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A B S T R A C T   

Access to food, water, and good air quality is indispensable for human life, as reflected in various United Nations 
Sustainable Development Goals (SDGs); however, pursuing food security may pose threats to water security and/ 
or air quality. An important case is northwest India including the Punjab and Haryana states, which is the 
‘breadbasket’ of India with a significantly increasing paddy rice area. The rapid expansion of rice farming has 
stressed groundwater resources and impacted air quality. Satellite observations have the potential to provide 
data for better decisions on food security, water storage, and air pollution, which would be vital for regional 
sustainable development. Based on observations from multiple satellites from 2001 to 2018, we found that paddy 
rice expansion (+22%) increased groundwater depletion (− 1.50 cm/yr), residue burning (+500%), and air 
pollution (+29%, PM2.5) in the breadbasket of India. Moreover, satellite observations showed changes in these 
interactions after the enactment of a groundwater protection policy in 2009, which decelerated groundwater 
depletion (− 1.20 cm/yr) due to delayed rice planting and harvest dates (~15d); the latter elevated air pollution 
in November (+29%, PM2.5). Our finding stresses the need to reconcile the trade-offs and consider the in
teractions among SDGs 2 (food), 3 (good health), 6 (clean water), and 11 (air quality in cities), in policy-making 
for sustainable development. An efficient crop residue ultilization and management system, bottom-up 
groundwater use regulations, and cropping system shift towards less water-consuming crops are critically 
required to resolve the trade-offs of the food-water–air quality nexus in the northern India. Our study also 
showcases remote sensing approaches and methods to support and aid the achievement of the SDGs and track 
their progreses to support regional sustainable development.   

1. Introduction 

To feed arapidly growing population and accommodate for its di
etary shifts, global crop production increased threefold in the last five 
decades (FAO, 2013; Roser et al., 2013). The growth in crop production 
was mainly achieved through the “Green Revolution” that combined (a) 
development of high yield crop varieties, (b) agricultural intensification 

driven by increased cropping intensity (Ray and Foley, 2013), chemical 
fertilization (Lu and Tian, 2017), mechanization, irrigation (Siebert 
et al., 2015), and (c) expansion of croplands (FAO, 2019). The increase 
of crop yield and productivity through the combination of the afore
mentioned approaches is a common strategy for promoting human 
development and improving food security, matching with the aspiration 
of the United Nations Sustainable Development Goal 2 (SDG 2, viz., 
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ending hunger and achieving food security) (Aguilar-Rivera et al., 
2019). However, to achieve sustainable development, it is necessary to 
account for aspects of environmental impacts such as water and air 
quality (SDG 3, SDG 6) (Nilsson et al., 2018) as well as soil and plant 
health (SDG 15) that such a strategy might impose. 

Research consistently points to the trade-offs and co-benefits that can 
arise from the implementation of the SDGs (Allen et al., 2019; 2017; 
Messerli et al., 2019). The nexus of water-food-energy first identified 
during the World Economic Forum (Waughray, 2011) has been inves
tigated (Bleischwitz et al., 2018; Simpson and Jewitt, 2019) to propose 
coherent policy options underpinned by integrative resource planning 
(Daher and Mohtar, 2015) that minimize trade-offs. The latter requires 
careful analysis of the connections among the SDGs and targets (Allen 
et al., 2019), and frameworks have been proposed to that end (Griggs 
et al., 2017; Nilsson et al., 2018). For instance, the SDG interaction 
framework (ICSU), presents a typology and scoring of interactions on a 
7-point scale (ranging from − 3, when actions for one target make it 
impossible to reach another target, to + 3 when targets are inextricably 
linked, and actions for one target led to the achievement of another 
target). Analysis of the SDGs and their associated targets using this ty
pology provides a method to assess whether progress on a SDG target has 
a negative, positive or neutral impact on the progress of another target. 
The implementation of these frameworks is important for policy design 
and implementation, where indicators are needed to assess perfor
mance. In this regard, historical time series of satellite observation and 
Big Earth Data can provide evidence —in the form of indicators or 
essential variables— to evaluate whether policy and strategies (Dong 
et al., 2019) designed to advance the SDGs create co-benefits among the 
targets or produce negative impacts on subsets of SDG targets. 

We selected the ‘breadbasket’ of India, namely the Indian States of 
Punjab and Haryana (northwest India), as a test case for our study. This 
region produces two-thirds of the nation’s grain food (Balwinder-Singh 
et al., 2019; Jethva et al., 2018) and was the epicenter of the Indian 
green revolution. Paddy rice has significantly increased in these two 
states during 2000–2015 in an effort to enhance the nation’s food se
curity (Zhang et al., 2020). Such rapid expansion of rice farming has 
stressed groundwater resources and has impacted air quality. Previous 
studies have investigated the increase in rice paddy area (Zhang et al., 
2017), depletion of groundwater (Rodell et al., 2018; 2009), and residue 
burning and air pollution (Jethva et al., 2018) in the region. The Punjab 
and Haryana Preservation of Subsoil Water Act (GW Act) enacted in 
2009 slightly improved groundwater storage (Bhanja et al., 2017) but 
may have posed additional pressure on air pollution in northwest India, 
including the megalopolis of Delhi (Balwinder-Singh et al., 2019; Jethva 
et al., 2018). However, there is limited understanding of the co-benefits 
and trade-offs arising from the interactions of these three components 
—food security, groundwater sustainability, and clean air. Quantitative 
evidence on the relationship among them, as proposed in this research, 
is essential to understand interactions amongst policy objectives around 
food security (SDG 2), groundwater depletion (SDG 6), and air pollution 
(SDG 3 &11), to anticipate how these interactions constrain or coun
teract progress in achieving SDG targets (Griggs et al., 2017; Tremblay 
et al., 2020), for policy design and implementation. 

Here, we seek to demonstrate the potential of time-series of satellite 
observations to gather the information that can evidence impact (posi
tive, enabling or reinforcing, or negative, as in constraining, counter
acting or canceling) sectoral policies on national commitments of 
advancing the SDG targets related to food security (Supplementary 
Table 1). We focus on the links between food security (SDG targets 2.3 
and 2.4), sustainable water management using groundwater withdrawal 
as a proxy, and good health and well-being using air quality as a proxy 
(SDG targets 3.9 and 11.6). Although none of the SDGs mentions 
groundwater explicitly, 53 of the 169 targets have clear links to 
groundwater, particularly SDG targets 6.6 and 6.4 which highlights the 
importance of groundwater for achieving SDG targets (Guppy et al., 
2018). We used a satellite-based framework and correlative analyses of 

time series measurements to identify interactions among changes in 
paddy rice planting areas, groundwater depletion, agricultural burning, 
and air pollution. Our study aimed to identify long-term changes in 
paddy rice planting areas (a proxy for food production) and their trade- 
offs with groundwater storage, agricultural burning in northwest India 
(Punjab and Haryana), and air pollution of neighboring urban areas such 
as Delhi. Our framework also facilitated the assessment of the impacts of 
the 2009 Water Act on groundwater preservation, the paddy rice cal
endar, groundwater depletion rate, and air quality in northwest India. 
Additionally, we estimated the number of people exposed to high levels 
of PM2.5, which is used to track the progress of SDG target 11.6. This 
target is focused on reducing the adverse per capita environmental 
impact of cities, including air quality. 

The specific objectives of this study were to: (1) quantify the in
teractions connecting paddy rice expansion, groundwater storage, res
idue fires, and air quality, using observations from multiple satellites; 
(2) investigate the impacts of groundwater conservation policy on 
annual groundwater trends, paddy rice harvest time and residue fires 
and regional air-quality; and (3) estimate the number of people exposed 
to poor outdoor air quality in rural and urban areas neighboring the 
agriculture residue burning sites. 

2. Data and methods 

2.1. Study area 

The two states Punjab and Haryana are situated in northwest India, 
extending between 27˚03ʹ38ʹʹ to 32̊08ʹ35ʹʹ N latitude and 73̊01ʹ54ʹʹ to 
77̊05ʹ36ʹʹ E longitude. These regions are major rice and wheat producer 
characterized by double cropping patterns on the irrigated lands and 
utilize modern mechanical equipment and large amounts of fertilizer. 
These two states alone constitute more than 70% of the total crop res
idue fires in the Indo-Gangetic Plains. The region has a subtropical 
monsoon climate with very hot summer and very cold winter. The mean 
monthly temperature varies between 5̊C to 40̊C, and the average annual 
rainfall is about 633 mm. Recently, these two states were in the limelight 
due to agricultural fires and declining groundwater tables. Here we 
analyzed the environmental consequences of intensifying paddy rice 
cropping and unsustainable agriculture practices and related air quality 
in the megacity Delhi. 

2.2. Data 

2.2.1. MODIS surface reflectance data and vegetation indices 
We used Moderate Resolution Imaging Spectroradiometer (MODIS) 

surface reflectance data to map paddy rice planting areas. The 
MOD09A1 land surface reflectance product version 6 is an 8-day interval 
and 500-m spatial resolution composite generated from daily observa
tions and is atmospherically corrected for gases, aerosols, and Rayleigh 
scattering. The data quality flags included in the MOD09A1 dataset were 
used to exclude pixels with cloud cover (cloudy and mixed), internal 
clouds, cloud shadows, high aerosols, high cirrus, and snow (Supple
mentary Fig. 1). Three spectral indices, including the Normalized Dif
ference Vegetation Index (NDVI) (equation (1)), Enhanced Vegetation 
Index (EVI) (equation (2)), and Land Surface Water Index (LSWI) 
(equation (3)), were calculated for paddy rice mapping. 

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)  

EVI =
ρNIR − ρred

ρNIR + 6 × ρred − 7.5 × ρblue + 1
(2)  

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(3)  

where ρNIR, ρred, ρblue, and ρSWIR are the surface reflectance values of 
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near-infrared (NIR), red, blue, and shortwave-infrared (SWIR) bands 
from MOD09A1, respectively. 

2.2.2. Satellite-based fire and burned area data 
The Fire Information for Resource Management System (FIRMS) 

dataset was used to analyze the fire dynamics, which contains near real- 
time (NRT) active fire locations. The dataset was processed by using the 
MODIS MOD14/MYD14 Fire and Thermal Anomalies product. Each fire 
location represents the centroid of a 1 km pixel that contains one or 
more fires within pixel (Giglio et al., 2015). Daily fires were estimated 
by counting the active fire pixels within the study area. The FIRMS 
dataset likely underestimates the number of actual fires because most 
residue fires are small and short in duration. Also, multiple fires could 
occur within a single pixel (Balwinder-Singh et al., 2019). The burned 
area data were from MODIS Terra and Aqua combined MCD64A1 
version 6 monthly global gridded 500-m product (MCD64A1.006). Time 
series of burned area maps were generated after removing the invalid 
pixels using the quality assurance (QA) data layer. 

2.2.3. Satellite-based total water storage (TWS) data from GRACE 
The Gravity Recovery and Climate Experiment (GRACE) Tellus 

Monthly Mass Grids provide monthly gravitational anomalies (1˚reso
lution). We used the monthly GRACE TWS dataset produced by Centre 
for Space Research of University of Texas to estimate the groundwater 
storage according to (Chen et al., 2014). 

2.2.4. Satellite-based aerosol optical depth (AOD) data and PM2.5 data 
The aerosol optical depth (AOD) data were derived from the MODIS 

Terra and Aqua combined MCD19A2 version 6 daily product 
(MCD19A2.006), which was derived from MODIS using the Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) algorithm. This 
dataset is available at 1-km spatial resolution. MAIAC generated MODIS 
AOD has reasonable accuracy for long-term AOD trend analysis over 
northern India (Jethva et al., 2019). 

The rise of particulate matter of a diameter less than or equal to 2.5 
µm (PM2.5) (Dey et al., 2012) is another important indicator for air 
pollution. Global annual PM2.5 grids were obtained from the NASA So
cioeconomic Data and Applications Center (SEDAC) (Van Donkelaar 
et al., 2016). This dataset was generated by combining AOD from 
MODIS, Multi-angle Imaging Spectroradiometer (MISR), and the Sea- 
Viewing Wide Field-of-View Sensor (SeaWiFS) satellites. The GEOS- 
Chem chemical transport model was used to estimate the near-surface 
PM2.5 concentration (micrograms per cubic meter) with dust and sea- 
salt removed. The annual PM2.5 values were generated using 
geographically weighted regression techniques (Van Donkelaar et al., 
2016). The dataset is available for 1986–2016 at 0.01-degree resolution. 

The ground-level air quality data in Delhi were also obtained from 
the US Embassy & Consulate of New Delhi. The hourly PM2.5 data is 
available from 2015 to 2019 and was collected using a MetOne BAM 
1020 particulate monitor at the US Embassy in New Delhi. The MetOne 
BAM 1020 instrument measures the PM2.5 concentration of ambient air 
on an hourly basis using the Beta attenuation method. The annual 
average PM2.5 was calculated using daily hourly data collected at the US 
Embassy in New Delhi. The dataset is publicly accessible from the 
following URL https://in.usembassy.gov/embassy-consulates/new- 
delhi/air-quality-data/. 

The PM 2.5 data from 2002 to 2018 were acquired from the Open 
Government Data (OGD) platform (https://data.gov.in/). These datasets 
were collected under the National Air Quality Monitoring Programme 
(NAMP) of the Government of India from the air quality monitoring 
stations across Delhi. The data was collected by the Central Pollution 
Control Board (CPCB) using the PM2.5 Gravimetric measurement 
method and FRM or FEM equipment. The PM2.5 data were usually 
collected twice a week, and annual average PM2.5 concentration was 
calculated from these datasets. 

2.2.5. Population data 
Population data were derived from the Gridded Population of the 

World Version 4 (GPWv4) (CIESIN, 2016). It included population esti
mates for the year 2015 and was calculated for every 1 km2 cell (~30 
arc-seconds) using the proportional allocation of populations from 
census and administrative units. This dataset is appropriate to assess the 
pollution exposure to urban and rural population (Leyk et al., 2019). 

3. Methods 

3.1. Paddy rice mapping 

The annual paddy rice maps between 2001 and 2018 were generated 
using the phenology and pixel-based algorithm from MODIS data at a 
500-m spatial resolution. Paddy rice is the only crop that is transplanted 
in flooded fields, and the flooding signal during the transplanting phase 
is the unique feature for the identification of paddy rice areas (Xiao 
et al., 2005). Time series remote sensing indices are capable of identi
fying the flooding signals from the water-soil mixture fields of paddy rice 
based on the relationship between the Enhanced Vegetation Index (EVI) 
and Land Surface Water Index (LSWI) using the following equations, 
LSWI + 0.05 ≥ EVI. This algorithm has been applied successfully in 
previous studies in Asia (Dong et al., 2016; Zhang et al., 2020). 

To reduce the commission errors in the paddy rice maps, several non- 
croplands masks were generated, including permanent water bodies, 
forest area, bare land, built-up, evergreen vegetation, and high slope 
lands. Final annual paddy rice maps were generated after excluding 
these non-cropland areas. The derived paddy rice maps were validated 
using the higher resolution Landsat-based paddy rice maps (Dong et al., 
2016). The validation showed that derived paddy rice maps were reli
able and spatially consistent with the higher spatial resolution Landsat- 
derived products. 

3.2. Groundwater extraction from GRACE 

Groundwater anomalies were derived after removing surface water 
storage (soil moisture, snow water, and surface reservoirs) from GRACE 
TWS. The storage changes in surface water, snow, ice, and biomass are 
minor relative to the total regional water storage and thus are usually 
neglected (Breña-Naranjo et al., 2014). 

We used an estimate from GLDAS (Rodell et al., 2009) to remove the 
surface water storage to create annual groundwater storage from 2002 
to 2016. The total groundwater anomalies were calculated from the 
processed monthly GRACE landmass grid dataset. The groundwater 
storage anomalies (dGWS /dt) are typically approximated as: 

dGWS/dt = dTWS/dt − dSMS/dt (4)  

where TWS is total water storage and SMS is soil moisture storage. The 
yearly mean groundwater storage was calculated from the monthly 
groundwater values to analyze long-term changes. 

3.3. Derivation of paddy rice phenology 

We derived the start of the season (SOS) from the MODIS EVI time 
series data using the double logistic (DL) model. The DL model uses the 
sigmoid function to estimate the SOS, and its model parameters repre
sent the physical characteristics of vegetation growth. To extract the 
SOS, the DL model was fit to the EVI time series using the following 
equation: 

f (t) = a1 + a2

(
1

1 + e− p1(t− n1)
−

1
1 + e− p2(t− n2)

)

(5)  

where f(t) is the fitted EVI value at day t, and a1 and a2 are the back
ground and amplitude of EVI, respectively. p1, n1, and p2, n2 are the pair- 
parameters that trace the green-up (SOS) and senescence time of 
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vegetation growth, respectively (Li et al., 2019). The SOS was defined as 
the time or date when the derivative of EVI reaches the maximum during 
the growing period, and the half-maximum criteria were used to derive 
it from EVI (Li et al., 2019). To accurately extract the SOS, we initially 
smoothed the EVI time series using a moving average of continuous 
observations within two days, which helps normalize the abnormal ac
quisitions, preserves the inherent seasonal pattern of EVI, and minimizes 
the uncertainty of parameter estimation of the double logistic model (Li 
et al., 2019). The DL model parameters were estimated according to Li 
et.al (Li et al., 2019). 

3.4. Interannual variation and trend analyses of paddy rice area, 
groundwater, residue burned area, PM2.5 and AOD 

We investigated the spatial pattern of changes in various variables 
(paddy rice area, groundwater, residue burned area, ambient PM2.5, and 
AOD) using the least square linear regression method. The slope a of the 
regression indicated the trend of temporal change at the pixel level, a >
0 denoted increasing trend, and a < 0 denoted decreasing trend. The 
pixels with slopes that were statistically significant at the 95% confi
dence level (p < 0.05) were selected for our analysis. We calculated a 
spatially explicit map of the linear trend for the mentioned variables 
during the 2001–2018 period for the respective datasets. We calculated 
standard anomaly (Std. anomaly) for the groundwater, residue burned 
area, PM2.5, and AOD between 2002 and 2018 for the respective vari
ables using the following equation: 

Std.anomaly =
(
X − X

)/
σ (6)  

Where X is the value at a year, and X and σ are the average and standard 
deviation values, respectively. 

3.5. Estimation of population-weighted exposure to PM2.5 pollution 

We estimated human exposure to PM2.5 using the Gridded Popula
tion Count of the World (GPW) dataset for both rural and urban areas. 
The annual mean values of PM2.5 were used to model the population 
exposure to PM2.5, as the long term mean PM2.5 concentration is 
important from the human health perspective (WHO, 2018). We have 
used the population-weighted exposure (PE) method to estimate the 
individual exposure to PM2.5 for both urban and rural areas. The urban 
and rural areas were distinguished using the MODIS-derived urban area 
gird (Schneider et al., 2009) (https://www.naturalearthdata.com). The 
population-weighted exposure (PE) (Aunan et al., 2018) to PM2.5 was 
estimated for 2015 using the mean PM2.5 concentration and the Gridded 
Population count of the World (GPW) for the same year. The population- 
weighted exposure (PE) was calculated using the following equation: 

PE =
1
P

∑

i
Pi.Ci (7)  

where P is the population, C is the PM2.5 concentrations, i represents 
pixels or regions. 

3.6. Air mask back trajectories analysis 

During the post-monsoon burning season, the air flows from Punjab 
and Haryana towards Delhi, carrying all the aerosol particles with it and 
creates a high level of PM2.5 in and around Delhi (Liu et al., 2018; Martin 
et al., 2019). We used the Hybrid Single-Particle Lagrangian Integrated 
Trajectory model (HYSPLIT) (Stein et al., 2015) to estimate the airsheds 
to determine the impact of the neighboring region’s outdoor burning on 
Delhi’s air quality. The HYSPLIT analysis evidence that post-monsoon 
increases in PM2.5 were driven more by residue burning than any 
other source (Supplementary Fig. 2). Compared to October, air pollution 
dispersion is lower in November due to weaker wind and fog. 

Consequently, the PM2.5 level is significantly higher in November and 
December than any other months (Supplementary Fig. 3), indicating 
that rice residue burning contributes more to the rise of air pollution 
rather than any other sources post-monsoon season. 

The transport of smoke particles from the source to the receptor 
primarily depends on the wind direction, speed, and transport altitude 
along the transportation path. To trace the source locations of smoke 
particles over Delhi, five-day air mask back trajectories were calculated 
at an altitude of 100-m for every 6 h starting at 1:30 pm local time of 
Delhi using the HYSPLIT model (Stein et al., 2015). The back- 
trajectories were calculated during the crop burning months of 
October and November in 2018. The HYSPLIT model was fed with the 
NCEP and NCAR reanalysis meteorological datasets from (National 
Oceanic and Atmospheric Administration (NOAA) to compute the back- 
trajectories. Several previous studies have used HYSPLIT back trajec
tories to determine the influence of agriculture fires on nearby city’s air 
quality (Bikkina et al., 2019; Jethva et al., 2018; Liu et al., 2018). 

4. Results 

4.1. Nexus of paddy rice cultivation, groundwater depletion, and air 
pollution 

Food production, water, and air quality are interconnected in 
northwest India. In an effort to increase food production, the paddy rice 
cultivated area has been rapidly increased in recent years. Continuous 
and excessive extraction of groundwater to irrigate the extensive paddy 
rice fields has depleted groundwater storage. Furthermore, increased 
paddy rice farming has generated more rice residues. To manage and 
prepare the croplands for the next crops, the rice residues are burned in 
the fields, which causes air pollution throughout the region. We first 
investigated each component of this interconnected system and then 
provided a comprehensive assessment of this system involving food, 
water, and air quality. 

The spatial distribution, trends, and anomalies of the groundwater, 
fire events, AOD, and PM2.5 are analyzed to investigate the trade-offs of 
the food-water–air nexus. Extensive expansion of paddy rice fields 
occurred in both Punjab and Haryana (Fig. 1), where the paddy rice area 
increased from approximately 3.5 million hectares (Mha) in 2001 to 4.3 
Mha in 2015 according to the government statistical data, at a rate of ~ 
1.5% per year (Fig. 1). The most dramatic increase occurred in Punjab 
where our remote sensing-based analyses showed an increased rice 
proportion from 25% in 2001 to 57% in 2018 (Fig. 1B). 

A historical negative feedback loop exists between food security and 
sustainable water withdrawal in northwestern India. Most of the crop
lands in Punjab and Haryana are irrigated (Supplementary Fig. 4), 
especially paddy rice, which is kept inundated until 7–10 days before 
harvest. The net irrigated area increased from 6.9 million hectares in 
2009 to 7.1 million hectares in 2014 (Fig. 2A). The consistent with
drawal of groundwater has led to the persistent depletion of ground
water storage in these regions (Figs. 2 and 3). Our analysis of the Gravity 
Recovery and Climate Experiment (GRACE) satellite datasets show that 
Punjab and Haryana experienced a significant depletion of groundwater 
at a rate of − 1.50 cm/yr from 2002 to 2016 (Fig. 2B), a finding which is 
well supported by previous studies (Asoka et al., 2017; Rodell et al., 
2018; 2009). 

Another negative feedback loop occurs between air quality and rice- 
residue management. The burning of rice residues in the fields is a 
common management practice (Ahmed et al., 2015) for clearing har
vested rice fields and preparing the fields for subsequent wheat culti
vation in Punjab and Haryana. The post-monsoon airshed of Delhi 
extends from northwest to Punjab and Haryana where most of the rice 
paddies are located (Supplementary Fig. 2). Residue burning occurs 
during the post-monsoon season when the dispersion of air pollution is 
low (Methods, Supplementary Fig. 2), especially in November and 
December, which triggers annual spikes in air pollution in these states 
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and the neighboring capital city of Delhi (Supplementary Fig. 3) (Jethva 
et al., 2019, 2018; Liu et al., 2018). As the paddy rice area expanded and 
the rice residues increased due to the higher mechanization, the number 
of fire incidents increased substantially from 35,426 in 2002 to 57,918 
in 2018 (Fig. 2C), and the burned area increased from 500 km2 in 2002 
to 15,780 km2 in 2018 (Fig. 3B). 

We also found that PM2.5 distinctly increased in the post-monsoon 
season (October, November, and December) (Supplementary Fig. 3), 
with annual mean PM2.5 increased from 127.69 µg/m3 in 2002 to 
167.97 µg/m3 in 2018 (Fig. 2F), which coincided with the time of rice 
residue burning in Punjab and Haryana. Similarly, satellite-based 
aerosol optical depth (AOD) had an upward trend (Fig. 3), with the 
annual maximum AOD increasing from 0.93 in 2002 to 1.21 in 2018 in 
winter (Fig. 2E), and so did ground-based PM2.5 observations during 
2002–2018 with a peak in 2018 (1546 µg/m3) (Fig. 2D). To curb the 
post-monsoon pollution in Delhi, the local government implemented an 
‘odd and even license plate numbers’ automobile driving policy in 2016. 
According to this policy, private vehicle use was restricted and split into 
the odd- and even- days according to the license plate number. However, 

this policy did not decrease PM2.5 values (Chowdhury et al., 2017), 
which suggests that residue burning practices have the most substantial 
impact on urban air quality during winter. 

Both the negative rice-groundwater feedback loop and the rice-air 
quality feedback loop affect the nexus of food-water–air. Because of 
the effort to achieve food security and the policies supporting the price 
of rice, the paddy rice planting area increased substantially during 
2001–2018 and irrigation intensified. The extensive and constant 
groundwater withdrawals for irrigation have depleted groundwater 
storage at a steady rate that outpaces natural groundwater recharge. 
Along with the increase in paddy rice planting areas, rice biomass and 
residues in the fields have also increased. These residues are usually 
burned in the field in preparation for the next crop. The residue burning 
activities have increased PM2.5 concentrations during the post-monsoon 
season. The impact of residue burning is not limited to agricultural 
areas, but also affects other adjacent, densely populated regions in the 
airshed such as Delhi. The correlations among the paddy rice areas, 
residue burning, AOD, and PM2.5 are presented in Supplementary Ta
bles 2 and 3; the correlation coefficients indicate the respective positive 
and negative relationships. 

In short, paddy rice expansion caused the depletion of groundwater 
through increased irrigation; meanwhile, increased paddy rice planting 
area generated more residues that are being burned following the 
heightened air pollution (Figs. 2 and 3). Additionally, the GW Act led to 
the more concentrated rice harvest timing and residue burning, which 
further contributed to the degraded air quality of the northwest region of 
India-including Delhi (Fig. 4), as we discussed further in the following 
section. Over the period of 2001–2018, paddy rice cultivation area 
increased by 22%, crop residue fires increased by 500%, and AOD and 
PM2.5 increased by 30% and 29%, respectively. Intensive irrigation of 
paddy rice fields contributed to the depletion of groundwater by − 1.5 
cm/year. The groundwater conservation policy slowed down ground
water depletion from − 1.5 cm/year to − 1.2 cm/year. The groundwater 
conservation policy shifted the rice harvest time towards the winter 
season by 15 days and increased the winter air pollution by 29%. 

4.2. Unintended negative consequences of sectoral policy responses 

The food, water, and air quality in the northwestern India are closely 
interconnected. This system is affected by external factors that either 
elevate or reduce the stress between them. For example, in northwestern 
India the groundwater conservation policy had negative impacts on the 
regional air quality. 

Over the past decades, paddy rice fields were inundated with irri
gation water from groundwater sources before the monsoon season ar
rives, which caused groundwater depletion. To protect the groundwater 
resources, the GW Act was enacted in 2009, which precludes farming of 
paddy rice until the arrival of the monsoon (20th June). Fig. 5 provides 
satellite-based evidence of the effectiveness of this policy on ground
water protection. It is worth noting that the rate of groundwater 
depletion decreased from − 1.82 cm/yr during 2002–2008 to − 1.20 cm/ 
yr during 2009–2016 in Punjab and Haryana (Fig. 5F). The policy had 
remarkable effectiveness, given the similar precipitation trends before 
and after the GW Act (Bhanja et al., 2017) (Supplementary Fig. 5). 

We also found unintended negative consequences of this policy on 
air pollution. Our results show that 2009–2010 was the turning point for 
the interannual variation in the groundwater, residue fires, and air 
quality (Fig. 3). The rice harvest dates became more concentrated and 
shifted by ~ 15 days from late September to October (Fig. 5). The shifted 
harvest dates forced residue burning activities into a narrower time 
window in early November. Before the GW Act, fire counts peaked in 
October with 37,573 fire incidents, but after the GW Act, the fire count 
peaked in November with 54,955 fires. Consequently, both the AOD and 
PM2.5 increased in November. The mean AOD in November increased 
from 1.10 in 2002–2008 to 1.95 in 2009–2018, while PM2.5 in 
November also increased from 827.12 to 1110.16 µg/m3 during the 

Fig. 1. Spatial distribution and trend of paddy rice area in India. (A) the 
spatial trends of paddy rice area during 2000–2015, derived from the MODIS 
data; the inset figure is the frequency diagram of Figure A; (B) spatial distri
bution of unchanged and expanded paddy rice from 2001 to 2018; (C) trend of 
paddy rice area; (D) annual changes and trend of paddy rice areas from 2001 to 
2015 derived from official statistical data. 
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same time period (Fig. 5J). Overall, the GW Act proved to be effective in 
slowing groundwater depletion, but it shifted the rice harvest dates to 
October that has reflected in November with the increase in residue 

burning and subsequent AOD and PM2.5 increase. 

Fig. 2. Interannual variability. (A) net irrigated area; (B-E) represents the interannual variability of yearly maximum values of groundwater storage, residue fires, 
PM2.5, and AOD, respectively; (F, G) represents the interannual variability of yearly mean values of PM2.5, and AOD, respectively. The dotted vertical line represents 
the GW Act implementation year (2009). The presented mean values are for the periods before and after the GW Act. In Figure D, the PM2.5 data were missing from 
2010 to 2013 as the data were unavailable. 

Fig. 3. Spatial distribution, trend, and interannual variability of groundwater storage, fires, AOD, and PM2.5. Groundwater storage (A1, A2, A3); residue fires 
(B1, B2, B3); AOD (C1, C2, C3); and PM2.5 (D1, D2, D3). In the figures (A, D) from left to right, each column represents the spatial pattern in 2002, the spatial pattern 
in 2018, and the trend from 2002 to 2018, respectively. (E-H) represents the interannual variability (Std. anomaly) of groundwater storage, residue fires, AOD, and 
PM2.5, respectively. The dotted vertical line on the graph (right panel) shows the turning point after the GW Act implementation in 2009. The units of A1 and A2 are 
cm; B1and B2 are m2; C1 and C2 are unitless; D1and D2 are micrograms per cubic meter. 
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4.3. Higher population exposure to PM2.5 inrural than in urban areas 

According to the World Health Organization (WHO), the safety level 

for human exposure to PM2.5 is approximately 10 µg/m3. The exposure 
to PM2.5 in megacity Delhi, where there are 19 million inhabitants, 
received enormous attention from the government, media, and the 

Fig. 4. A typical food, water, and air quality connection in northwest India. The top panel (A) represents the single goal (target of achieving only food pro
duction) and mechanism of the nexus. The bottom panel (B) shows the current situation while trying to achieve the dual goals of food production and groundwater 
conservations. The inset symbols in the red color of Figure A and B represent the following; upward arrow: constant increasing trend; downward arrow: constant 
decreasing trend; forward arrow: consequences and spiky circle: concentrated reside fires locations. The green color forward arrow represents the transportation 
of aerosols. 

Fig. 5. Impact of the Groundwater (GW) Act implementation. (A1, B1, C1, D1, E1) represents before the GW Act, and (A2, B2, C2, D2, E2) represents after the 
GW Act. The spatial changes are present in (A1, A2) groundwater (GW); (B1, B2) rice harvest date; (C1, C2) residue fires; (D1, D2) AOD; (E1, E2) PM2.5. (F-J) 
represents the monthly changes of groundwater, harvest date frequency (HF), fire, AOD, and PM2.5 before and after the GW Act, respectively. The period before the 
GW Act is 2002–2008, and after the GW Act is 2009–2016. The annual mean values were used to create the maps (A-F), monthly mean was used for the figure (G-J). 
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public (Bhalla et al., 2019). Over the year, the PM2.5 concentration level 
has been higher in urban areas than in rural areas. Delhi’s topography 
(trough-like, being situated between the Himalayan Mountains to the 
north and the Central Highlands to the south) and meteorological con
ditions (wind speed and directions), combined with highly polluting 
human activities (agricultural burning, transport) have made this city 
one of the most polluted cities in the world (Bikkina et al., 2019; 
Chowdhury et al., 2017; Dey et al., 2012; Martin et al., 2019). The 
annual mean PM2.5 values in the urban areas of Delhi, Haryana, and 
Punjab were 111.2 µg/m3, 82.5 µg/m3,and 68.3 µg/m3, respectively 
higher than that in the rural areas of Haryana (79.2 µg/m3) and Punjab 
(66.5 µg/m3). Noteworthy is that the peak in asthmatic patients in 
hospitals of northwest India co-occurs with the rice residue burning 
season (Singh and Sidhu, 2014), especially in Delhi. 

However, human exposure to PM2.5 in rural areas was not widely 
discussed and investigated (WHO, 2018). Agriculture is the primary 
sector of employment in northwest India, and most of its population 
works outdoors for farming activities, and thus the outdoor exposure to 
high concentrations of PM2.5 is a threat to human health in the rural 
areas. Given the fact that India is still a country with a larger population 
in rural areas than in urban areas, more rural people were likely to be 
exposed to air pollution. Our results show that in the urban areas of our 
study area, approximately 7 million people were exposed to 90–120 µg/ 
m3 level of PM2.5, while another 9 and 0.5 million people were exposed 
to PM2.5 level of 60–90 µg/m3 and 30–60 µg/m3, respectively (Fig. 6). In 
the rural areas, approximately12 and 20 million people were exposed to 

PM2.5 levels of 90–120 and 60–90 µg/m3, respectively (Fig. 6). These 
results suggested that more people are exposed to air pollution in rural 
areas than in urban areas; this has been neglected in the past. Our 
finding that air pollution due to PM2.5 is just as harmful in rural areas as 
in urban areas could substantially impact how pollution is viewed in 
India. Presently, India is focusing its attention on addressing air pollu
tion in the cities, but our results suggest that policymakers need to also 
focus on air pollution in rural areas. 

5. Discussion 

5.1. Trade-offsamong food security (SDG 2),air quality (SDG 3, 11), and 
sustainable water withdrawal (SDG 6) 

A comprehensive understanding of the interlinkages between rice 
production (SDG 2), water resource depletion (SDG6), and air quality 
(SDG 3 and SDG 11) is beneficial for coherent policy design that avoids 
clashes amongst SDG targets, and overcomes barriers to achieve other 
SDG targets. The complex interactions among the food supply, water, 
and good air quality are highlighted using a simplified flower diagram 
(Foley et al., 2005) which is useful to understand the challenges 
regarding the trade-offs between the SDGs (Supplementary Fig. 6). 

In this regard, our results illustrate the prevalence of two situations 
in the region (Supplementary Fig. 6). First, before 2009 the single goal of 
food security caused groundwater depletion and air pollution. The 
increased paddy rice cultivation was favorable for the nation’s food 
security. However, groundwater withdrawals, which are needed to 
support this crop cultivation, caused groundwater depletion. This phe
nomenon can be traced to the Indian Green Revolution, which saw the 
tripling of total irrigated area from 0.21 million km2 to 0.63 million km2 

between 1950 and 2009, when the total share of groundwater use for 
irrigation increased from 28% to 61% (Gandhi and Bhamoriya, 2011). 
Continuous withdrawal has led to a substantial depletion of ground
water resources in these regions (Famiglietti, 2014; Rodell et al., 2018; 
2009), and at present groundwater abstraction is about 70% above the 
annual recharge (Tripathi et al., 2016), which is largely driven by the 
need to irrigate rice. 

Second, the GW Act of 2009 reflects a conversion from a single goal 
of food security to the dual goals of food production and groundwater 
protection. However, this conversion further exacerbated air pollution 
after 2009. The goal of groundwater conservation under the GW Act and 
the desire to increase rice production have shifted rice harvest dates to 
later in the year and concentrated residue burning into a narrower time 
window. Higher rice production has increased rice residue burning, 
which has contributed substantially to extreme levels of air pollution in 
northern India (Sembhi et al., 2020). The amount of residue burned is 
approximately 1.5–2.5 times higher than the actual grain yield (Jethva 
et al., 2019). In turn, this has increased the levels of air pollution in 
Delhi; the peak of PM2.5 in this megalopolis significantly coincides with 
the peak of residue burning in Punjab and Haryana (Supplementary 
Fig. 3). In summary, whereas the groundwater conservation policy has 
shown success in reducing groundwater depletion, it has intensified air 
pollution in northwest India by concentrating residue burning in the 
winter season when meteorological conditions are conducive to poor air 
quality (Supplementary Fig. 3). Our results indicated an urgent need for 
sustainable and effective crop residue management practices to curb 
current trends of air pollution. If ignored, the current burning practices 
will further deteriorate the air quality and increasingly threaten public 
health in the region (Fig. 6C). 

5.2. Reconciling the three targets for sustainable development in 
northwest India 

We provided satellite-based evidence of the need for policy coher
ence, interventions that reconcile food security, water security, and air 
quality, as the contest between food production, groundwater 

Fig. 6. The exposure ofpollution to air pollution. (A) population-weighted 
exposure to PM2.5 for urban and rural populations in northwest India; (B) 
mean PM2.5 concentration for urban and rural regions in northwest India during 
2016; (C) number of days with very unhealthy PM2.5 concentrations in 
November. Note that the WHO safety guideline for PM2.5 level is 10 µg/m3. 
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conservation, and air quality will not be a zero-sum game (Fig. 7). Trade- 
offs occur when an ecosystem is managed to increase a single service 
such as food production, which causes the reduction of other ecosystem 
services like the groundwater or regional air quality. Governmental 
policy needs to focus on sustainable development and reconciling 
different targets, rather than only maximizing one or two goals. To 
balance the trade-offs, reasonable approaches are needed, such as 
moving towards planting less water-consuming and short-duration crops 
and adopting new methods to manage residues other than burning. 

The burning of rice residue is a conscious decision made by farmers 
due to the unavailability of affordable and effective residue removal 
methods. Thus, farmers usually opt for on-site burning of residue as an 
active management strategy to clear and prepare the land for winter 
wheat (Jethva et al., 2019). Though the local government imposes 
penalties on residue burning, millions of tons of residues are still burned 
every year. The practice of rice residue burning will likely continue 
unless inexpensive technological advances become available to reduce 
the current cost of residue removal. 

The Punjab and Haryana regions have benefited from the expansion 
of rice paddies through increased farmer income and enhanced national 
food security, and have become the largest contributor to the state’s 
gross domestic product (GDP) with a 30% share of the agricultural 
sector. However, the benefits gained from the expansion of the rice area 
has come at a cost to ecosystems and the environment (Jimmy et al., 
2017). For instance, the Indio-Gangetic plain and northwest India have 
experienced significant depletion of groundwater resources in the last 
20 years (Chen et al., 2014; Mishra et al., 2018; Rodell et al., 2009). 
Overexploitation of groundwater for human uses has led to a persistent 
decrease in groundwater storage and has left a long-lasting impact on 
streamflow, lakes, and wetlands (Hanasaki et al., 2008; MacDonald 
et al., 2016). Due to the prolonged process of groundwater recharge, 
extremely depleted groundwater resources may not be restored to 
normal levels in the future, given that the Indian summer monsoon is 
weakening (Asoka et al., 2017; Chen et al., 2014). Thus, persistent 
groundwater depletion may lead to severe regional water crises. In these 
two states, the current groundwater extraction rate exceeds the total 
annual groundwater recharge rate, which has caused rapid declines in 
groundwater storage. The trend in groundwater depletion remains 
persistent despite normal precipitation and temperature patterns re
ported by the Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS) (Supplementary Fig. 7). 

5.3. Human and policy dimensions of the interlinkages among food- 
water–air quality 

Food, water, and air quality in northwest India interact across mul
tiple scales, from national and local. To meet the national demand of 
food production, the local challenge of sustainable water availability is 
frequently ignored. To simultaneously achieve national food security, 
water security, and cleaner air, frequently fostered local production of 
food and consumption of water without paying sufficient attention to 
local-scale impacts and consequences. Moreover, to address localized 
sustainable water supply issues, regional problems that lead to poor air 
quality have been overlooked. 

Therefore, northwest India needs approaches that consider the 
interlinkages of food, water and air quality to address the national 
challenge of food security, water resources conservation and air pollu
tion with in-depth exploration of the process involving the institution 
and policy framework that influence decision making at local, regional 
and national levels. The extensive groundwater extraction for rice 
cultivation can lead to severe water scarcity in the region. Although this 
issue was well recognized locally, it was merely considered a factor in 
regional policy. Local decision-makers may have the limited institu
tional capacity to address such an issue when the central government 
pursues food security as a national interest. Our results indicated that 
the decision by local authorities to conserve groundwater resources did 
not hurt national interests around food security, but impacted regional 
air quality. This trade-off demonstrates that to maintain an adequate 
supply of food, preserve water, and air quality, more comprehensive 
analysis and management policies are needed that involve vertical 
cooperation and coordination amongst local, regional, and national 
decision-makers. 

The demand for food production will increase with the growing 
population, which also relies on water and non-polluted air for survival. 
Understating the fundamental trade-off and synergy among food, water, 
and air quality is a key first step to enabling more coherent policy- 
making, but this will also require thinking through the multi-level pol
icy dimensions in the nexus. Ways of reconciling policies across scales 
could include fiscal transfers from the National Capital Region (NCR) 
(affected by air pollution) to Punjab and Haryana for subsidizing 

Fig. 7. Summary of SDG target and nexus. A schematic of interactions among the various SDG targets, their nexus, and policy impacts in northwest India.  
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changes in crop residue management, incorporating the implications of 
groundwater decline into inter-state water sharing agreements (Srini
vasan and Lele, 2017), and changes in national price support and pro
curement policies to encourage a shift away from rice-wheat 
overproduction. 

5.4. Recommendation and way forward 

Handling the trade-offs of the complex interplay among food, water, 
and air quality requires a holistic approach and frameworks. However, 
the development of a detailed framework is beyond the scope of this 
paper. Some nexus analysis tools in prior research, such as the water- 
energy-food (WEF) nexus Tool 2.0 (Daher and Mohtar, 2015), could 
be coupled with the satellite-based approach for monitoring and 
modeling interactions among food, water, and air quality. This kind of 
tool requires several data inputs such as the percentage of food products 
grown in open agriculture conditions, yield of different food products, 
and water requirements. Satellite-based products can provide valuable 
data for such a nexus tool, given the rapid, multi-temporal, and large- 
scale coverage of remote sensing observations. 

A few actions could be taken at the multiple levels of the government 
to minimize trade-offs. The first action could be to reduce rice residue 
burning (Lohan et al., 2018; Shyamsundar et al., 2019). Rice residue can 
be utilized for many other purposes, such as bioenergy, livestock feed 
and bedding, compost for mushroom cultivation, and bedding for 
various vegetables, or can be mulched back into the soil itself. In order to 
reduce rice residue burning, it is essential to raise awareness among 
farmers about the impacts of residue burning on their health, alternative 
uses of rice residues and the importance of environmental sustainability. 
Additionally, the government could motivate farmers not to burn rice 
residue instead of imposing a simple burning ban. Encouraging the 
farmers to use technologoically advance ‘happy seeder’ machine (Sidhu 
et al., 2007) that can plant wheat seeds without residue burning could be 
an alternative solution. The government could provide a financial sub
sidy for farmers to purchase the ‘happy seeder’ (Shyamsundar et al., 
2019). Corporations and vendors could be mandated to establish after- 
sale service centers so that farmers do not opt out of using the ma
chine when it needs repair. 

The second action is to reduce groundwater use. Raising the price of 
the energy used for pumping water and limiting the number of water 
pumps for large farms, could help prevent excess groundwater with
drawals. But these will not succeed or will not be adopted till ground
water regulatory institutions are redesigned to function bottom-up, as 
suggested by the Planning Commission in 2012 (Shah, 2013), and in
tegrated with surface water allocation institutions. 

The long-term solution, although perhaps the most difficult one, is to 
change the cropping systems towards less water-consuming crops that 
also do not require stubble burning. Small changes such as a shift to 
aerobic rice (Bouman et al., 2002) may be possible through a combi
nation of awareness campaign, training and handholding. However, 
there are deeper issues that need to be addressed if a significant shift is to 
occur. Farmers in the Punjab-Haryana regions are habituated to a 
rice–wheat production cycle that is environmentally harmful because of 
the high prices guaranteed by a procurement policy that has outlived its 
original objective of providing assured calories to the wider Indian 
population. But they are also facing indebtedness and rising health is
sues. Yet, these farmers are agitating for continued price support 
because they do not see a way out of the current system without a major 
drop in incomes. Diversifying procurement to include other (water- 
efficient) crops that also happen to be more healthy, coupled with 
improved functioning of agricultural markets and providing crop in
surance could be a way out. 

Some policies are already in place to safeguard water resources or air 
quality, and others are being contemplated, including those suggested 
above. However, identifying the ‘right’ mix of policies and implement
ing them is a complex and challenging task. The trade-offs we show are 

not just between sectory but between the lives and livelihoods of real 
people in those sectors, whether farmers, other groundwater users (or 
future users), urban residents in the Delhi and National Capital Region 
(NCR), or the millions of Indians dependent upon the rice and wheat that 
is procured from this region and channeled through the public distri
bution system. The process of policy-making is inherently political, as it 
involves reconciling the conflicting interests of multiple stakeholders. 
The extant political process can either ignore, amplify or ameliorate 
these conflicts. Procesess that build trust between decision-makers and 
stakeholders are missing at the moment. Equally challenging is the 
implementation of policy decisions through a bureaucratic framework 
(such as agricultural extension or groundwater pumping regulation) or 
even through imperfectly functioning market instruments, such as 
electricity princing. 

The kind of anlaysis we have provided, and additional analysis of the 
socio-economic implications of alternate policies, can only inform the 
stakeholders and their representatives involved in this process. Devel
oping scenario-building and exploration tools that are more participa
tory and transparent and enable stakeholders to better understand and 
visualize the trade-offs might be ways for scientists to nudge the process 
forward. Such transdisciplinary science is a necessary, but by no means 
sufficient, step in the resolution of these interlinked and highly con
tentitous environmental problems. 

6. Conclusion 

To our knowledge, the linkages between paddy rice area expansion, 
groundwater depletion, crop residue burning, and air pollution in 
northern India have not been quantified previously. Using long-term 
time series satellite measurements, we demonstrated a strong connec
tion among them over northern India.We found that the expansion of 
rice cultivation (+22%) triggered unsustainable groundwater depletion 
(-1.50 cm/yr) and increased residue fires (+500%), which caused rising 
air pollution (+29%, PM2.5) during 2001–2018. The expansion of the 
paddy rice planting area has improved India’s food security (SDG 2) but 
has negatively impacted groundwater storage (SDG 6) and regional air 
quality (SDG 3 and 11), affecting millions of people via water shortage 
and hazardous air quality. Our results confirm that the GW Act of 2009 
reduced the overexploitation of groundwater, but it hampered progress 
on other SDG targets for air quality and the improvement of human 
health. This study provides scientific evidence that coherent policy 
design and implementation are needed to foster changes in farming 
practices to address these problems and sustain the wellbeing and 
livelihoods of northern India’s population. 
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