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A B S T R A C T   

The continuous rise of carbon emissions has brought enormous pressure on the human envi-
ronment. To determine the response characteristics and influencing factors of carbon emissions 
and land surface temperature (LST), we used the land use, LST, carbon emissions, and socio-
economic data of Guangdong Province in 2000, 2005, 2010, and 2017 through Spearman cor-
relation analysis and factor detection of Geodetector. The findings revealed that carbon emissions 
had a semi-circular hierarchical structure from 2000 to 2017. The areas with significant carbon 
emissions were distributed in some counties and districts of Zhongshan, Dongguan, Guangzhou, 
and Shenzhen, and they continued to increase and expand outward. The annual average LST in 
Guangdong Province is between 17 and 24 ◦C, and the average daytime and nighttime LST are 
21–28 ◦C and 13–20 ◦C, respectively. Total carbon emissions and LST have a positive coefficient 
of 0.3–0.7. The leading factors of carbon emissions in Guangdong Province are different in 
different periods, but the influence of economic aggregate (GRP), land scale (LS), and land in-
tensity (LI) on the spatial differentiation of carbon emissions is relatively strong. The interaction 
effect of factors is more significant than the single factors. The outcome of the study is valuable 
for decision-makers to formulate emission reduction policies and achieve sustainable urban 
development.   

1. Introduction 

Rapid economic development and anthropogenic activities have increased carbon dioxide emissions, with the associated 
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environmental problems becoming more prominent. Chinese carbon emissions surpassed the America in 2007, making China become 
the world’s largest carbon emitter (Gregg et al., 2008). Facing enormous pressure to reduce emissions, China and several other 
countries established two main targets for reducing emissions: first, to peak carbon emissions by 2030, and second, to strive to achieve 
carbon neutrality by 2060 (Zhao et al., 2022; Zou et al., 2021). Current research on carbon emissions focuses on carbon budget, carbon 
transfer, carbon emission intensity simulation, accurate assessment, future prediction (Acheampong and Boateng, 2019; Dong et al., 
2018; Zhou et al., 2021), and the spatiotemporal evolution and influencing factors of carbon emissions at different scales (Cao and 
Yuan, 2019; Wang et al., 2022). According to the study of Zhou et al., the relationship between urbanization and land use carbon 
emissions in the Beijing-Tianjin-Hebei region can be summarized into three modes: “high urbanization-low emissions,” “moderate 
urbanization-high emissions,” and “low urbanization-low emissions”; however, the polycentric structure of some urban agglomera-
tions do not achieve the effect of carbon emission reduction to a certain extent, but instead promotes carbon emission (Wang et al., 
2022; Zhou et al., 2021). For China, population size has the highest sensitivity weight to carbon emission intensity (Acheampong and 
Boateng, 2019). Carbon emission influencing factors are closely related to human activities and include fossil energy consumption, 
economic development, urban spatial form, urban transportation, policies, cement production, and land use (Chen et al., 2022; 
Dumortier and Elobeid, 2021; Lin and Benjamin, 2017; Sun et al., 2022; Yang et al., 2021b). Among these, Zhang et al. showed that the 
carbon emissions from fossil energy consumption in Shandong Province account for 70–80% of the total carbon emissions (Zhang 
et al., 2017), and Huang et al. took the global as the study area and showed that carbon dioxide emissions from construction industry 
accounted for 23% of carbon dioxide emissions from economic activities (Chen et al., 2017; Huang et al., 2018). Studies have also 
focused on reducing and suppressing the total amount of ever-increasing carbon emissions. Results show that the terrestrial ecosystems 
in China have a huge capacity for carbon sequestration (Li et al., 2021a; Xu et al., 2019). Furthermore, studies have marked that the 
interaction between new and fossil energy indirectly promotes fossil energy consumption and carbon emissions (Cang et al., 2021). A 
country’s different economic development stages also affect the relationship between its energy consumption and carbon emissions 
(Waheed et al., 2019). 

Climate change is one of the most challenging research topics during the last few decades, as temperature rise has already posed a 
significant impact on the earth’s functions (Cartalis et al., 2015; Eleftheriou et al., 2018). In the early 19th century, Howard (1833) 
initiated the first study on urban heat islands in London and its suburbs by observing and recording the surface temperatures. LST, the 
ground temperature measured by thermal radiation, is also a key variable in climate research. (de Almeida et al., 2021; Sekertekin and 
Zadbagher, 2021; Yang et al., 2021a). Several factors, such as the properties of the underlying surface, impervious surface, building 
layout, anthropogenic heat source emissions, wind speed, cloud cover, and aerosols, influence the LST, either individually or in 
combination (Cui et al., 2016; Shi et al., 2022; Wang et al., 2018; Yang et al., 2020, 2021c; Zhao et al., 2021). Among them, Normalized 
Difference Built-up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) are determined to be highly correlated indices of 
LST (Sekertekin and Zadbagher, 2021). Early research methods, relying on LST data obtained mainly from station observations, have 
considerable limitations, especially in reflecting temperature variations over large areas (Muchoney and Strahler, 2002; Norman et al., 
1995). Remote sensing observation can monitor temperatures simultaneously over a large area, so studies combining the observations 
from remote sensing and station monitoring have great advantages (Li et al., 2021b; Zhang and Xu, 2020). Commonly used quanti-
tative inversion algorithms for LST include single-channel, split-window, and multi-channel (Ghorbannia et al., 2017; Rongali et al., 
2018; Zhong et al., 2015). Major directions of research concerning LST include temporal and spatial changes and influencing factors of 
LST, LST monitoring data and quantitative inversion, and prediction of urban heat islands with simulations (Li and Zhang, 2021; 
Nakata-Osaki et al., 2018; Parvez et al., 2021; Ren et al., 2022). The cellular automata (CA) algorithm is widely used in simulation 
research of urban heat islands, but the model methods selected for different scales are distinct. For example, Weather Research and 
Forecasting (WRF) and computational fluid dynamics (CFD) models are often utilized in mesoscale research, while ENVI-met model is 
more suitable for microclimate simulation (Cortes et al., 2022; Wagner et al., 2015; Wang and Li, 2016). In recent years, climate 
problems such as high temperature and extreme weather occur frequently (He et al., 2021, 2022). More and more scholars pay 
attention to the impact of carbon emissions and realize the response mechanism between carbon emissions and LST. And the research is 
mostly based on the impact of land cover on carbon emissions. For example, Kafy et al. evaluated the impact of vegetation loss on 
carbon emissions and LST (Kafy et al., 2022; Rahaman et al., 2022); Fattah et al. used artificial neural networks to model future the 
impact of land-specific carbon emission patterns on LST (Fattah et al., 2021a); Oderinde investigated the relationship between carbon 
dioxide emissions and surface temperature (LST) in ecoregions (Oderinde, 2020). 

Since small-scale carbon emission data are difficult to obtain directly, previous studies on carbon emissions have primarily focused 
on the national, provincial, and prefecture-level cities, but counties are the basic unit of national functional zoning, macro-policy 
formulation, and micro-policy implementation (Long et al., 2021; Nguyen et al., 2021; Xu et al., 2016; Zheng et al., 2019). Guang-
dong Province has become China’s largest economic province, with robust, comprehensive economic competitiveness and financial 
strength. The continued increase in carbon emissions will result in environmental changes, and LST is an important indicator of urban 
climate change, so it is of practical significance to explore the relationship between carbon emissions and LST (Halder et al., 2021; 
Riahi et al., 2017). Rapid economic growth and urbanization in Guangdong Province inevitably lead to a high concentration of energy 
consumption, which significantly increases CO2 emissions. To cope with the enormous pressure of emission reduction and promote the 
sustainable development of cities, scientifically and accurately describing the temporal and spatial changes of carbon emissions and 
revealing the interaction mechanism between them and surface temperature are important prerequisites for formulating emission 
reduction policies tailored to local conditions. In summary, this study examines the response characteristics between carbon emissions 
and LST and the influencing factors of carbon emissions using land use, carbon emission, LST, and socioeconomic data, over the 
Guangdong Province, from 2000 to 2017, at the county level. The results are expected to provide data support and theoretical 
reference to realize the emission reduction measures in Guangdong. 
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2. Materials and methods 

2.1. Study area 

Guangdong Province is located in the southern Nanling Mountains, along the South China Sea coast, bordering Guangxi, Hunan, 
Jiangxi, Fujian, Hong Kong, and Macau, and facing Hainan across the Qiongzhou Strait. It is the most economically developed province 
in China for nearly 30 years, with its total economic volume accounting for about 1/8th of the country’s total. The province expe-
riences a subtropical monsoon climate, along the South China Sea coast, so it has the most abundant light, heat, and water resources in 
China. It has long summer and warm winter, abundant rainfall, long rainy season, more typhoons and rainstorms in summer and 
autumn, and occasionally cold air invasion in winter and spring (Li et al., 2021c). 

Since solar radiation is the primary heat source influencing LST, an area’s latitudinal position significantly impacts its LST (Li et al., 
2016). Therefore, this study excluded the two cities with the lowest latitude in southwestern Guangdong Province, Zhanjiang City (20◦

~ 21◦35′N) and Maoming City (21◦22′ ~ 22◦42′N) (Fig. 1). We selected 108 counties and districts of 19 cities in Guangdong Province, 
including 2 sub-provincial cities, Guanzhou and Shenzhen. 

2.2. Data sources and methods 

2.2.1. Data sources 
Based on the research needs and availability of information, this study used data about administrative divisions, land use, LST, 

carbon emission, and socioeconomics, as shown in Table 1. 

2.2.2. Research methods 
The county-level carbon emission numbers were derived from the China Carbon Accounting Database (CEADs), which estimated 

carbon dioxide emissions from 2735 counties in China from 1997 to 2017 (Chen et al., 2020; Yong et al., 2022). The database uses the 
particle swarm optimization-backpropagation (PSO-BP) algorithm to unify the scale of the Defense Meteorological Satellite Program/ 
Operational Linescan System (DMSP/OLS) and National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer (NPP/VIIRS) 
satellite images. Following the scope of the study area selected in this study (Fig. 1), we chose 19 cities in Guangdong Province 
(excluding Zhanjiang and Maoming cities), including 108 counties, to investigate the response characteristics of LST and carbon 
emissions. 

The MOD11A2 LST data was obtained from LAADS DAAC. The MOD11A2 LST data is a data product with a resolution of 1KM and a 
recording interval of 8 days. First, the downloaded LST data was preprocessed by reprojection and format conversion using the MODIS 
Reprojection Tool. The study area was cropped in ArcGIS, although MOD11A2 is an eight-day synthetic product, there are still missing 
values due to weather cloudiness, so this study removed the outliers and averaged the data. Then, the band operation method used 

Fig. 1. Location of study area.  
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Field Calculator in ArcGIS to obtain the annual average, annual average daytime, and annual average nighttime LST data. Finally, the 
image pixel value of MOD11A2 was converted to degrees Celsius by using ArcGIS software (digital numbers [DNs]) (Wang and Jing, 
2015); the calculation formula is as follows: 

LST (
◦C) = DN× 0.02–273.15 (1) 

Where DN is the brightness temperature of the MOD11A2 image. 
The land use data were acquired from the National Key Experiment of Surveying, Mapping, and Remote Sensing Information 

Engineering of Wuhan University. Using Landsat images on Google Earth Engine, the annual land cover product of China (CLCD) from 
1985 to 2019 was constructed. The training samples were collected by combining stable samples drawn from the Chinese land use/ 
cover dataset (CLUD) and visual interpretation samples from the Landsat satellite time-series data, Google Earth, and Google Maps. 
Several temporal metrics are constructed from all available Landsat data and fed to a random forest classifier to obtain classification 
results. Further, a post-processing method combining spatiotemporal filtering and logical reasoning is proposed to improve the 
spatiotemporal consistency of CLCD (Yang and Huang, 2021). This study uses ArcGIS software to analyze the influencing factors of 
carbon emissions by extracting water and impervious surface area. 

Spearman correlation analysis: This method is suitable for non-continuous data or when the overall distribution of variables is 
unknown (Schober et al., 2018). Considering that the carbon emission data does not conform to a normal distribution, Spearman 
correlation analysis is selected to test the correlation between LST data and carbon emission data. Its calculation formula is as follows: 

rs =

∑n

i=1
(ri − r)(si − s)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ri − r)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(si − s)2

√ (2) 

In the formula: ri and si represent the ranks of xi and yi respectively. When an equal value appears in the variable, the rank cor-
responding to the value is the average of the ranks corresponding to these values. The value range of rs is [− 1,1], rs=1 means that one 
variable increases monotonically with another variable; rs= − 1 means that one variable monotonically decreases with another 
variable. 

Geodetector: The geodetector model is a statistical method for detecting spatial heterogeneity and revealing the effects of driving 
factors, and its model has the advantages of less limited sample size and good at handling types and quantities (Wang and Xu, 2017). 
However, the endogeneity and collinearity of carbon emission influencing factors are serious, and the geographic detector principle 
ensures immunity to the collinearity of independent variables (Xu et al., 2021). This study used factor detection and interaction 
detection in geographic detectors to reveal the impact of different factors and their interactions on carbon emissions. Factor detection 
is measured by the q-value, which is expressed as: 

q = 1 −

∑L

h=1
Nhσ2

h

Nσ2 (3) 

In the formula: h is the number of layers of the variable, h = 1, …, L; Nh and σh
2 are the sample size and variance of the hth layer; N 

and σ2 are the sample size and variance. q is the explanatory degree of the detection factor to carbon emissions, and the value range is 
[0,1]. The larger the q value, the stronger the explanatory power of the factor to carbon emissions, and vice versa. 

The primary objective of interaction detection is to identify the interaction between different factors affecting carbon emissions, 

Table 1 
Data sources and descriptions.  

Type of data Resolution Time/Year Data sources 

Administrative division data – – https://www.webmap.cn/commres.do?method=dataDownload 
Dem 90 m – http://www.gscloud.cn/ 
Land use data 30 m 2000, 2005, 2010, 2017 https://zenodo.org/record/4417810#.Yozchflynhc 
MOD11A2 1000 m 2000, 2005, 2010, 2017 https://ladsweb.modaps.eosdis.nasa.gov/ 
Carbon emissions data – 2000, 2005, 2010, 2017 https://www.ceads.net.cn/data/county/ 
Guangdong Statistical Yearbook, China – 2000, 2005, 2010, 2017 https://www.cnki.net/ 
County Statistical Yearbook – 2000, 2005, 2010, 2017 https://www.cnki.net/  

Table 2 
Interaction types and discrimination basis of geodetector.  

Interaction type Judgment basis 

Two-factor enhancement q(X1∩X2) > Max[q(X1), q(X2)] 
Nonlinear enhancement q(X1∩X2) > q(X1) + q(X2) 
Nonlinear weakening q(X1∩X2) < Min[q(X1), q(X2)] 
One-Factor Nonlinear Attenuation Min[q(X1), q(X2)] < q(X1∩X2) < Max[q(X1)), q(X2)] 
Independent q(X1∩X2) = q(X1) + q(X2)  
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that is, to evaluate whether each factor will enhance or weaken the explanatory power of carbon emissions when they act together in 
pairs. The relationship between the two factors includes five types: nonlinear weakening, single-factor nonlinear weakening, two- 
factor enhancement, independence, and nonlinear enhancement. The strength and type of factor interaction are shown in Table 2: 

Following the existing research and data availability (Balsalobre-Lorente et al., 2018; Li et al., 2021d; Song et al., 2014), this study 
selects eight indicators to discuss the influencing factors of carbon emissions as follows: economic aggregate (GRP), population size 
(PS), economic density (ED), industrial structure (IS), government intervention (GI), water resources (WR), land scale (LS), and land 
intensity (LI). The specific expression methods are shown in Table 3. 

3. Results 

3.1. Spatiotemporal differentiation of carbon emissions 

Humans generate a large amount of CO2 in production activities. Therefore, understanding the spatial and temporal differentiation 
characteristics of carbon emissions can provide important guidance for the purposeful suppression and reduction of carbon emissions 
and the improving human settlements. 

Fig. 2 shows the spatiotemporal distribution of carbon emissions in a million tons (10Mt) across the Guangdong Province in 2000, 
2005, 2010, and 2017. As shown in Fig. 2, the total amount of carbon emissions from 2000 to 2017 has a significantly increasing trend 
and presents a semi-circular layered structure. The areas with significant carbon emissions are concentrated in southern Zhongshan, 
Dongguan, Guangzhou, and some counties in Shenzhen. The areas showing rapid growth of carbon emission are also the regions with a 
large carbon emission footprint that show a trend of expansion, including cities like Dongguan, Zhongshan, Guangzhou, Shenzhen, 
Huizhou, and Foshan. 

In 2000, only Dongguan City and Zhongshan City had >10 Mt. of carbon emissions, and nearly half of the counties and districts had 
yearly carbon emissions of <1 Mt. In 2005, Dongguan’s annual carbon emissions reached 34.328 Mt., far ahead of other regions. The 
number of cities and counties with >10 Mt. increased to 5 (Dongguan, Zhongshan, Nanhai District, Shunde District of Foshan, and 
Bao’an District of Shenzhen). In 2010, the carbon emissions of Dongguan and Zhongshan exceeded 20 Mt., and the carbon emissions of 
8 counties exceeded 10 Mt. By 2017, the carbon emissions of 12 counties exceeded 10 Mt., and few counties had annual carbon 
emissions of <1 Mt. 

3.2. Spatiotemporal differentiation of LST 

Fig. 3 shows the spatiotemporal distribution of the annual average LST for the Guangdong Province between 2000 and 2017. The 
annual average LST varies between 17 and 24 ◦C for all the time series, with the highest temperatures distributed in Guangzhou, 
Dongguan, Shenzhen, and Foshan areas. The annual average LST in 2000 is higher than that of the other three years. This may be due to 
the remarkable effect of returning farmland to a forest in Guangdong Province after 2000 because afforestation has a strong net cooling 
effect, and the frequency and intensity of rainfall in Guangdong Province in 2000 are also the smallest (Li et al., 2021d; Shen et al., 
2019). The annual average LST in 2005 was still higher than in 2010 and 2017 for most regions. The annual average LST in 2010 was 
generally lower, while those in 2017 were higher. Fig. 4 shows the spatiotemporal distribution of the annual average daytime LST. The 
annual average daytime LST is consistent with the annual average LST change. The difference is that the annual average daytime LST is 
mainly 21–28 ◦C. Fig. 5 shows the spatiotemporal distribution of the annual average nighttime LST. Similarly, the annual average 
nighttime LST is consistent with the annual average LST change, and the annual average nighttime LST is mainly 13–20 ◦C. 

3.3. Response characteristics of carbon emissions and LST 

The obtained annual average, annual average daytime, and annual average nighttime LST data are separately counted, and then the 
normality test is carried out on the LST data and carbon emission data. Since the carbon emission data does not conform to the normal 
distribution, the Spearman correlation analysis was selected to test the correlation between LST data and carbon emission data. The 
correlation results are shown in Table 4: 

Table 4 shows a positive correlation between total carbon emissions and LST, with a correlation coefficient between 0.3 and 0.7. 
Overall, the highest LST has a higher correlation with the total carbon emissions, and the lowest LST has a lower correlation with the 

Table 3 
Index calculation.  

Index Calculation method 

Economic aggregate (GRP) Gross Regional Product 
Population size (PS) Population 
Economic density (ED) GRP/Population 
Industrial structure (IS) Secondary Industry Output Value/GRP 
Government intervention (GI) Fiscal Expenditure/GRP 
Water resources (WR) Water area 
Land scale (LS) Impervious surface area 
Land intensity (LI) Impervious surface/county area  

C. Song et al.                                                                                                                                                                                                           
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total carbon emissions. The correlation coefficient between carbon emissions and LST in 2000 was generally higher than that of the 
other three years in 2005, 2010, and 2017, which is consistenct with the spatiotemporal differentiation of LST in 3.2; the temperature 
in 2000 was higher than that in the other three years. This further demonstrated that increased carbon emissions would lead to a rise in 
global temperature (Hashimoto, 2019; Solomon et al., 2009). As for the correlation between annual average LST and carbon emissions, 
annual average LST is greater than annual average daytime LST, and annual average LST is greater than annual average nighttime LST. 

Fig. 2. Spatiotemporal distribution of carbon emissions in the Guangdong Province between 2000 and 2017: (a)2000, (b) 2005, (c) 2010, (d) 2017.  

Fig. 3. Spatiotemporal distribution of annual average LST: (a) 2000, (b) 2005, (c) 2010, (d) 2017.  

Fig. 4. Spatiotemporal distribution of annual average daytime LST: (a) 2000, (b) 2005, (c) 2010, (d) 2017.  
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Fig. 5. Spatiotemporal distribution of annual average nighttime LST: (a) 2000, (b) 2005, (c) 2010, (d) 2017.  

Table 4 
Correlation between carbon emissions and LST.  

Year Mean Min Max Day_mean Day_min Day_max Night_mean Night_min Night_max 

2000 0.622** 0.443** 0.666** 0.535** 0.414** 0.406** 0.602** 0.455** 0.689** 
2005 0.581** 0.412** 0.666** 0.529** 0.332** 0.560** 0.519** 0.428** 0.666** 
2010 0.561** 0.390** 0.693** 0.552** 0.383** 0.601** 0.533** 0.386** 0.689** 
2017 0.547** 0.378** 0.647** 0.521** 0.344** 0.534** 0.531** 0.408** 0.686** 

Note: *P < 0.10; **P < 0.01. 

Fig. 6. Spatial distribution of factors affecting carbon emissions: (a) GRP, (b) PS, (c) ED, (d) IS, (e) GI, (f) LI, (g) WR, (h) LS.  
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For the correlation between the maximum average LST and carbon emissions, the annual average nighttime maximum LST 
(AANLST_max) is greater than the annual average maximum LST (AALST_max), and AALST_max is greater than annual average 
daytime maximum LST (AADLST_max). For the correlation between the minimum average temperature and carbon emissions, the 
annual average nighttime minimum LST (AANLST_min) is greater than the annual average minimum LST (AALST_min), and 
AALST_min is greater than the annual average daytime minimum LST (AALDST_min). The AALST_min is consistent with the 
AALST_max, which may be because carbon emissions have a stronger correlation with higher LST. In contrast, at night, the LST is less 
affected by other factors and thus can show a stronger correlation with carbon emissions (Hu and Brunsell, 2013). 

3.4. Influencing factors of carbon emissions 

Understanding the temporal and spatial differentiation laws and influencing factors of carbon emissions in Guangdong Province is 
crucial to the sustainable development, energy conservation, and emission reduction of Guangdong Province. 

Eight factors were selected based on existing research results and data availability to estimate their degree of influence on carbon 
emissions. These factors are economic aggregate (GRP), population size (PS), economic density (ED), industrial structure (IS), gov-
ernment intervention (GI), water resources (WR), land scale (LS), and land intensity (LI), as shown in Fig. 6. This study selects the 
cross-sectional data of four-time series 2000, 2005, 2010, and 2017 in 108 counties in Guangdong Province. After using the natural 
discontinuity method and the discretization of the impact factor, the spatial differentiation of carbon emissions was driven by a 
geographic detector (Cao et al., 2013). The contribution of each factor to carbon emissions and the interactive detection results are 
shown in Table 5 and Fig. 7. 

3.4.1. Single-factor probe results 
As shown in Table 5, the leading factors of carbon emissions in Guangdong Province were different in different periods. In 2000 and 

2005, GRP had the strongest impact on carbon emissions; in 2010 and 2017, LS had the strongest impact. Overall, GRP, LS, and LI 
influence the spatial differentiation of carbon emissions is always stronger, followed by ED and WR. The effects of GI, IS, and PS on 
carbon emissions are relatively weak, the effects of IS and PS on carbon emissions are relatively stable, and the effects of GI and ED on 
carbon emissions show strong fluctuations. 

Economic aggregate (GRP), population size (PS), and economic density (ED): From 2000 to 2017, the influence of GRP 
gradually weakened, but the overall effect was still very high. The q value ranged from 0.838 to 0.906. The effect of PS was weak and 
fluctuated continuously. Constrained by GRP and PS, the effect of ED decreased from 0.867 to 0.548, showing a gradually weakening 
trend. This demonstrated that improving the level of economic development can lead to an increase in carbon emissions. Therefore, 
regions with better economic growth need to pay attention to the establishment of special technologies for energy conservation, 
emission reduction and clean development. 

Industrial structure (IS) and government intervention (GI): Compared with other influencing factors, the explanatory power of 
IS and GI on carbon emissions showed a weak influence. Their q-value ranges are 0.286–0.367 and 0.284–0.404, respectively, and the 
influence of GI had slightly stronger volatility. Optimizing and adjusting the industrial structure can effectively alleviate carbon 
emissions. Government intervention can influence carbon emissions; the government can guide enterprises to upgrade technology and 
improve energy efficiency through subsidies and other methods. 

Water resources (WR): The q-value of WR ranges from 0.361 to 0.451. Despite the fluctuations, overall, it is relatively stable. This 
is most likely because the coastal Guangdong Province, with sufficient water sources, has a largely stable influence on carbon 
emissions. 

Land scale (LS) and land intensity (LI): LS and LI are the two factors with stronger explanatory power for carbon emissions 
among all factors, but the influence of LI is slightly weaker than that of LS. The q values of LS and LI are in the range of 0.876–0.909, 
0.777–0.814, respectively, indicating that the impervious surface’s size has a significant effect on carbon emissions. Therefore, we 
should pay full attention to the centralized and efficient use of land and plan the layout rationally to prevent the growth of carbon 
emissions from endangering the ecological environment of human settlements. 

Table 5 
Single factor detection results.  

Impact factor q 

2000 2005 2010 2017 

Economic aggregate (GRP) 0.906*** 0.894*** 0.844*** 0.838*** 
Population size (PS) 0.220** 0.205** 0.180** 0.255** 
Economic density (ED) 0.867*** 0.548*** 0.594*** 0.585*** 
Industrial structure (IS) 0.352*** 0.286** 0.367*** 0.352*** 
Government intervention (GI) 0.284*** 0.345*** 0.388*** 0.404*** 
Water resources (WR) 0.451*** 0.424*** 0.426*** 0.362*** 
Land scale (LS) 0.880*** 0.876*** 0.909*** 0.882*** 
Land intensity (LI) 0.814*** 0.803*** 0.795*** 0.777*** 

Note: *P < 0.10; **P < 0.05; ***P < 0.01. 
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3.4.2. Factor interaction probe results 
Factor interaction detection can more specifically detect the effect of two different factors when combined. This study used 

geographic detectors to conduct pairwise interactive detection of 8 indicators that affect carbon emissions. 
Fig. 7 shows the factor interaction detection diagram for the four-time series of 2000, 2005, 2010, and 2017. The results of factor 

interaction detection are all two-factor enhancement or nonlinear enhancement, and the influence of each factor interaction is greater 
than that of a single factor. For example, the single-factor detection q-value of PS in 2010 was low, at only 0.18, but the influences of 
PS∩ED and PS∩LS on carbon emissions were as high as 0.904 and 0.963, respectively. From 2000 to 2017, the interaction between 
GRP, LS, LI, and other factors was relatively strong, and the interaction detection results were between 0.777 and 0.969; in 2000, the 
interaction between ED and other factors was also relatively strong, and the interaction detection results were 0.867–0.962; however, 
from 2005 to 2017, the interactive detection results of ED and other factors declined, and the interaction detection results were 0.548 
and 0.932, PS, IS, GI and WR, and other factors have less obvious variation range. The reason is that these factors have the most 
important influence on carbon emissions, and the interaction effect of factors is more significant than the single factors. 

4. Discussion 

4.1. Carbon emissions and LST 

Economic development and rapid urbanization inevitably increase CO2 emissions, and the issue of carbon emissions has piqued the 
interest of scholars. Previous studies on carbon emissions have primarily focused on the national, provincial, and prefecture-level 
regions. Since the county is China’s fundamental economic space unit and combines macro policy formulation and micro policy 
implementation (Ang and Su, 2016; Zhang et al., 2020), it is used as the research scale in this study. Determine the impact of different 
natural and social factors on carbon emissions, which can provide a theoretical reference for the realization of emission reduction 

Fig. 7. Results of the factor interaction detection: (a) 2000, (b) 2005, (c) 2010, (d) 2017.  

C. Song et al.                                                                                                                                                                                                           



Urban Climate 46 (2022) 101330

10

measures in Guangdong. 
Previous studies on carbon emissions have been directed towards spatial pattern change characteristics, spatial difference analysis, 

and the temporal and spatial evolution of carbon emissions (Chen et al., 2021; Zhang et al., 2022). But the latest studies have shown 
that the carbon emission patterns of land have different degrees of impact on LST (Fattah et al., 2021a; Kafy et al., 2022). There are 
many related studies on LST, but few have explored the two main bodies’ relationship between carbon emissions and LST, further 
exploring the correlation between carbon emissions and LST. This study elucidates the response characteristics between carbon 
emissions and LST through long-term panel data. The results show a significant correlation between carbon emissions and LST. The 
highest average LST has a higher correlation with annual carbon emissions, whereas the average minimum LST has a lower correlation 
with carbon emissions. For the correlation between carbon emissions and annual average LST, annual average LST is greater than 
annual average daytime LST, and annual average LST is greater than annual average nighttime LST; for the correlation between carbon 
emissions and AALST_min/max, AANLST_min/max is greater than AALST_min/max, and AALST_min/max is greater than AADLST_-
min/max. 

4.2. Influencing factors of carbon emissions 

Exploring the influencing factors of carbon emissions is of great significance for taking targeted measures to reduce carbon 
emissions, and then creating sustainable green cities (Sun et al., 2022; Zhao et al., 2021). The results of the study show that the 
dominant factors of carbon emissions in Guangdong province are different in different periods. In general, GRP, LS and LI have 
relatively strong explanatory power for carbon emissions (Table 5). It is worth noting that the pairwise interaction of influencing 
factors has a higher impact on carbon emissions than that of a single factor. This shows that carbon emission is the result of the joint 
action of multiple factors (Fig. 7). Therefore, setting measures to reduce carbon emissions requires a combination of factors, and 
targeting only one factor may not work well. 

4.3. Limitations 

The present study processed data from four years: 2000, 2005, 2010, and 2017. At present, the selection of data has a certain delay. 
Correlation analysis using the annual average day and night LST data and carbon emission data may mask detailed mechanism changes 
in the time dimension. Finally, LST results from the joint action of many influencing factors. This study only discusses the correlation 
between carbon emissions and LST and does not consider and limit other influencing factors, which also causes certain limitations. In 
the future, we look forward to an in-depth exploration of the correlation between the two at shorter temporal resolutions (such as 
seasons, day, and night, etc.) and smaller spatial resolutions. 

5. Conclusions 

The continuous increase in carbon emissions causes environmental changes, and LST is an important indicator for monitoring 
environmental changes. Therefore, it significance to explore the relationship between carbon emissions and LST and the influencing 
factors of carbon emissions for sustainable development. 

The total amount of carbon emissions showed an increasing trend and a semi-circular layered structure when viewed spatially 
(Fig. 2). The areas with significant carbon emissions were concentrated in the counties and districts of Zhongshan, Dongguan, 
Guangzhou, and Shenzhen in the south and show a trend of expansion. 

The annual average LST is mainly 17–24 ◦C, and the high-temperature areas are distributed in Guangzhou, Dongguan, Shenzhen, 
and Foshan. The annual daytime and nighttime average LST are consistent with the annual average LST change. The annual daytime 
and nighttime average LST are mainly 21–28 ◦C and 13–20 ◦C. 

There is a positive correlation between total carbon emissions and LST. The correlation coefficient for the two factors was between 
0.3 and 0.7. The highest temperature showed a higher correlation with total carbon emissions, and the lowest temperature exhibited a 
lower correlation with total carbon emissions. 

The dominant factors on carbon emissions were different in the different time periods considered, but the influence of GRP, LS, and 
LI on the spatial differentiation of carbon emissions were found to be stronger in each time series, followed by ED. The influence of each 
factor interaction was found to be higher than that of any single factor. 

LST result from combination of factors, and the factors that affect surface LST are complex. Therefore, this study only discusses the 
relationship between carbon emissions and LST and does not comprehensively analyze the effects of other factors. In the future, we 
look forward to an in-depth exploration of carbon emissions and other influencing factors and comprehensive analysis of LST on 
smaller time scales and spatial scales. 
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