from 0.5
(chance event) to 1.0 (perfect fit) [44]. Although AUC
was recently criticized as an absolute measure of good-
ness of fit by many authors, it remains valuable in
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comparing the performances of several models tested on
the same data set [32].

Mapping the risk area of NiV
A Potential Surface Analysis (PSA) was applied to map
the risk area of NiV by measuring the extent of the over-
lay between the factors that influence the risk of NiV in-
fection, including potential flying fox habitats, and pig
farm and human population densities. The PSA ap-
proach is somewhat simpler than other more complex
knowledge-based approaches such as a Multi-Criteria
Decision Analysis (MCDA) that can be employed to
spatialize areas at risk [45]. However, MCDA methods
require an extensive collection of knowledge on the im-
portant risk factors by experts, and at the present time,
the knowledge of important cofactors that may be ap-
plicable to Thailand remains limited. In previous studies,
the PSA method was used in similar conditions, where
the knowledge of a particular outcome was limited. For
instances; Ano et al. [46] estimated the drought risk area
in the northeastern Thailand and used the result for
managing water supply and Udomsap and Iamtrakul
[47] studied the factors influencing the diversity of activ-
ities on Rachadamnoen Klang Avenue, Bangkok, which
aimed to use the result in a planning process for maxi-
mizing efficiency of space usage and bringing economic
enhancement to the local people and tourism. The PSA
method ranks the spatial factors according to their im-
portance using different weightings [48],

S ¼ W 1R1 þW 2R2 þ W nRnð Þ

Where S represents a summation of scores, W1 − Wn ,
the weight of each factor according to its importance,
and R1 − Rn the rating score of each variable, which cor-
responds to its scaling into bins. For these maps we as-
sumed two potential scenarios for human infection: 1)
humans are directly infected by the virus from the bats,
and 2) humans are infected through a pig intermediate
host. The overlay corresponding to the first scenario was
Table 1 Scores given for a Potential Surface Analysis (PSA)

Flying fox distribution zones
(probability during 0 to1)

Distance to the flying
foxes colonies (km)

Scale R W R*W Scale R W R*W

0.83x10−3 - 0.83x10−2 1 2 2 <5 9 1 9

0.84x10−2 - 0.14 2 2 4 5-10 8 1 9

0.15 - 0.27 3 2 6 10-20 7 1 7

0.28 - 0.87 4 2 8 20-30 5 1 5

30-50 3 1 3

>50 1 1 7

R = rating score W = weighting score.
Weighting and rating scores of 4 factors used to map the overlay between NiV hos
hence based on three factors: the flying fox distribution
map, the distance to the flying fox colonies, and the
house density in the sub-district. For the second sce-
nario, the pig farm density map was added to the first
three factors. For mapping the overlay of factors import-
ant to pig infection, we used three factors: the flying fox
distribution map, distance to the flying fox colonies, and
the pig farm density at the sub-district level.
The flying fox distribution map was obtained from the

ensemble model described above, whose predicted values
were divided into four bins according to their standard
deviation (<0.5, 0.5-1.5, 1.5-2.5, and >2.5 of σ). The dis-
tance to the flying fox colonies was divided into bins
corresponding to 5, 10, 20, 30, 50, 100, and 200 km. The
pig farm density in the sub-district level was obtained
from the 2010 surveys of the Department of Livestock
Development (DLD), with the density values divided into
6 bins according to σ. The house density in the sub-
district level was obtained from the Department of Provin-
cial Administration, and the density values were divided
into four bins according to their σ. We assigned initial rat-
ing and weighting scores to factors with values ranging
from 0 to 9 (no risk to highest risk) based on literature
and expert opinions [46-48] (Table 1). The layers were
overlaid and analyzed by using the intersect tool. In each
unit (intersected polygon), the summation score for each
layer was summed. The mean and standard deviation were
calculated from the summation scores of all units. The
risk level was interpreted based on the summation score
and the difference of mean �xð Þ and standard deviation (σ).
Risk was low if the summation score was less than �x−σ ,
moderate if the summation score ranged between �x−σ
and �x−σ , and high if the summation score was more than
�x−σ .

Ethical considerations
This study was approved by the Research Committee of
the Bureau of Disease Control and Veterinary Services,
Department of Livestock Development (Permit Number:
0601/1325).
Pig farm density
(farm per km2)

House density
(house per km2)

Scale R W R*W Scale R W R*W

0 0 3 0 0.13 – 907 2 3 6

0.9x10−3 -0.035 1 3 3 908-1968 4 3 12

0.036-0.88 2 3 6 1969-3028 3 3 9

0.89-1.72 3 3 9 3029-12510 1 3 3

1.73-2.56 4 3 12

2.57-16.55 5 3 15

ts on the central plain of Thailand.
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Results
During field observation we observed flying foxes
roosted on several types of trees: tamarind, coconut tree,
bamboo (grass family), mangrove forests, and others
(mostly members of evergreen forests) (Table 2). The
colonies occupied a median area of 6,562 m2 (ranging
1,463-30,751 m2), and the median distance to the nearest
neighbor colony was 23.2 km (ranging 12.5-57.7 km)
(Table 3). Almost all colonies were located on the cen-
tral plain (Figure 2A), with a median elevation of 9 m
(ranging 5–65 m). The colonies clustered into 4 groups
according to the type of roosting trees: 1) bamboo only;
2) mangrove forests only; 3) rubber trees only; and 4)
various types of trees. We observed that while some
trees failed to protect against sunlight, some colonies
remained. Most colonies were located nearby Buddhist
temples (median nearest distance 262 m, range 42–2704
m), with 13 of the 22 colonies roosting on trees located
within the temple area (no. 3–7, 9–11, 13, 15, 16, 20 and
22). When overlaid over the land cover maps (Figure 2B),
the majority of colonies were surrounded by irrigated
vegetation covering 96% of the landscape within 10 km2,
followed by settlement/rainfed vegetation (2.3%), bodies
of water (1.5%), and forest (0.1%). Colonies were found
on an island (no. 18) and riverside (no. 19), accessible to
humans by boat alone. One colony was protected by the
Wildlife Conservation Park (no. 1) and others located on
private lands (no. 2, 8, 12, 14, 17, and 21). All colonies
were located nearby bodies of water such as rivers, ca-
nals, ponds, and the sea (Figure 2C, median distance 120
m, range 30–4815 m). Some colonies were located in
places with relatively high human population densities
Table 2 Characteristics of the trees roosted by flying foxes

Group Colony Botanic description

Group 1 8 and 12 Bamboo is generally found inter
fast growing species that easily
and due to the logging excesses
man-made disturbed sites [72].

Bamboo

Group 2 17,18, 19, and 21 Trees in mangrove forest are ev
both for anchoring it in the soil
mouth of major rivers where the
(Rhizophora spp.), Prasak. The pla
[73,74].

Mangrove forest

Group 3 2,5, and 11 The rubber (Dipterocarpus alatus
common in Thailand, Cambodia
m tall (sometimes more), bole ta
Leaves narrowly ovate to ovate
acute or shortly indistinctly acum

Rubber

Group 4 1,3,4,6,7,9,10,13,14, 15,16,
20 and 22

The various type of trees (mostl
ficus tree (Ficus spp), bohhi tree
(Samanea saman), neem plant (
robusta Roxb.), bamboo (Bambu
medium-sized to fairly large tree
which is distributed in all areas
valleys and close to water sourc
tropical evergreen forest is the a

Various trees

Characteristics of bat roosting trees of 22 flying fox colonies in the central plain of
(Figure 2D), usually within Buddhist temples, where the
number of tourists can be high (median population
density of 232 people km−2, range 0–1307 people km−2),
while one bat colony was located on an island uninhab-
ited by humans. We observed that some colonies had
moved away from their previously known sites. Colony
no. 21 moved away from its old site to a new isolated
site along the sea and colony no. 17 moved away from a
site with numerous destroyed mangrove forest trees to
an adjacent area.
The predicted values obtained from the seven SDMs

were combined as an ensemble model (EM) weighted
by the predictive performance of each source model
(Figure 3). All models captured the strong structuring
effects of distance to rivers. The presence-only models
(BC and DM) showed higher predicted values (more
than 0.6) than that of the others in high-suitability areas.
The model with the greatest AUC for evaluation was RF
followed by BRT, Maxent, GAM, GLM, Domain, and
Bioclim, respectively (Figure 4). The mean AUC of EM
was 0.980 for model sets (ranged from 0.969-0.989) and
0.981 for test sets (ranged from 0.971-0.991). The effect
of the predictive variable on predicted response (the fitted
function) of the BRT model showed that the distance to
temple, the distance to water, and elevation had a negative
association and the area of vegetation within 10 km had a
positive association with the presence of a colony (Figure 5).
The human population density showed a positive associ-
ation with the fitted function when human density was
greater than 100 people per square kilometer and turned
negative when the density was higher than 500 people per
a square kilometer. The association remained steady when
spersed in many other types of forest and as a pioneer species. It is a
colonizes disturbed forest sites, both natural and man-made. As such,
in Thailand in the past, many bamboo forests have become established in

ergreen species with a very dense forest floor. The roots of the trees are
and for breathing. This type of forest is found close to the seat of the
sea washes ashore. The important tree species include the Kongklang
nts grow on the forest floor include the various types of sea grasses

) is a tropical forest tree, of dense evergreen or mixed dense forests,
, Laos and Vietnam. It is a medium-sized to fairly large tree of up to 40
ll, straight, cylindrical, branchless up to 20 m, up to 150 cm in diameter.
to elliptical-oblong, 9–25 cm x 3.5-15 cm, base cuneate to rounded, apex
inate [75].

y are in the Buddhist temple) composed of rubber (Dipterocarpus spp),
(Ficus religiosa L.), bengal almond (Terminalia catappa L.), rain tree
Azadirachta indica), tamarind (Tamarindus indica Linn), sal tree (Shorea
sa sp.), coconut (Cocos nucifera Linn.), and others [75]. Most of trees are a
of up to 40 m tall, which mostly found in the tropical evergreen forest

of Thailand. They are concentrated in pockets of high moisture such as
es such as rivers, streams and mountains. A common characteristic of
ppearance of a lush green vegetation all year round.

Thailand grouped by type of trees.



Table 3 Descriptive statistics of the flying foxes’ colonies and vicinity

Statistics Size
(m2)

Distance from each colony Elevation
(m)

Human
density
(people/km2)

Land cover in 10 km. of radius (m2) **NDVI

To nearest
neighbor (km)

To nearest
water (m)

To nearest
temple (m)

Forest Irrigated
vegetation

Settlement/
rainfed
vegetation

Bodies
of water

Median 6562 23.2 120 262 9 232.07 259 246700 55840 3805 0.0119

*SD 8595 12.5 1442 683 13 339.39 4493 61194 47550 10017 0.0686

Minimum 1463 13.0 30 42 5 0 0 88680 14510 437 −0.1061

Maximum 30751 57.7 4815 2704 65 1307.15 16450 331800 158600 40470 0.1429

*Standard deviation **Normalized difference vegetation index.
Descriptive statistics of environmental, geographical, and anthropogenic factors of 22 colonies of flying fox on the central plain of Thailand.
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the density was higher than 800 people per square kilo-
meter. The average relative contributions were 46%
(35-62%) for the distance to a temple, 43% (31-55%) for
the distance to the nearest body of water, 5.0% (2.6-8.7%)
for the human density, 3.3% (0.6-6.5%) for vegetation area
within 10 km of radius, and 3.2% (1.4-5.0%) for elevation.
The overlay of potential surface maps corresponding

to the first scenario under which humans are directly in-
fected with NiV by bats show the higher-risk areas cover
6,199 km2 of 1,003 sub-districts, 159 districts, and 23
provinces and are mainly located to the north, northeast
and east of Bangkok (Figures 6 and 7A). For the second
Figure 2 Flying fox colonies compared to their environments. Compa
variables in the study area: elevation (A); land cover (B); bodies of water (C
scenario in which humans are infected via a pig reservoir,
higher-risk areas cover 5,629 km2 of 653 sub-districts, 143
districts, and 23 provinces (Figure 7B). The higher-risk
area of NiV in pigs cover 5,417 km2 of 607 sub-districts,
125 districts, and 23 provinces (Figure 7C). The two
risk maps factoring in pig density looked very similar
(Figure 7B & C). The higher-risk areas on both maps
are located around the Bangkok metropolitan area,
with environs to the west and north most affected. A
slight difference in NiV risk levels between humans
and pigs was observed in Bangkok, with greater risk
for humans (Figure 7B) than for pigs (Figure 7C).
rison among the locations of the flying foxes’ colonies (circle) and
); and human density (D).



Figure 3 Predicted suitability maps for flying fox colonies on the central plain of Thailand. The maps explained by Bioclim (BC), Domain
(DM), Generalized Linear Model (GLM), Generalized Additive Model (GAM), Maximum Entropy Model (MAX), Boosted Regression Tree (BRT), and
Random Forest (RF). The large map shows the Ensemble model (EM) output obtained by combining the 7 SDMs weighted by their respective
predictive performance.

Figure 4 The predictive performance of 7 species distribution models. Box plots showing the predictive performance of 7 SDMs evaluated
using the area under the curve (AUC) of ROC plots for the model sets (left) and test sets (right).
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Figure 5 Fitted functions and relative contributions of variables predicted by the BRT. Partial dependence plots show the effect of a
predictive variable on the response after accounting for the average effects of all other variables in the model: distance to water (A); distance to
temple (B); human density (C); amount of vegetation area within 10 km radius (D); and elevation (E). The relative contributions of each variable
from the BRT is shown in (F).

Figure 6 Factors used in mapping NiV risk. Maps of 4 factors used for analyzing the risk map of NiV in the central plain of Thailand: flying fox
distribution map (A); distance to the flying foxes colonies (B); pig farm density at the sub-district level (C); house density at the sub-district
level (D).
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Figure 7 Risk area of NiV in the central plain of Thailand. Risk area of NiV produced by Potential Surface Analysis (PSA) based on i) flying fox
distribution map, ii) distance to flying fox colonies, iii) house density and iv) pig farm density. The risk area of NiV for humans obtained from the
first 3 factors (A), from all 4 factors (B), and the risk area of NiV for pigs produced by combining factors i, ii and iv (C). The yellow circles show
different risk areas between B and C. Risk was low if the summation score was less than �x−σ, moderate if the summation score was range
between �x−σ and �x−σ, and high if the summation score was more than �x−σ.
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Discussion
Our field observations indicated that flying foxes choose
a variety of tree types, especially members of evergreen
forests, for roosting, even if the trees no longer protect
the bats from sunlight. The observations are supported
by remote sensing, showing a normalized difference
vegetation index acquired from January 2014 LANDSAT
imagery with relatively low values at some of the roost-
ing sites. This suggests flying foxes prefer evergreen for-
ests to protect themselves from the sunlight while
roosting, but also show a tolerance to trees damaged by
bat urine and roosting [25]. We found roosting sites in
relatively safe places, including Buddhist temples,
islands, the Wildlife Conservation Park, and private
lands, as marked by SDMs that included distance to a
temple as an important predictor. Even as flying foxes
are protected by the Wildlife Preservation and Protec-
tion Act, B.E. 2535 (1992), they are still threatened by
human hunting, efforts to protect fruit orchards, and in-
formal efforts at disease prevention. Most of the popula-
tion is Buddhist (>90%) and would largely refrain from
threatening animals in the vicinity of temples. Human
density appears to correspond positively with roosting
sites for temple communities but is negatively associated
for the greatest densities in and around urban areas.
Some bat colonies are located in private lands and study
informants indicated landlords and/or the people in the
local community around these sites had tried to protect
the bats against hunters. Finally, the other colonies were
located in isolated areas such as islands, riverside, and at
seaside that are hard to reach by hunters. The Wildlife
Conservation Park is closed off as a unit of wildlife con-
servation. Therefore, all bat colonies, across a variety of
locales, were protected from hunters for an array of rea-
sons, including cultural practices, ownership, local senti-
ment, and remoteness.
The distribution of flying fox colonies is dynamic and

changes are observed over time. In 2004–2014, new col-
onies were observed and a few colonies moved away
from their previously known sites [26]. Apart from dis-
turbances caused by hunters, other factors may trigger
colony migration. Disturbance by visitors or tourists is
assumed to have caused colony no. 21 to move away
from its old site to a new isolated site seaside. The
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roosting trees may have been damaged or killed by the
flying foxes themselves by way of their urine and/or
roosting [25]. Colony no. 17 moved away from a site
with numerous destroyed mangrove forest trees to an
adjacent area. Competition with other species using the
same habitat could also play an important role as former
bat colonies sites were observed colonized by large bird
populations. Finally, colonies may move if their sizes in-
crease beyond the capacity of a roosting site, if the for-
aging areas are reduced or too impacted by urban
development, or in relation to the mating season [49].
Colony mobility supports the concept of mapping poten-
tially suitable sites. Even should these sites be presently
empty, they may be occupied in the near future.
The distance to bodies of water was found to be an

important factor, both in the field and through statistical
analysis. Rainho and Palmeirim [50] made similar obser-
vations in two cave-dwelling species (Rhinolophus mehe-
lyi and Miniopterus schreibersii), for which proximity to
a source of drinking water was an important factor. The
Department of Environment of the Australian govern-
ment also reported that flying foxes sites were usually
found close to water [10]. Several studies indicated that
bats lose a significant amount of water while they are
roosting, especially under conditions of low relative hu-
midity and high temperature [51-53]. Furthermore, lac-
tating females need more frequent drinking than non-
reproductive females [54]. Flying foxes may also need
water for cooling down. Welbergen et al. [55] reported
temperatures exceeding 42°C in January 2002 in New
South Wales, Australia, causing the deaths of thousands
of flying foxes from hyperthermia. The high temperature
may lead flying foxes to dip their bellies into water to
cool down [56]. The maximum temperatures in central
Thailand in most months are above 30°C, with tempera-
tures of 40°C commonly recorded in April [57]. As some
roosting trees fail to protect bats from sunlight, the
availability of nearby water may help those populations
to resist the worst of the heat during the hottest months.
Informants living nearby bat colonies suggested flying
foxes may use bodies of water as landmarks for foraging.
They reported flying foxes frequently flying along the
river when they depart their roosting sites in the evening
and when flying back along the river in the morning.
Using water bodies as foraging landmarks was reported
in insect-eating bats. For example, in the little brown
bat, water bodies have been shown to be used as land-
marks to help foraging on patches of insects found in
abundance above rivers, streams, ponds, or lakes [58].
The association that we found between flying foxes and
areas located in the lowland central plain, which is sur-
rounded by vegetation, may also simply correspond to
the extensive irrigation that allows greater vegetation
than elsewhere, as observed in Australia [9].
Further studies, focusing on the distribution, ecology,
behaviors, and disease status of flying foxes should be
conducted in Thailand in the central region but also
elsewhere. Although the foraging plants and some of the
environmental factors associated with flying fox colonies
have been reported in other countries, a follow-up
should be pursued in Thailand and for its singular ecol-
ogies [9,59]. Such data would be useful for conserving
flying fox populations and in disease prevention and sur-
veillance. Flying fox movements, heat relief, water usage,
and other behaviors should be more fully characterized
as they are likely to have impacts upon transmission pat-
terns. For instance, during the mating season, large ag-
gregations of individuals migrating from different sites
are observed, and, as documented in Arctic waterfowl,
could potentially contribute to the spread of pathogens
across bat and other populations [49,60].
The SDM maps converged with the observations dis-

cussed above, showing highly suitable areas for flying
foxes mainly located along riversides, in river basins in
the central plain, and in areas of moderate human popu-
lation density. The number of known occurrences in our
study was low (n = 22) and many studies note that small
sample sizes can significantly reduce the predictive po-
tential of models [31,61-63]. Several methods have been
proposed to deal with the problem [33,64-66]. While
some methods are more effective at predicting species’
distributions than others, no modeling method has
proven to be the best in all situations. The ensemble
modeling approach used in this study appears as a way
to limit the potential influence of one particular model-
ing method, which was found to provide good results in
previous studies [38,67,68]. However, we recognize that
one of the limitations of our study may be the low sample
size. One option for improvement might be to pool loca-
tions from wider areas and across countries, to have a lar-
ger sample size and sets of environmental conditions.
Even more challenging than mapping the suitability

for a colony is to map the suitability for NiV infection.
Generally, identifying risk factors associated with the
spatial distribution of disease relies on disease distribu-
tion data that are used to quantify the effect of a set of
explanatory variables on the spatial distribution of a par-
ticular disease outcome [69]. The outcome variable can
be a count of disease events in a unit area or more sim-
ply a binary response indicating the presence or absence
of disease at a given location. Each outcome can be used
to map other areas sharing similar risk factors [69].
However, such an approach was not possible for NiV in
Thailand since no case of NiV infection in human or pig
has yet been found [23]. What we do have outside an
etiological agent, in this case NiV, are susceptible hosts
(bats, pigs and humans) and environments that connect
hosts and the potential agent. By PSA we mapped areas
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where the virus’s documented reservoirs potentially co-
incide. The approach has not been used in epidemio-
logical study but may be useful in the absence of disease
data, as a way to spatialize disease surveillance and re-
gionally plan livestock production. Even though it has
not been used in epidemiological study and is not based
on a formal statistical model, it remained useful in the
present case of a disease that is absent (and hence pro-
vides no data to train a model) as a way to integrate dif-
ferent factors in a risk map that can inform further
planning and disease surveillance in a context of very
limited knowledge. A limitation of the approach is, how-
ever, the somewhat arbitrary choices on weights that are
made along the process, that are defined in a more ex-
plicit and thorough way in using MCDA approaches. Ul-
timately, the spatial validity of both approaches could
only be formally evaluated in retrospect, if NiV infection
were eventually identified in the country.

Conclusions
Broad-scale delineation of areas where three potential
host types—bat, pig and human—are present could im-
prove NiV surveillance strategy [70]. Indeed, in a context
of limited financial support for animal disease surveil-
lance systems, a more optimal use of resources could be
implemented if active surveillance is targeted at higher-
risk farms or areas [70]. One approach could circle
around developing passive and active surveillance pro-
grams on pig farms of predicted risk, for example, with
particular focus on farms of low biosecurity, nearby bod-
ies of water, and/or hosting orchards as additional risk
factors [11]. The surveillance program should be inte-
grated with those for other diseases to reduce cost and
manpower. Simultaneously, such surveillance efforts
could be reinforced with enhanced communication on
good farm management practices and public awareness
campaigns.
In addition, preventing direct transmission of NiV from

bats to humans could be adapted to the characteristic
habitats identified in this study. For instance, it is apparent
that flying foxes on the central plain of Thailand are found
in particular conditions in spatial (e.g., distance to water,
vegetation) and social terms (e.g., undisturbed environ-
ment and community). An active surveillance program
could be conducted on the people who live closely to fly-
ing fox colonies. A new colony detected in 2011 (no. 17) is
surrounded by commercial orchards, in particular coconut
trees [26]. Testing NiV in a fresh coconut-palm sugar,
usually produced by leaving a container on the trees over-
night, may be useful for a focal study. In Bangladesh, sap
harvesters were encouraged to use bamboo skirts on their
trees to prevent contacts between fruit bats and raw date
palm sap. Authorities educated locals to avoid drinking
raw date palm sap or eat partially eaten fruit, and these
efforts could be adapted for Thailand [71]. Finally, the
central plain of Thailand is an area with intense farming
activities, including pig husbandry, reflecting strongly the
convergence across multiple risk models here. Surveil-
lance programs in pigs and humans should be integrated
to mutually increase their effectiveness.
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