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Abstract: Devastating wildfires in Texas, Oklahoma, and Kansas in 2016 and 2017 resulted in
significant social, economic, and environmental losses, with the agricultural sector among those
severely affected. Several satellite-based indices were evaluated as potential monitoring tools for
post-wildfire ecological recovery and management of grasslands. All indices evaluated provided
useful information and indicated rapid vegetation recovery from wildfire. The Leaf Water Stress
Index (LSWI) and Gross Primary Productivity (GPP) showed a distinct response to the wildfire events,
and differentiated between burned and unburned areas throughout the post-wildfire growing seasons
better than the Normalized Difference Vegetative Index (NDVI) and Enhanced Vegetative Index (EVI).
In particular, the LSWI may provide a useful tool for mapping the footprint of wildfire, with potential
utility for organizations that provide post-fire recovery resources. The GPP, which estimates the
biomass productivity of vegetation, can provide information to livestock operators to guide the
re-stocking of cattle in the aftermath of wildfire. In sum, satellite-based proxies can provide timely
information both to characterize a wildfire’s footprint and to guide post-fire grazing management in a
manner that balances short term needs for forage with long-term productivity and ecological function.

Keywords: NDVI; EVI; LSWI; GPP; vegetative productivity model; prairie; rangeland; ranching;
wildlife; disaster response

1. Introduction

The grasslands of the Great Plains support a large beef cattle industry that produces a significant
portion of the US beef supply and is an important economic driver of the region. The grasslands are
also critical for biodiversity, climate regulation, hydrologic function, and other ecosystem services [1,2].
The grassland ecosystems of the Great Plains evolved with wildfire and grazing by large ruminant
animals, so research on the management of grasslands for beef cattle production has traditionally
focused on management of the wildfire and grazing regimes.

While wildfire has always been a part of grassland ecosystems, Donovan et al. [3] found that
large wildfires have increased in the grassland and savanna biomes of the Great Plains of North
America from an average of 33.4 annually from 1985 to 1994 to 116.8 annually from 2005 to 2014.
In the same timeframe, the area burned increased by 400% and the probability of large wildfire
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increased by 70%. Their analysis showed no change in the seasonality of wildfire in the Great Plains.
Dennison et al. [4] similarly found that large wildfire numbers and area burned increased from
1984–2011 across the western US, including the Southern Plains region, and that increased wildfire
was associated with enhanced drought severity. Wildfire risks are affected by complex interactions of
meteorology, climatology, land use, and management. Projections of increased temperature, changes of
seasonality in precipitation, and longer droughts indicate that the climatic drivers of wildfire risk may
increase in the future [5,6]. Hoff et al. [7] described how the removal of wildfire following widespread
settlement allowed the encroachment of woody plants dominated by Juniperus virginiana into the Cross
Timbers region of central Oklahoma, increasing wildfire risk because of the flammable nature of J.
virginiana. Wang et al. [8,9] mapped the rapid encroachment of J. virginiana into the grasslands of the
Southern Great Plains in recent decades, which has significant implications for wildfire risks in the
region. Additionally, Brunsell et al. [10] identified woody plant encroachment into grasslands and
savannas as a global phenomenon. While prescribed fire is a common practice to limit J. virginiana
encroachment in portions of the sub-humid Great Plains, the practice is not common in the semi-arid
to arid regions.

The social, economic, and ecological costs of wildfire in forest systems has received considerable
attention [4,11–18]. However, the serious challenges posed by large grassland wildfires to
livestock-based agricultural operations have received less attention. Following a large grassland
wildfire, there are urgent and long-term needs for assistance: to address the health issues of human
population and livestock; restore utilities, fencing, shelter and other infrastructure lost to the fire;
and provide feed to cattle and other livestock displaced from fire-impacted pastures [19]. There is
also opportunity after the most urgent needs are addressed to engage communities in dialog about
fire-preparedness [19].

Prescribed fire is a recommended management practice in the Great Plains grasslands, and much
of the research on fire in the Great Plains grasslands deals with prescribed burning. In that case,
spring regrowth following a prescribed fire provides high quality forage, but it is unknown whether
vegetation regrowth is affected differently by hotter wildfires compared to prescribed fires. The purpose
of this study was to assess the usefulness of several satellite-based indices, specifically the Normalized
Difference Vegetative Index (NDVI), the Enhanced Vegetative Index (EVI) the Leaf Water Stress Index
(LSWI), as well as the satellite-based Gross Primary Productivity (GPP), to monitor the post-wildfire
recovery of vegetation in a Great Plains grassland environment. Specifically, this study provides
a framework by which satellite-based indices can inform post-wildfire management decisions for
agricultural operations on Great Plains grasslands. Three large wildfires—Anderson Creek, Starbuck,
and Perryton—that affected Texas, Oklahoma, and Kansas in 2016 and 2017 were chosen for the study,
due both to their size and their effect on livestock operations. This analysis was part of a broad,
multi-institutional regional response to the 2016 and 2017 wildfire seasons, led by the U.S. Department
of Agriculture and University of Oklahoma, to review the meteorological, climatological, and land
use conditions associated with the wildfires, evaluate remote sensing tools to monitor post-wildfire
recovery, and understand community needs in advance of and following wildfire occurrence.

2. Materials and Methods

2.1. Study Area

The geographic focus of the assessment was wildfire-impacted areas of the Southern Great Plains
in Kansas, Oklahoma and Texas. In particular, locations affected by the Anderson Creek (2016),
Starbuck (2017) and Perryton (2017) wildfires were analyzed. These fires were selected based on the
magnitude of the fires, their regional locations, and their multi-state footprints. The Anderson Creek
started on 23 March 2016 in Oklahoma and burned 180,240 ha in Oklahoma and Kansas. The Starbuck
fire started on 6 March 2017 in the Oklahoma panhandle and burned 246,570 ha in Oklahoma and
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Kansas. The Perryton fire started on 6 March 2017 in the Texas Panhandle and burned 145,358 ha in
Texas and Oklahoma.

2.2. Delineating the Footprint of the Wildfires and Selecting Research Plots

The outlines of the fire-affected areas (Figure 1) were drawn using the Landsat-derived Normalized
Burn Ratio-Thermal (NBRT) [20]. The open source geospatial analysis software QGIS 3.0 was utilized
to clip the burned–unburned pairs from the raw imagery.
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Figure 1. Delineated burned areas for Anderson Creek (2016), Starbuck (2017), and Perryton (2017)
wildfires in western Kansas, Oklahoma, and Texas, USA.

For each wildfire, five paired burned–unburned 3 × 3 km plots were selected to represent the
diversity of the burned area (illustrated in Figure A1). Plot pairs were selected based on similarities in
elevation, slope, soil type and land cover type (Table A1). Rainfall and temperature similarities were
also considered when selecting the pairings (data not shown). Elevation and slope data (Table A1)
were taken from the Shuttle Radar Topography Mission (SRTM) dataset at 30 m resolution. Grasslands
are the predominant land cover type, per the United States Geographic Survey National Land Cover
Database [21] classification, for all selected pairs (Table A1). Soil data were acquired from the Soil Survey
Geographic Database (SSURGO) through the U.S. Department of Agriculture, Natural Resources
Conservation Service [22].

2.3. MODIS Surface Reflectance and Vegetation Index Data

To examine the effects of the wildfires on different plant characteristics and properties, the
8 day scale, 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance
data (MOD09A1) were used to produce three vegetation indices, including NDVI, EVI, and LSWI.
All available, and reasonable, 16 day MODIS data were used; this equates to 23 images per year. There
were a few notable exceptions when snow cover was present. The values for the MODIS data were then
interpolated and smoothed using the cubic method in Python to generate the values shown. For each
3 × 3 km plot, there were between thirty and thirty-six MODIS pixels. The NDVI, EVI, and LSWI were
calculated for this study using MODIS data downloaded from Google Earth Engine. The average of the
pixels within individual 3 × 3 km plots was computed for each individual image of the specific indices.

2.4. Gross Primary Production (GPP) Data from the Data-driven Vegetation Photosynthesis Model (VPM)

Additionally, we used the 500 m spatial and 8 day temporal resolution GPP data product from the
simulation of Vegetation Photosynthesis Model (VPM) [23]. The simulation of VPM model is driven by
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time series images from the by MODIS and climate data (photosynthetically active radiation (PAR); air
temperature). GPP data have been evaluated at many CO2 eddy flux tower sites [24–28] and the results
show that the VPM produces very good consistency with tower-derived GPP. The time series GPP
data were acquired from at the University of Oklahoma’s Earth Observation and Modeling Facility
(http://www.eomf.ou.edu/ accessed on 13 December 2019).

2.5. Statistical Analysis

To show the direct effects of the fire and the subsequent ecological recovery, the mean value from
the five burned and unburned plots during the year of the fire was calculated. This resulted in a single
mean value and variability represented by one standard deviation above and below the mean for
burned plots and for unburned plots at each time step. To establish the context for the data from the
wildfire year, the same statistics were calculated for the burned–unburned pairs three years prior to
each wildfire.

3. Results

3.1. Effect of Wildfire on Vegetation Greenness—Pair-Wise Comparison of Vegetation Indices between
Fire-Affected and No-Fire Areas

During the pre-fire period (winter and spring) the fire-year and 3 year prior NDVI values were
similar (Figure 2). For 1 month post-fire, the NDVI values for burned plots dropped due to loss of
biomass and the burnt surface which had low reflectance. During the green-up period in late spring to
early summer, both burned and unburned plots had rapid increases in NDVI. By June, the burned and
unburned plots had similar values of NDVI and were similar to the 3 years prior values. While the
NDVI during the peak summer growing season in the first year post-fire was similar to 3 years prior
values for the 2016 Anderson Creek fire, the post-burn mid-summer NDVI was lower than 3 years prior
values for the Starbuck and Perryton fires, which occurred in 2017. The Perryton site and, to a lesser
degree, the Starbuck site, showed a rebound in NDVI in the fall in the burned plots compared to the
unburned plots. The US Drought Monitor (https://droughtmonitor.unl.edu, Accessed on 13 December
2019) indicates that, for the Southwest Kansas, Texas High Plains, and Oklahoma Panhandle and North
Central climate regions, the summer of 2016 and 2017 were less dry than spring or fall of those years,
and that 2017 had higher drought levels than 2016. While there may have been differences in post-fire
species composition responses or grazing pressure for the different fires that could be reflected in the
NDVI values, no data are available to evaluate those impacts.

The EVI is related to the chlorophyll content of the vegetation so we anticipated a reduction in
EVI following wildfire. As with the NDVI, the winter and spring pre-fire EVI values (Figure 3) during
the study year were low and similar to values observed during the 3 years prior period. Following the
burn event, the EVI dropped in the burned plots, but the response was of lower magnitude and shorter
duration for the Starbuck and Perryton fires than for the Anderson Creek fire. For all three fires, the
EVI increased rapidly on burned and unburned plots during the green-up period. In contrast to the
NDVI, the EVI on the burned plots reached or exceeded the unburned EVI values by mid-summer.
However, the EVI values dropped in late summer, and were lower than 3 years prior values for the
Starbuck and Perryton fires. At the Perryton site, which included a greater number of shrubs than
the other two sites (Table A1), the EVI index for the burned plots remained significantly above the
unburned plots through the fall and exceeded 3 years prior EVI values in October and November.

http://www.eomf.ou.edu/
https://droughtmonitor.unl.edu
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Figure 2. Three year average Normalized Difference Vegetative Index (NDVI) values for the unburned
plots (blue shaded) and burned plots (red shaded) of the Anderson Creek (top), Starbuck (middle),
and Perryton (bottom) wildfires. Purple shaded area is overlap of burned and unburned plots in this
and subsequent figures. Fire year NDVI averages for the unburned (blue) and burned (red) plots
are shown as solid lines with error bars of one standard deviation. Time of fire is marked by grey
shaded columns.
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Figure 3. Three year average Enhanced Vegetation Index (EVI) values for the unburned plots (blue
shaded) and burned plots (red shaded) of the Anderson Creek (top), Starbuck (middle), and Perryton
(bottom) wildfires. Fire year EVI averages for the unburned (blue) and burned (red) plots are shown as
solid lines with error bars of one standard deviation. Time of fire is marked by grey shaded columns.

The LSWI, which is related to water in vegetation and soils, showed a strong response to the
fire events (Figure 4), with a pronounced decrease in LSWI on the burned plots compared to the
unburned. The unburned plots have a higher leaf area and maintained a higher LSWI through early
spring, though the burned plots showed a rapid increase during late spring to early summer as the leaf
area recovered. By June, when the canopies were fully closed, the indices of the burned and unburned
plots were similar. The summer EVI values were similar to the 3 years prior values for the Anderson
Creek fire but lower than 3 years prior values for the Starbuck and Perryton fires. For the Perryton fire,
the LSWI was higher in the burned than unburned plots during fall.
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3.2. Effect of Wildfire on Gross Primary Production (GPP)—Pair-Wise Comparison of Gross Primary
Production between Fire-Affected and Non-Fire Areas

The winter GPP values were very low for all treatments and study year values were similar to
3 years prior values (Figure 5). As the fires occurred during the dormant season, the GPP values were
low but showed a distinct response to the burn, with a suppression of growth on the burned plots
compared to the unburned plots for a few weeks (insets, Figure 5). Following the short suppression,
there was very rapid increase in GPP on the burned compared to the unburned plots, with the values
for burned plots exceeding unburned plots by early to mid-May and remaining significantly higher
throughout the summer. A rapid increase in GPP on the burned compared to unburned plots is
expected because the canopy is composed of fresh green vegetation with no litter in the canopy. The
summer fire-year GPP was similar to 3 years prior GPP for the Anderson Creek fire, but lower than the
3 years prior GPP for the Starbuck and Perryton fires.
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Figure 5. Three year average Gross Primary Productivity (GPP) values as calculated following
Zhang et al. (2017) for the unburned plots (blue shaded) and burned plots (red shaded) of the Anderson
Creek (top), Starbuck (middle), and Perryton (bottom) wildfires. Fire-year GPP averages for the
unburned (blue) and burned (red) plots are shown as solid lines with error bars of one standard
deviation. Time of fire is marked by grey shaded columns.

4. Discussion

4.1. Effect of Wildfire Impacts on Grassland Greenness As Described by Vegetation Indices

Vegetation indices prior to the beginning of the fire were all similar to the three years prior indices
in early spring. The NDVI, EVI, and LSWI indices (Figures 2–4) all indicated that recovery from
the three major fires was rapid. In all cases, the fires occurred in spring (March or April) when the
perennial, warm season vegetation was dormant. The native vegetation evolved with fire-disturbance
and energy reserves are stored below-ground during dormant periods. The onset of spring growth
was triggered soon after the fires as air temperatures increased. Wildfires occurring at other times
of the year would show different recovery responses. However, spring time is the greatest period
of risk for wildfire in the Southern Plains due to high windspeed, very low humidity, and dormant
vegetation. Fire risks are particularly high if a spring drought follows wetter growing seasons which
may produce substantial fuel loads. The LSWI provided a sharp decline at the time of the fires that
was not exhibited by the NDVI and EVI indices. Li and Guo [29] also reported greater biomass within
3 months in burned compared to unburned regions in the Northern Great Plains using Landsat-based
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NDVI. Van Leeuwen et al. [30] applied the NDVI to monitor post-wildfire vegetation indicators in
grasslands in the USA, Spain, and Israel.

4.2. Effect of Wildfire Impacts of Grassland GPP As Predicted by Data-Driven Models

The GPP shows great promise for monitoring grassland condition, due to its responsiveness
throughout the season. Additionally, since it is based on physiological principles, it provides information
about the rate of biomass production. The very high GPP rates in spring following burning are likely
related to the high interception of radiation by young, green, rapidly growing leaf areas. There may
also be shifts in species composition that could affect the duration of differences between burned
and unburned plots. However, data are not available in this study to evaluate species composition
pre- and post-fire. While the greater productivity on burned compared to unburned areas may be
counterintuitive, Hulbert [31] reported the same response on the Konza Prairie Research Natural Area in
Kansas, which he attributed to soil warming, increased surface light intensity, and nitrogen availability.

4.3. Use of Remotely Sensed Information for Monitoring and Assessment of Wildfire Recovery

Information about the recovery of the grasslands can support a wide range of efforts in post-fire
recovery and mitigation. One critical need following a grassland fire is the provision of feed for
livestock, since pastures for grazing cattle is the dominant use of grassland in this region. To ensure
long-term recovery of the grassland, deferral or careful grazing management is needed post-fire [32,33],
but there are few quantitative guidelines on how to balance short-term needs for forage with
longer term sustainability of the grassland ecosystem. The GPP estimates the biomass productivity,
providing needed information to guide stocking rates and the duration of differences in burned and
unburned portions of a ranch. In the Northern Great Plains, Gates et al. [34] found that defoliation
following a spring fire increased grassland productivity for 2 years following a wildfire and had
minimal impact on community composition. They concluded that a post-fire rest from grazing
may not be necessary to maintain productivity and species composition in a mixed-grass prairie.
Gullap et al. [35] also found that prescribed burning increased crude protein levels during the first
year after burning in a semi-arid steppe rangeland. In an evaluation of fire-grazing interactions in two
northern Great Plains pastures, Powell et al. [36] found that cattle showed significant preference, use,
and grazing utilization in recently burned patches that declined as time since fire increased. Cattle
selection was driven by significantly increased crude protein in recently burned areas. They concluded
that mixed-grass prairies of the Northern Great Plains are resilient to the fire–grazing interaction and
that rest from grazing following fire is not required to sustain the ecological system. The results of this
study in the Southern Great Plains (Figure 5) indicate that vegetation regrowth was very rapid and
productivity in burned areas was very high, indicating that utilization of forage may be possible during
the summer and fall following a wildfire. Fuhlendorf et al. [37] proposed recoupling fire and grazing
for landscape management on agricultural grasslands which would have the benefit of sustained
productivity and reduced wildfire risk.

5. Conclusions

The purpose of this study was to assess the usefulness of several satellite-based indices to monitor
post-wildfire vegetation recovery following three significant grassland wildfires in the southern Great
Plains. The results show that satellite-based information can indeed inform post-wildfire response and
recovery efforts. Several vegetative indices—NDVI, EVI, and LSWI—and a data-driven model of GPP
all provided useful information about the vegetation response to the Anderson Creek, Starbuck, and
Perryton wildfires. However, the LSWI and GPP indices provided a distinct response to the wildfire
events, and differentiated between burned and unburned plots throughout the subsequent growing
seasons better than the NDVI and EVI indices. In particular, the LSWI responded distinctly differently
in burned and unburned plots at the time of the fire event and may provide a useful tool for delineating
the footprint of future wildfires. Such information could be used by federal agency, extension, and
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conservation programs to target post-wildfire program assistance and recovery resources. In addition,
the GPP differentiated between burned and unburned areas throughout the post-fire seasons, and may
provide information to guide post-wildfire grazing management. It is beneficial to the ranchers to
return cattle to graze in the pastures as soon as biomass stock and productivity is adequate to support
livestock requirements while also sustaining grassland ecosystem recovery. Further research is needed
to develop these promising approaches to support operational needs, and to identify other data
requirements necessary for fire preparedness planning from ranch to community scales.
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Appendix A

Table A1. Characteristics of paired burned (B) and unburned (U) plots for the Anderson (A), Starbuck (S), and Perryton (P) fires in western Kansas, Oklahoma, and
Texas. Pairs were delineated based on similarity of soil type, land cover type, elevation, and gradient.

Plot ID Burn Date(s)23 Soil Type (%) Land Cover Type (%) Elevation Mean (m) Elevation Range (m) Gradient Mean (%) Gradient Range (%)

A1B 23 March 2016 Loam (100) Grass (95) 609.1 579–629 1.4 0.2–3.1

A1U Loam (100) Grass (98) 622.9 594–645 1.2 0.0–2.7

A2B 23 March 2016 Clay (100) Grass (89) 531.2 500–578 2.1 0.2–4.3

A2U Clay (100) Grass (97) 523.9 494–559 1.5 0.2–3.5

A3B 23 March 2016 Loam (100) Grass (82),
DF (13) 580.7 546–616 1.6 0.2–3.6

A3U Loam (100) Grass (82),
CC (13) 571.7 542–618 1.4 0.1–3.6

A4B 23 March 2016 Clay (72),
Loam (28) Grass (95) 535.7 504–561 1.7 0.2–4.4

A4U
Clay (44),
Loam (40),

Loamy Sand (16)
Grass (95) 538.3 512–562 1.3 0.1–3.3

A5B
21 March 2016
23 March 2016
25 March 2016

Sandy Loam (51),
Bedrock (39)

Grass (83),
CC (8) 454.0 437–483 1.1 0.0–3.5

A5U Bedrock (60),
Sandy Loam (34)

Grass (70),
CC (21) 439.0 419–470 1.0 0.0–3.0

S1B 7 March 2017 Sandy Loam (64),
Loamy Sand (36)

Grass (85),
Water (8) 692.4 676–725 1.1 0.1–2.9

S1U
Sandy Loam (59),
Loamy Sand (31),

Silt Loam (10)

Grass (74),
Water (11),

CC (11)
710.2 693–755 0.9 0.0–2.4

S2B 7 March 2017 Fine Sand (70),
Loamy Sand (28) Grass (94) 544.0 526–569 0.5 0.0–2.0

S2U Fine Sand (75),
Loamy Sand (25) Grass (91) 527.8 511–552 0.5 0.0–1.9

S3B 7 March 2017
8 March 2017 Loam (100) Grass (80),

CC (15) 607.2 583–633 1.1 0.1–2.7
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Table A1. Cont.

Plot ID Burn Date(s)23 Soil Type (%) Land Cover Type (%) Elevation Mean (m) Elevation Range (m) Gradient Mean (%) Gradient Range (%)

S3U Loam (100) Grass (85),
CC (12) 602.0 575–630 0.9 0.0–2.8

S4B 7 March 2017 Clay Loam (100) Grass (97) 716.7 678–762 2.5 0.5–5.3

S4U Clay Loam (100) Grass (94) 730.6 686–771 2.1 0.2–4.3

S5B 6 March 2017 Clay Loam (68),
Sandy Loam (32) Grass (95) 713.9 692–749 1.2 0.1–2.5

S5U Clay Loam (80),
Loam (12) Grass (94) 657.8 648–671 0.4 0.0–1.2

P1B 7 March 2017 Sandy Loam (100) Grass (72),
Shrub (26) 771.6 754–786 0.9 0.0–2.2

P1U Sandy Loam (100) Grass (66),
Shrub (34) 776.5 750–800 0.7 0.0–2.4

P2B 7 March 2017 Sandy Loam (100) Grass (94) 818.1 794 – 840 0.8 0.0 – 2.0

P2U Sandy Loam (100) Grass (81),
Shrub (13) 821.5 796–840 0.8 0.1–2.0

P3B 7 March 2017 Clay Loam (51),
Loam (49)

Grass (55),
Shrub (30),

CC (13)
774.0 737 – 800 1.5 0.0 – 4.2

P3U Loam (51),
Clay Loam (48)

Grass (49),
Shrub (41),

CC (8)
719.7 694–752 1.4 0.1–3.0

P4B 5 March 2017
6 March 2017 Loam (100) Grass (69),

Shrub (30) 870.4 796–900 2.4 0.1–7.9

P4U Loam (100) Shrub (54),
Grass (42) 869.9 812–925 2.5 0.3–6.1

P5B 7 March 2017 Silt Loam (74),
Sandy Loam (26)

Shrub (55),
Grass (34),

CC (8)
871.6 848–889 1.0 0.2–2.2

P5U Silt Loam (64),
Loam (36)

Grass (61),
Shrub (27),

CC (8)
884.0 860–900 0.9 0.0–2.2
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Figure A1. Illustration of paired burned (B) and unburned (U) plots for analysis of the 2016 Anderson 
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